AND FAULT DIAGNOSIS HAMID A... ELECTRIC MACHINESMODELING, CONDITION MONITORING, AND FAULT DIAGNOSIS... ELECTRIC MACHINESMODELING, CONDITION MONITORING, AND FAULT DIAGNOSIS HAMID A... 6
Trang 1AND FAULT DIAGNOSIS
HAMID A TOLIYAT • SUBHASIS NANDI
SEUNGDEOG CHOI • HOMAYOUN MESHGIN-KELK
CRC Press ,
Trang 3ELECTRIC MACHINES
MODELING, CONDITION MONITORING,
AND FAULT DIAGNOSIS
Trang 5ELECTRIC MACHINES
MODELING, CONDITION MONITORING,
AND FAULT DIAGNOSIS
HAMID A TOLIYAT SUBHASIS NANDI SEUNGDEOG CHOI HOMAYOUN MESHGIN-KELK
-^-1 hÀ\G HAI V ê \AM
TÀI LI£llTHL(■VIÊ^
CRC Press
Taylor &i Francis Group
Boca Raton London N e w York
C R C Press is an im p rin t of the Taylor & Francis C ro u p , an in fo r m a business
Trang 7P r e f a c e xi
1 I n tr o d u c t i o n 1
Seun gdeog Choi R e f e r e n c e s 8
2 F a u lts in I n d u c t i o n a n d S y n c h r o n o u s M o t o r s 9
Bilal A kin an d M ina M Rahim ian 2.1 In tr o d u c tio n of In d u c tio n M otor Favilt 9
2.1.1 B e arin g F a u lts 9
2.1.2 S tator F a u l t s 11
2.1.3 Broken Rotor Bar F a u l t 13
2.1.4 Eccentricity Fault 15
2.2 I n t r o d u c tio n of S y n c h r o n o u s M o to r Fault D i a g n o s i s 16
2.2.1 D a m p e r W i n d i n g F a u l t 17
2.2.2 D e m a g n e tiz a ti o n Fault in P e r m a n e n t M a g n e t S y n c h r o n o u s M a c h in e s (PM SM s) 18
2.2.3 Eccentricity F a u lt 19
2.2.4 Stator Inter-Turn F a u l t 20
2.2.5 Rotor Inter-Turn F a u lt 21
2.2.6 B earin g F ault 22
R e f e r e n c e s 23
3 M o d e l i n g o f E lectric M a c h i n e s U s in g W i n d i n g a n d M o d if ie d W i n d i n g F u n c t i o n A p p r o a c h e s 27
Su bhasis N andi 3.1 I n t r o d u c t i o n 27
3.2 W i n d i n g a n d M odified W i n d i n g F u n c tio n A p p ro a c h e s (WFA a n d M W F A ) 28
3.3 In d u c ta n c e C a lc u la tio n s U sin g WFA a n d M W F A 33
.3.4 Validation of Inductance C alculations U sing WFA a n d M W F A 39
R e f e r e n c e s 45
Trang 8vi Contents
4 M o d e l i n g o f Ele ctric M a c h i n e s U s i n g M a g n e t i c E q u i v a l e n t
C i r c u i t M e t h o d 47
H om ayoun M eshgin-K elk 4.1 In tro c iu c tio n 47
4.2 In d ire c t A pplication of M a g n e tic E q u i\'a le n t C ircuit for A n a ly sis of Salient Pole S y n c h r o n o u s M a c h i n e s 52
4.2.1 M a g n e tic E q u iv a le n t C ircu it of a Salient Pole S y n c h r o n o u s M a c h i n e 53
4.2.2 In d u c ta n c e Relations of a Salient Pole S y n c h ro n o u s M a c h i n e 55
4.2.3 C alc u la tio n of I n d u c ta n c e s for a Salient Pole S y n c h r o n o u s M a c h i n e 58
4.2.4 E x p e rim e n ta l M e a s u r e m e n t of I n d u c ta n c e s of a Salient Pole S y n c h r o n o u s M a c h i n e 63
4.3 In d ire c t A p p licatio n of M ag n etic E q u iv alen t C ircu it for A n aly sis of In d u c tio n M a c h i n e s 66
4.3.1 A Sim plified M a g n e tic E q u i\’alen t C ircu it of In d u c tio n M a c h i n e s 66
4.3.2 I n d u c ta n c e Relations of In d u c tio n M a c h i n e s 68
4.3.3 C a lc u la tio n of I n d u c ta n c e of a n I n d u c tio n M a c h i n e 70
4.4 D irect A pp licatio n of M a g n e tic E q u iv alen t C ircuit C o n s id e rin g N o n lin e a r M a g n e tic C h a ra c te ristic for M a c h in e A n a l y s i s 73
A p p e n d ix A: In d u ctio n M ach in e P a r a m e t e r s 77
A p p e n d i x B: N o d e P e rm e a n c e M a tric e s 78
R e f e r e n c e s 79
5 A n a l y s i s o f F a u l t y I n d u c t i o n M o t o r s U s i n g F i n i t e E l e m e n t M e t h o d 81
Bashir M alidi Ebrahim i 5.1 I n t r o d u c t i o n 81
5.2 G e o m e tric a l M o d e lin g of Faulty I n d u c tio n M o to rs U sing T im e -S te p p in g Finite E lem en t M e th o d (T S F E M ) 82
5.3 C o u p lin g of Electrical C ircu its a n d Finite E lem ent A r e a 83
5.4 M o d e lin g In te rn a l Faults U sin g Finite Elem ent M e t h o d 85
5.4.1 M o d e lin g Broken Bar F a u lt 85
5.4.2 M o d e lin g Eccentricity F a u l t 87
5.4.2.1 Static E c c e n tr ic it y 87
5.4.2.2 D y n a m i c E c c e n tr ic it y 89
5.4.2.3 M ix ed E c c e n tr ic it y 90
5.5 Im p a c t of M a g n e tic S a tu ra tio n on A ccurate Fault D etection in I n d u c tio n M o t o r s 91
Trang 95.5.1 A n a ly sis of A ir-G a p M a g n e tic Flux D en sity in
H e alth y a n d F aulty In d u c tio n M o t o r 94
5.5.1.1 L inear M a g n e tiz a tio n C h a ra c te r is tic 94
5.5.1.2 N o n lin e a r M a g n e tiz a tio n C h a r a c te r is tic 95
R e f e r e n c e s 96
6 Fault D i a g n o s i s of Electric M a c h i n e s U s i n g Te c h n i q u e s Based on F r eque nc y D o m a i n 99
Subhasis N andi 6.1 I n t r o d u c t i o n 99
6.2 Som e D efinitions a n d E xam ples Related to Signal Processing 100
6.2.1 C o n tin u o u s v e rs u s Discrete or D igital or S a m p le d S i g n a l 100
6.2.2 C o n tin u o u s , D iscrete Fou rier T ran sfo rm s, a n d N o n p a r a m e t r i c P ow er S p e c t r u m E s tim a tio n 101
6.2.3 P a ra m e tric P ow er S p e c t r u m E s t i m a t i o n 105
6.2.4 P o w e r S p e c t r u m E s tim a tio n U sing H i g h e r - O r d e r Spectra ( H O S ) 107
6.2.5 Pow'er S p e c t r u m E stim a tio n U sin g S w e p t Sine M e a s u r e m e n ts or Digital F re q u e n c y Locked Loop T e c h n iq u e (D F L L ) 110
6.3 D ia g n o sis of M a c h in e Faults U sin g F re q u e n c y D o m a in -Based T e c h n i q u e s I l l 6.3.1 D etection of M o to r B earin g F a u l t s I l l 6.3.1.1 M ec h a n ic a l V ibration F re q u e n c y A n a ly sis to Detect B earing F a u l t s I l l 6.3.1.2 Line C u r r e n t F re q u e n c y A n a ly s is to D etect B earin g F a u l t s 115
6.3.2 D etection of Stator F a u lts 116
6.3.2.1 D etection of Stator Faults U sin g External Flux S e n s o r s 116
6.3.2.2 D etection of Stator Faults U sin g Line C u r r e n t H a r m o n i c s 117
6.3.2.3 D etection of Stator Faults U sing T erm in al Voltage H a r m o n ic s at S w i t c h - O f f 119
6.3.2.4 D etection of Stator Faults U sing Field C u r r e n t a n d Rotor Search Coil H a r m o n ic s in S y n c h r o n o u s M a c h i n e s 121
6.3.2.5 D etection of Stator Faults U sin g Rotor C u r r e n t a n d S earch Coil Voltages H a r m o n ic s in W o u n d Rotor In d u c tio n M a c h in e s 124
6.3.3 D etection of Rotor F a u l t s 129
Trang 10v iii C.antcnts
6.3.3.1 D etection of Rotor Faults in Stator l.ine
C u rre n t, Sp eed , Torque, a n d P o w e r 1306.3.3.2 D etection of Rotor Faults in E xternal an d
In te rn a l Search C o i l 1346.3.3.3 D etection of R otor Faults U sing T e rm in a l
Voltage H a r m o n ic s at S w i t c h - O f f 1346.3.3.4 D etection of Rotor Faults at S t a r t - U p 1346.3.3.5 D etectio n of Rotor F aults in P re se n c e of
I n te rb a r C u r r e n t U sing Axial Vibration
S i g n a ls 1356.3.4 D etectio n of Eccentricity F a u l t s 1366.3.4.1 D ete c tio n of Eccentricity Faults U sin g Line
C u r r e n t Signal S p e c t r a 1366.3.4.2 D etectio n of Eccentricity Faults B ased on
N a m e p la te P a r a m e t e r s 1426.3.4.3 D etectio n of Eccentricity Faults U sing
M e c h a n ic a l Vibration Signal S p e c t r a 1476.3.4.4 D etection of In c lin e d Eccentricity F a u lts 1476.3.5 Detection of Faults in Inverter-Fed Induction M a c h i n e s 148
Stator Inter-Turn F au lts 1657.3.1 M odel w i t h o u t S a t u r a t i o n 1657.3.2 M o d el w ith S a t u r a t i o n 1697.4 M odel of S q u irre l-C a g e I n d u c tio n M o to r w ith Incipient
Broken Rotor Bar a n d E n d -R in g F a u lts 1757.5 M o d el of S q u irre l-C a g e I n d u c tio n M o to rs w i t h Eccentricity
F a u lts 1777.6 M o d el of a S y n c h r o n o u s R eluctance M o to r w i t h Stator F a u lt 1797.7 M o d el of a Salient Pole S y n c h r o n o u s M otor w i t h D y n a m ic
Trang 11Cotiteiits ix
8.4 F eatu re Extraction for O u r Fault D ia g n o sis S y s t e m 190
8.5 Classifier T r a i n i n g 192
8.6 I m p l e m e n t a t i o n 194
R e f e r e n c e s 198
9 I m p l e m e n t a t i o n o f M o t o r C u r r e n t S i g n a t u r e A n a l y s i s F a u lt D i a g n o s i s B ased o n D i g ita l S i g n a l P r o c e s s o r s 199
Seungdeog Choi and Bilal Akin 9.1 I n t r o d u c t i o n 199
9.1.1 C ro ss-C o rre la tio n S ch em e D e riv e d fro m O p tim a l D etector in A d d itiv e W h ite G a u s s ia n N oise (AWGN) C h a n n e l 200
9.2 Reference Fram e T h e o r y 201
9.2.1 Reference F ra m e T h e o r y for C o n d itio n M o n i t o r i n g 202
9.2.2 (Fault) H a r m o n ic A n a ly sis of M u ltip h a s e S y s te m s 202
9.2.3 O n -L in e Fault D etection R e su lts 204
9.2.3.1 v /f C o n tro lle d Inverter-Fed M o to r Line C u r r e n t A n a l y s i s 204
9.2.3.2 F ield -O rien ted C o n tro l Inverter-Fed M otor Line C u r r e n t A n a l y s i s 206
9.2.3.3 I n s t a n t a n e o u s Fault M o n ito rin g in Tim e-F re q u e n c y D o m a in a n d T ransient A n a l y s i s 206
9.3 P hase-S ensitive D etection-B ased Fault D i a g n o s i s 210
9.3.1 I n t r o d u c t i o n 210
9.3.2 Phase-Sensitive D e te c tio n 210
9.3.3 O n -L in e E x p e rim e n ta l R e s u lts 212
R e f e r e n c e s 218
10 I m p l e m e n t a t i o n of F a u lt D i a g n o s i s in H y b r i d Ele ctric V ehicles B ased o n R e fe re n c e F ra m e T h e o r y 221
Bilal Akin 10.1 I n t r o d u c t i o n 221
10.2 O n -B o a rd Fault D ia g n o sis (OBD) for H y b rid Electric Vehicles (H E V s ) 221
10.3 D rive Cycle A n a ly s is for O B D 224
10.4 Rotor A s y m m e t r y D etection at Z e ro S p e e d 226
R e f e r e n c e s 233
11 R o b u s t S ig n a l P r o c e s s i n g T e c h n i q u e s fo r t h e I m p l e m e n t a t i o n of M o to r C u r r e n t S i g n a t u r e A n a l y s i s D i a g n o s i s B a s e d o n D ig ita l S ig n a l P r o c e s s o r s 235
Seungdeog Choi 11.1 I n t r o d u c t i o n 235
11.1.1 C o h e re n t D e t e c t i o n 236
Trang 12Electric Machines: Fault Diagnosis a n d Condition M ointcring
11.1.2 N o n c o h e r e n t D etection (P h a se A m b i g u i t y
C o m p e n s a t i o n )
11.1.3 Fault F re q u e n c y O ffset C o m p e n s a t i o n
11.2 D e c isio n -M a k in g S c h e m e
11.2.1 A d a p tiv e T h re s h o ld D e sig n (N o is e A m b i g u i t y C o m p e n s a t i o n )
11.2.2 Q - F u n c t i o n
11.2.3 N o ise E s t i m a t i o n
11.3 S im u la tio n a n d E x p e rim e n ta l R e s u l t
11.3.1 M o d e le d MATLAB S im u la tio n R e s u l t
11.3.2 Off-Line E x p e r i m e n t s
11.3.2.1 Off-Line R esults for E c c e n t r i c i t y
11.3.2.2 Off-Line R esults for B ro k e n R otor Bar 11.3.3 O n -L in e E x p e rim e n ta l R e s u lts
R e f e r e n c e s
I n d e x 253
237 237 240
240 242 243 244 244 245 246 247
248 251
Trang 13P reface
Tilt' d e v e l o p m e n t of th e electric m o to r is o n e of the g reatest a c h ie v e m en ts of
th e m t) d e r n e n e r g y c o n v e rs io n in d u stry C o u n tle s s electric m o to rs are b e in g
u s e d in o u r d aily lives for critical service a p p licatio n s such as tr a n s p o r ta tio n ,
m e d i c a l tre a tm e n t, m i l i t a r y o p eratio n , ancl c o m m u n ic a tio n H ow ever, d u e to
th e f u n d a m e n t a l lim itaticins of m a te ria l lifetime, deterioraticin, c o n t a m i n a tion, m a n u f a c t u r i n g d efects, or d a m a g e s in o p eratio n s, an electrical m o to r
w ill e\ e n tu a lly go in to fa ilu re m ode A n u n e x p e c t e d failure m ig h t lead to the loss of v a lu a b le h u m a n life or a costly s ta n d s till in in d u stry , w'hich n e e d s to
b e p r e v e n t e d b y p re c is e ly d e te c tin g or c o n tin u o u s ly m o n ito r in g the w'orking
c o n d itio n of a m otor
T his b o o k w a s w r i t t e n to p rtw id e a full re v ie w of d ia g n o s is te c h n o lo g ies
a n d as a n a p p licatio n g u i d e for g r a d u a te a n d se n io r u n d e r g r a d u a t e s t u d e n t s
in th e p tiw e r e le c tro n ic s d is c ip lin e w'ho w a n t to research , develop, a n d im p le
m e n t a fault d i a g n o s i s a n d co n d itio n m o n ito r in g s c h e m e for b e tte r safety
a n d i m p r o v e d re lia b ility in electric m o to r operatio n F u rth e rm o re , electrical
a n d m e c h a n ic a l e n g i n e e r s in the i n d u s t r y are also e n c o u r a g e d to u se por- titins of th is b o o k as a referen ce to u n d e r s t a n d th e f u n d a m e n t a l s of fault
c a u s e a n d effect a n d to fulfill successful im p le m e n ta tio n
T h is b o o k a p p r o a c h e s th e fault d ia g n o s is of electrical moftirs t h r o u g h th e
p r o c e s s of th e o retical a n a ly s is a n d th e n practical application First, the analy- si.s of th e f u n d a m e n t a l s of m a c h in e failure is p re s e n te d t h r o u g h the w i n d
in g f u n c t i o n s m e t h o d , th e m a g n e tic e q u iv a le n t circuit m e th o d , a n d finite t'le m e n t analysis Sectind, th e im p le m e n ta tio n of fault d ia g n o s is is review'ed
w i t h t e c h n i q u e s s u c h a s the m o to r c u r r e n t s i g n a t u r e an a ly sis (MCSA)
m e t h o d , fret]uency d o m a i n m ethtid, m o d e l-b a s e d te c h n iq u e s, a n d p a tte rn
r e c o g n i t i o n schem e, hi p a rtic u la r, the MCSA im p le m e n ta tio n m e t h o d is pre- sented in d e ta il in th e last c h a p te r s of the book, w h ic h d is c u s s ro b u s t sig
n al p r o c e s s i n g t e c h n i q u e s a n d r e fe re n ce -fra m e -th e o ry -b a s ed fault d ia g n o s is
i m p l e m e n t a t i o n fcir h y b r id vehicles as a n exam ple T h e s e theoretical an aly sis
a n d p ra c tic a l im p l e m e n t a t i o n strateg ies a re b a se d on m a n y y e a rs of research
a n d deN-ekipment at th e Electrical M a c h in e s & Ptiwer Electronics (EMPE) i-a b o r a to r y at Texas A & M University
Ha m i d Toliyat
Texas A&M LIniversit}/ College Station, Texas
.VI
Trang 152011, w h ic h is a s s u m e d m o re t h a n 507o g r o w t h ju st w i t h i n 5 years [1] Electric
m o to rs h a v e b een a p p lie d to a lm o s t e\'ery place in o u r daily life, s u c h as
m a n u f a c t u r i n g system s, air tra n s p o r ta tio n s , g r o u n d tra n s p o r ta tio n s , b u i l d ing air-c o n d itio n e r sy stem s, h o m e e n e r g y co n v ersio n system s, v a r io u s cooling systems in electrical devices, a n d even cell p h o n e x'ibration sy stem s
it is also a well-know n fact that the electric m otors co n su m e m ore th an 507o of
w hole electrical energy d e m a n d in the United States The a n n u a l electrical energy
d e m a n d in the United States w a s 3,873 billion kilowatt-hours in 2008, w h ic h is expected to be further increased in e\'ery year d e p e n d in g on population a n d economic g ro w th [11] This data indicates that m ore th a n 1,900 billion kilowatt-hours
is l o n s u m e d by electric motors annually in the United States, w'hich is the biggest energy con su m p tio n by any single electric device in m o d e rn society
With the rap id ly in creased p o p u la tio n a n d h u g e electric e n e r g y c o n s u m p tion, s o p h isticated control a n d reliability of m o to r o p e ra tio n s from a h a r s h
in d u s tria l env ir o n m e n t h a s n o w b e e n a m ajor r e q u i r e m e n t in m a n y i n d u s trial applications It is especially im p o r t a n t w h e r e a n u n e x p e c te d s h u t d o w n
m ig h t result in the in te r r u p tio n of critical services such as m edical, t r a n s
p o rta tio n , o r m ilita ry operatio n s In th o se ap p lic a tio n s w h e r e c o n tin u o u s proc ess is n e e d e d a n d w h e r e d o w n tim e is n o t tolerable, a n u n e x p e c t e d failure« of a m o t o r m ig h t result in costly m a i n t e n a n c e or loss of life
A s s h o w n in Figure 1.1, the electrical m o to r c onsists of m a n y m e c h a n ic a l
a n d electrical parts, such as a ro to r bar, rotor m a g n e t, stato r w i n d i n g , end- ring, b e a rin g , a n d g e a r box D u e to th e c o m m o n ly h a r s h in d u s tria l e m i r o n - mc'nts, each p a r t of electric m o to rs is p o te n tia lly e x p o s e d to the h ig h risk of
u n e x p e c te d m echanical, chem ical, a n d electrical system failures The re a so n s
w h y electric m o to rs fail in i n d u s t r y have b een c o m m o n ly r e p o r te d as follows:
1 Post th e s t a n d a r d lifetim e
2 V\'rong-rated pow er, voltage, a n d c u r r e n t
Trang 16E lectric M a ch in es: M oileling, C on dition M onitorin g, an d Fault D iag ’osis
5 Electrical stre ss fro m fast s w itc h in g in v erters or u n s ta b le g r o u n d
6 R esidual stress from m a n u f a c t u r i n g
7 M ista k e s d u r i n g r e p a irs
8 H a r s h application e n v i r o n m e n t (dust, w a te r leaks, e n v i r o n m e n t i l
\ ibration, chem ical c o n ta m in a tio n , h ig h te m p e ra tu re )
F ig u re 1.2 show's an e x a m p le of a w'ell know'n electrical m o to r fault such as
b e a r i n g ball d a m a g e T h e b e a r i n g ball is ta k e n from the b e a r i n g m o d u le that
h a d b e e n d i a g n o s e d as faculty for 6 m o n th s The m a i n t y p e s of m o to r fiults are c o m m o n ly ca te g o riz ed as electrical faults, m e c h a n ic a l faults, a n d cuter
d riv e sy stem defects, w h ic h a re as follow's [2-5]:
Trang 17h A ir-g a p irr e g u la r ity
3 O u te r m o to r d riv e s y ste m failures
a l n \ ’e rte r sy stem failure
b U nstable x’o l t a g e /c u r r e n t so u rce
c S h o rte d o r o p e n e d s u p p ly line
HC;iJRE 1.2
H e.irii'.g b a ll fa u lt a n d s u b s e c iu e n t f a t ig u e d a m a g e V ib r a tio n c o n s u lt a n t , h t t p : / / w w w
Trang 18Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis
T h e b e a r i n g fault is k n o w n to m a k e u p a lm o s t 40%, stator related ab o u t 3cS"o,
ro to r related a b o u t 10%, a n d o th e rs m a k e u p 12% of w h o le electrical m o to r fault [2-6],
T h e electric m o to r d e s ig n is c o m m o n ly i n t e n d e d to h ave electrical a n d
m e c h a n ic a l s y m m e t r y in th e stato r a n d the ro to r for b e tte r c o u p lin g a n d
h ig h e r efficiency Fault co n d itio n in a m o to r d e s c rib e d earlier is s u p p o s e d to
d a m a g e the s y m m e tr ic a l p r o p e r t y w'here fa u lt- d e p e n d e n t m o to r o p e ra tio n
M o st a b n o r m a l s y m p t o m s h ave b e e n k n o w n to h ave specific p a tte r n s
p e r t a i n i n g to the m o to r fault c o n d itio n s a n d severity, such as p a r tic u la r fre quency, d u ra tio n , a m p litu d e , variance, degree, a n d phase Based on m o n i
to rin g a n d a n a ly z in g th e e x p e c te d s y m p t o m s a n d th e ir specific p atterns,
m a n y m o to r fault d ia g n o s e s h a v e b e e n su g g ested , a n d th ere hav'e b een sev eral c o m m e rc ia l so lu tio n s in the i n d u s t r y m a r k e t as s h o w n in Figure 1.3 In
p a rtic u la r, the v ib ra tio n s p e c t r u m in F ig u re 1.3a is fro m th e b e a r in g m o d u le
w ith defect ball iii fig u re 1.2 Based on the s p e c t r u m m o n i t o r i n g technique,
th e b e a r i n g m o d u l e is d ia g o n o s e d faculty a n d safely re m o v e d before the s y s
te m falls in to c a ta s tro p h ic failure m ode
d A coustic n o ise a n aly sis
e E lec tro m a g n etic field m o n i t o r i n g t h r o u g h i n s e r te d coil
f I n s t a n t a n e o u s o u t p u t p o w e r v a ria tio n analysis
g I n f r a r e d an aly sis
h G as analysis
Trang 206 Electric Machines: Modeling, Condition Monitoring, and Fault Diagiu'sis
e Finite-elem ent (FE) m a g n e tic circuit e q u iv a le n ts
f L in e a r-c irc u it-th e o ry -b a se d m a th e m a tic a l m o d e ls
3 M a c h in e -th e o ry -b a s e d fault analysis
a W i n d i n g fu n c tio n a p p r o a c h (WFA)
b M odified w i n d i n g fu n c tio n a p p r o a c h (MWFA)
c M a g n e tic e q u iv a le n t c ircuit (MEC)
4 S im u la tio n s -b a s e d fault analysis
a F inite-elem ent an a ly sis (FEA)
b T im e-step co u p le d finite ele m e n t state space a n aly sis (TSCFE-SS)
The d iffe re n t ty p e s of fault d ia g n o s is m e t h o d s h a v e b e e n s im u lta n e o u s ly
a p p lie d to fin e -tu n e the d e te c tio n in in d u stry The fault d ia g n o s is of electrical m o to r s is e x p e c te d to p ro v id e w a r n i n g of i m m i n e n t failures, d i a g n o s i n g
s c h e d u l i n g i n f o r m a tio n for f u tu r e p rev en tiv e m ain te n a n c e
The im p le m e n ta tio n of fault d ia g n o sis h a s b e e n d o n e w ith the following routine:
a D ecide fault existence
b D ecide fault s everity
3 Feed b ack to m o to r co n tro ller o r h u m a n m terface
a L im it m o to r o p e ra tio n b a s e d on fault severity
b S c h e d u le m a in te n a n c e
Fig u re 1.4 s h o w s th e in c re a s e d co n v erg en ce b e t w e e n the e n e r g y system
a n d m o d e r n n e t w o r k s y s te m in m o d e r n ind u stry T h e electrical m o to r s in a car, ship, aircraft, b u ild in g , road, or in a p o w e r sy stem can b e a s s u m e d to be
Trang 21w a r d e d to a close or re m o te m ic ro c o n tro lle r or digital p ro c e sso r of w h ic h the controller p e r f o r m s in d iv id u a l sy stem control, w h o le sy stem m a n a g e m e n t,
d ia g n o s is s e e m s to be d riv e -in te g ra te d fault d ia g n o s is s y s te m s w ith in m o to r
d riv e DSP w i t h o u t u s in g a n y ex tern al h a r d w a r e [8]
T h is b o o k is i n t e n d e d to p ro v id e f u n d a m e n t a l s of v a rio u s m o to r fault co n ditions, adx a n c e d fault m o d e lin g theory, d iv e rse fault d ia g n o s is te c h n iq u e s,
a n d low cost DSP-based fault d ia g n o s is im p le m e n ta tio n strategies
Trang 228 Electric Machines: Modeling, Condition Monitoring, and Vault Diagnosis
R e f e r e n c e s
[1] H A T oliyat a n d S.G C a m p b e ll, D SP -B ased E lectrom echan ical M otion Control,
Boca R aton, FL: CRC P ress, 2003
[2] G.B, K lim an, R.A K o e g l,].S te in , R.D E n d ic o tt,a n d M.W M a d d e n , " X o n in v a s iv e
d e te c tio n o f b ro k e n ro to r b a rs in o p e ra tin g in d u c tio n m o to rs," IEEE Trniisiiclioii>
on E nergy C onversion s, vol 3, p p 873-879, D e c e m b e r 1988
[3] S N a n d i, H A T oliyat, a n d X Li, " C o n d itio n m o n ito rin g a n d fau lt d ia g n o s is o f
e lec trical m a c h in e s— A rev iew ," IEEE T ransactions on Encr^^y C onversion , \ ol 20,
no 4, p p 719-729, D e c e m b e r 2005
[4] A Siddic]ue, G.S Y ad a\ a, a n d B S in g h , "A rev iew o f s ta to r fau lt m o n ito rin g
te c h n iq u e s o f in d u c tio n m o to rs," IEEE Trans, on E nergy C onversion , \'o l 20, p p 106-114, M arch 2005
[5] M El H a c h e m i B e n b o u z id , "A rev iew o f in d u c tio n m o to rs s ig n a tu re a n a ly s is as
a m e d iu m for fa u lts d e te c tio n ," IEEE Transactions on Indu strial E lectronics, vol
47, p p 984-993, O c to b e r 2000
[6] Y.E Z h o n g m in g a n d W.L' Bin, "A rev iew o n in d u c tio n m o to r o n lin e fault d ia g
n o sis," IEEE IPEM COO, vol 3, p p 1353-1358, 2000
[7] B A k in , U O rg u n e r, H T oliyat, a n d .M R ayner, " P h a s e se n s itiv e d e te c tio n o f
m o to r fau lt s ig n a tu re s in th e p re s e n c e o f n o ise ," IEEE Trniisaclions on Indu strial
E lectronics, \ ol 55, no 6, J u n e 2008
[8] B A kin, U O rg u n e r, H T oliyat, a n d M R ayner, "L o w o rd e r PW.M in v e rte r h.u'-
m o n ic s c o n tr ib u tio n s to th e in v e rte r fed IM fa u lt d ia g n o s is ," IEEE T ransaclions
on Indu strial E lectronics, vol 55, p p 610-619, F e b ru a ry 2008
[9] S C h o i, "R o b u st C o n d itio n M o n ito rin g a n d F au lt D ia g n o sis o f V ariable S p eed
D riv e o f In d u c tio n .Motor," P h D d is s e rta tio n , Texas A & M U n iv ersity , 2010.[10] W.T T h o m so n a n d M Fenger, " C u rr e n t s ig n a tu re a n a ly s is to d e te c t in d u c tio n
m o to r fa u lts," IEEE Industry A pplication s M agazine, vol 7, no 4, 2001
[11] U.S E n erg y In fo rm a tio n A d m in is tra tio n , " A n n u a l E n erg y O u tlo o k 2010: W ith
P ro jectio n s to 2035," W a sh in g to n , DC, A p ril 2010
Trang 23b a r faults, b e a r i n g faults, a n d stator faults, w h ic h a c c o u n t for m o re t h a n 90%
of o\ erall i n d u c tio n m o to r failures, a re c o n s id e re d [1-3]
2.1.1 Bearing Faults
B e a rin g faults a c c o u n t for m o re t h a n 40°/o of all electric m o to r failures [5-7] Most of the b e a r in g s in in d u s tr ia l facilities r u n u n d e r n o n id e a l c o n d itio n s
a n d a r e subject to fatigue, a m b ie n t m e c h a n ic a l \'ibration, o v e rlo ad in g , m i s
a lig n m e n t, c o n ta m in a tio n , c u r r e n t fluting, corrosion, a n d w r o n g lubrication T h e s e n o n id e a l c o n d itio n s s ta r t as m a r g i n a l defects that s p r e a d a n d
p r o p a g a te on the in n e r raceway, o u te r raceways, a n d ro llin g e le m e n ts (see
F ig u re 2.1) A fter a w h ile the defect b e c o m e s significant a n d g e n e ra te s
m e c h a n ic a l v ibration c a u s in g acoustic noise Basically, b e a r i n g faults c a n be classified a s o u te r raceway, in n e r raceway, ball defect, a n d cage defect, w h ic h
a re the m a i n so u rc e s of m a c h i n e vibration T h ese m e c h a n ic a l v ib ra tio n s in the a ir g a p d u e to b e a r in g faults c a n be c o n s id e re d as slight rotor d is p la c e
m e n ts, w h ic h re su lt in in s ta n t eccentricities Therefore, the basic fault sig
n a t u r e f re q u e n c y e q u a tio n of line c u r r e n t d u e to b e a r in g defects is a d o p te d from e c c en tricity lite ra tu re [10]
M e c h a n ic a l v ibration, in f r a r e d or th e rm a l, a n d acoustic a n a ly s e s a re so m e
of th e c o m m o n l y u s e d p re d ic tiv e m a i n t e n a n c e m e t h o d s to m o n i t o r the he.ilth of th e b e a r in g s to p re v e n t m o to r failures
Trang 2410 Electric Machines: Modeling, Condition Monitoring, and Fault D ia ^icsis
Vibration a n d th e r m a l m o n ito r in g r e q u ir e a d d itio n a l s e n s o rs or t r a n s
d u c e rs to be fitted on the m a c h in e s W h ile so m e large m o to rs m ay a lread y
c o m e w ith v ibration a n d th e rm a l tr a n s d u c e rs , it is no t ec o n o m ic a lly or ph\'si- cally feasible to p ro \ ide the s a m e for s m a lle r m a c h in e s Therefore, small- to
m e d iu m - s iz e m o to rs a re ch e c k e d p e rio d ic a lly by m o \'in g p o rta b le e q u i p
m e n t fro m m a c h i n e to m a c h i n e in all th r e e m e th o d s S o m e m o to rs used in critical applications, su c h as n u c le a r reactor cooling p u m p m otors, m ay not
b e easily accessible d u r i n g reactor operatio n T he lack of c o n tin u o u s m o n ito r
in g a n d accessibility are the sh o r tc o m in g s of the a f o r e m e n tio n e d techniques
A n alte rn a te a p p r o a c h b a s e d on line c u r r e n t m o n ito r in g h a s r e c e i\e d m u c h
re s e a rc h a tte n tio n in search of p r o v id in g a practical so lu tio n to co n tin u o u s
m o n i t o r i n g a n d accessibility p roblem s M o to r c u r r e n t m o n i t o r i n g p ro v id es
a n o n i n t r u s i v e w’ay to c o n tin u o u s ly m o n ito r m o to r reliability w i t h m i n im a l
a d d itio n a l cost
B earing faults can b e classified as o u te r raceway, in n e r raceway, ball defect,
a n d cage defect Each fault h a s specific m e c h a n ic a l v ib ra tio n freq u en cy c o m
p o n e n t s th a t a re c h aracteristic of each defect ty p e, w'hich is a fun ctio n of
b o t h b e a r i n g g e o m e t r y a n d s p e e d T h e m e c h a n ic a l oscillations d u e to b e a r
in g faults c h a n g e th e air-g ap s y m m e t r y a n d m a c h in e i n d u c ta n c e s like eccen tricity faults T he m a c h i n e in d u c ta n c e v a ria tio n s a re reflected to the line
c u r r e n t in te r m s of c u r r e n t h a rm o n ic s , w h ic h are th e in d ic a to rs of b e a rin g fault asso ciated w ith m e c h a n ic a l oscillations in th e air-gap
Trang 25f aults ill Induction and Synchro)wus Motors 11
A gen eric fault d ia g n o s is too! b a s e d on d is c r im in a tiv e e n e rg y f u n c tio n s is
p r o p o s e d by Ilonen et al [12] T h e se e n e r g y f u n c tio n s reveal d is c r im in a tiv e
f r e q u e n c y - d o m a i n re g io n s w h e r e failures are identified S choen [13] im p le
m e n t e d a n u n s u p e r v i s e d , on-line sy stem for in d u c tio n m o to r b a s e d on m o to r line c u rre n t A n a m p l i t u d e m o d u l a t i o n (AM) d e te c to r is d e v e lo p e d to d etect
th e b e a r i n g fault w h ile it is still in a n in cip ien t stage of d e v e lo p m e n t in Stack
et al [14] O c a k [15] d e v e lo p e d a h i d d e n M a rk o v m o d e lin g (H M M ) b a se d
b e a r i n g fault d ete c tio n a n d fault d iag n o sis Yazici a n d K lim a n [16] p r o p o s e d
an adaptiv'e statistical tim e -fre q u e n c y m e t h o d for d etectio n of b ro k e n rotor
b a r s a n d b e a r i n g faults in m o to rs u s i n g m o t o r line c u rre n t
2.1.2 Stator Faults
S tc \to r fau lts acco u n t for 30% to 40% of all electric m o to r failures [2,8,9] The
s ta to r fault can be b ro a d ly classified as the l a m in a tio n or f ra m e fault (core defect, c irc u la tio n c u rre n t, or g r o u n d , etc.) a n d th e stator w i n d i n g fault ( w i n d i n g in s u la tio n d a m a g e , d i s p la c e m e n t of c o n d u cto rs, etc.)
T h e m a jo r fu n ctio n of w i n d i n g in s u la tio n m a te ria ls n o r m a lly is to w i t h
s t a n d electric stress; how'ever, in m a n y cases it m u s t also e n d u r e o th e r
s tre s s e s s u c h as m e c h a n ic a l a n d e n v i r o n m e n t a l s tre sse s [19] In a motor,
th e to rq u e is the re s u lt of the force created by c u r r e n t in the c o n d u c to r a n d
s u r r o u n d i n g m a g n e tic field T h is s h o w s th a t w i n d i n g in su la tio n m u s t have
e lectrical as well a s m e c h a n ic a l p r o p e r tie s to w i t h s t a n d m e c h a n ic a l stre sse s[20], In a d d itio n , e le c tro m a g n e tic v ib ra tio n at tw ice the p o w e r frequency, differential e x p a n s io n forces d u e to the te m p e r a tu r e v a ria tio n s follow ing load
c h a n g e s , a n d im pact forces d u e to e le c tric a l/m e c h a n ic a l a s y m m e t r i e s also affect th e a g in g pro cess [21]
N o n u n i f o r m te m p e ra tu re d istrib u tio n in a m o to r will also cause m e ch an ical
d e s tr u c tio n d u e to dilation The m a n u f a c t u r i n g process itself m a y constitute
a t l a m a g i n g or ag in g action The electrical w i n d i n g insulation m u s t be strong
e n o u g h to w i t h s t a n d the m ec h a n ic al ab u se w h ile b ein g w o u n d an d in stalled
in th e motor Thus, the initial m ech an ical stresses are often very severe c o m
p a r e d to the s u b s e q u e n t a b u se the w i n d i n g in su latio n gets in service [20]
In c re a s e d te m p e r a t u r e s can cau se a n u m b e r of effects The m a te ria l m ay
be i n h e r e n t l y w e a k e r at elevated t e m p e r a t u r e s a n d a failure m a y o c c u r s im ply b e c a u s e of the m e ltin g of the m aterial T h is c a n be a v e r y s h o rt tim e failure, b e c a u s e of the sh o rt le n g th of tim e r e q u ir e d for the t e m p e r a t u r e to rise
to t h e m e ltin g point O n the o th e r h a n d , long-term elevated t e m p e r a t u r e can
c a u s e in te rn a l chem ical effects on m a te ria l [19]
T h e r m a l stress is probably the m o st re c o g n iz e d cause of w i n d i n g in s u la tion d e g ra d a tio n an d u ltim ate failure The m a in sources of th erm al stress in electric m a c h i n e r y are c o p p e r losses, e d d y current, a n d stray load losses in the
c o p p e r conductors, plus additional h e a tin g d u e to core los.ses, w in d ag e, a n d so foi th [22] H ig h te m p e ra tu re causes a chemical reaction that m a k e s w 'inding
in s u la tio n m aterial brittle A n o th e r problem is that d u e to s u d d e n te m p e ra tu re
Trang 2612 Electric Machiues: Modeling, Condition Monitoring, and Fault Diagiicsis
increase, c o p p e r co n d u c to r an d c o p p e r ba rs e x p a n d faster th a n w i n d i n g imsii- iation m aterial, w h ich causes stress on g r o u n d wall insulation [19],
A n o th e r significant effect on w i n d i n g in s u la tio n ag in g is p a rtia l d'is-
c h a rg e s (PD) Partial d is c h a r g e s are sm all electric s p a rk s th at o c c u r w itf iin
a ir b u b b le s in th e w i n d i n g in s u la tio n m aterial d u e to n o n u n i f o r m e lectric field d is trib u tio n O n c e b e g u n , PD c a u s e s p r o g r e s s i\’e d e te rio ra tio n of in^su- lating m aterials, u ltim a te ly le a d in g to electrical b r e a k d o w n O n the o t h e r
h a n d , m o to r w i n d i n g in su la tio n ex p e rie n c es h ig h e r voltage s tre sse s u h i e n
u s e d w i t h a n in v e rte r th a n w h e n c o n n e c te d directly to the a lte r n a tin g c u r ren t (AC) u tility grid T h e h ig h e r stre sse s a re d e p e n d e n t on th e m o to r c a b le
le n g th a n d a re c a u s e d by th e in teractio n of the fast rising voltage p u ls e s of
th e d riv e a n d tr a n s m is s io n line effects in the cable [23,24]
In a d d itio n to th e a fo re m e n tio n e d \ ’a rio u s causes, d e l a m i n a t i n g d is-
ch arg es, e n w i n d i n g d isc h a rg e s, m o i s t u r e attacks, abrasive m a te ria l attac.ks,
c h em ical d eco m p o sitio n , a n d ra d ia tio n can also be c o u n te d as accelerati ng effects o n a g in g of w i n d i n g in s u la tio n [25]
M o to r a n d g e n e ra to r w i n d i n g in s u la tio n failures d u r i n g m a c h i n e ope-ra- tion c a n lead to a cata stro p h ic m a c h i n e failure re s u ltin g in a costly outa.ige
P re v e n tio n of su c h a n o u ta g e is a m ajor c o n cern for b o th the m a c h in e m a n u
fa c tu re r a n d user, since it can re su lt in significant loss of re v e n u e d u r i n g t he
o u ta g e as well as r e p a ir o r r e p la c e m en t cost In the literatu re [19,25], PD is
ta k e n as a s ig n a tu r e of isolation agin g , w h ic h b e g in s w ith in voids, cracks, or
in clu sio n s w i t h i n a solid dielectric, at c o n d u c to r - d ie le c tr ic interfaces vvithiin solid o r liq u id dielectrics, o r in b u b b le s w i t h i n liquid dielectrics O n c e b e g u n ,
PD c a u se s p ro g re s s iv e d e te rio ra tio n of in s u la tin g m aterials, u ltim a te ly l e a d ing to electrical b re a k d o w n
W h e n a p a rtia l d is c h a r g e occurs, the e v e n t m a y be d e te c te d as a v ery sm.all
c h a n g e in the c u r r e n t d r a w n b y the sa m p le u n d e r test PD c u r r e n t s a re dlif- ficult to m e a s u r e b e c a u s e of th e ir sm all m a g n i t u d e a n d sh o rt d u r a t i o n [2!5] Therefore, PD in a m o t o r /g e n e r a to r before a b r e a k d o w n does n o t h a v e a siig- nificant effect on th e p o w e r system
T h e m o s t serio u s result of a m ajor fault m a y n o t o n ly d e s tro y the m ach im -
e ry b u t m a y s p r e a d in the sy stem a n d c a u se total failure T h e m o st coim-
m o n t y p e of fault, w h ic h is also th e m o s t d a n g e r o u s one, is the b r e a k d o w ns
th a t m a y h a v e several c o n seq u en ces A g re a t r e d u c tio n of the line voltaige
ov er a m a jo r p a r t of the p o w e r s y ste m w ill b e o b se rv e d If a n a lte r n a to r is
d a m a g e d , th is m i g h t affect th e w h o le system For exam ple, w h e n a toleer- able i n t e r - t u r n or i n -p h a s e fault occurs, th e p o w e r g e n e ra tio n w ill b e u n b a l
a n c e d a n d th e p o w e r q u a lity w ill d ra s tic a lly decrease Extra h a r m o n i c s w i l l
b e injected to th e w h o le system If th e a lte rn a to r fault is n o t tolerable o r it is
a p h a s e - to - p h a s e fault, th e n th e s u r g e w ill d a m a g e th e m a c h in e itself a n d
so m e p a r t s of the system U n lik e a m o t o r c o n n e c te d to t h e utility f o l l o w i n g a few s t e p - d o w n tra n s fo rm e rs , th e g e n e ra to r faults a re m o r e risk y in t e r m s of
p e r m a n e n t d a m a g e s a n d costly s h u t d o w n s d e p e n d i n g o n the g r id structuire
A m o to r w ith a tolerable i n te r - tu r n s h o r t b e h a v e s like a n u n b a la n c e d lo;ad
Trang 27laiilts in Induction and Synchronous Motors 13
a n d d is tu r b s the n e ig h b o r in g utility However, a n a lte rn a to r failure affects
th e whole system , w h e r e a m o to r failure h a s lim ite d d is tre s s on the p o w e r system In b o th of th e se cases the p o w e r q u a lity of th e p o w e r sy ste m w ill be
d egraded
In the literature, th ere are several m e t h o d s for c o n d itio n m o n ito r in g a n d protection of m o to rs a n d generators T h e s u p e rio rity of th e se m e t h o d s
d e p e n d s on the t y p e of application, p o w e r ra tin g of the m a c h in e ry , location
of the m ach in ery , cost of m a c h i n e itself a n d sensors, a n d so on [24-25]
M o n ito rin g the t e m p e r a t u r e of th e h ig h p o w e r m o to r a n d g e n e ra to r stator w'indings, it is possible to d e t e r m i n e if the w i n d i n g is at risk of t h e r m a l d e t e rioration T h is can be d o n e e ith e r b y e m b e d d e d th e r m o c o u p le s or t h e r m a l cameras In a d d itio n , by m o n ito r in g th e te m p e r a tu r e , a n in c re a se in th e s ta tor t e m p e r a tu r e over tim e u n d e r the s a m e o p e r a tin g c o n d itio n s (load, a m b i ent te m p e ra tu re, a n d voltage) can be indicative of th e cooling s y s te m failure.Ozone g a s g en e ra tio n o c c u rs as a c o n s e q u e n c e of PD o n th e stato r coil Surface p a r tia l d is c h a r g e s are the cau se of d e te rio ra tio n fro m defective slot
a n d e n d - w i n d i n g stre ss relief c o a tin g s as w ell as co n d u c tiv e pollution By
m o n ito rin g th e o z o n e g as co n cen tratio n over time, failure m e c h a n i s m s th at give rise to the surface p a r tia l d is c h a r g e c a n be d e te c te d [26] T h u s o zo n e
m o n ito rin g d o e s n o t find p r o b le m s in the very early stag es of d e t e r io r a tion O zo n e m o n ito r in g can be d o n e p erio d ic a lly w i t h in e x p e n siv e c h em ical detectors th a t are t h r o w n a w a y after each use O th e r w is e , c o n tin u o u s o zo n e
m o n ito rin g is n o w feasible w i t h electronic detectors
In add itio n , p h a s e a n d g r o u n d fault relays a re in sta lle d in a m a c h i n e to
p r e \ e n t s ev ere m a c h in e d a m a g e c a u s e d by w i n d i n g in s u la tio n failure [20]
A n o th e r effective solution is on-line m o n ito r in g of p a rtia l d is c h a r g e that
w a r n s the u s e r before c a ta stro p h ic d a m a g e T h is can be d o n e e ith e r b y m o n i
to rin g differential line c u r r e n t or u s in g so m e special s e n s o r s s u c h as a n te n n a ,
h ig h voltage capacitors o n the m a c h in e te rm in a ls, or ra d io f re q u e n c y (RF)
c u r r e n t t r a n s f o r m e r s at the m a c h in e n e u tra l or on s u rg e capacitor g r o u n d s
T h ese sensors are sensitive to the h ig h fre q u e n c y sig n a ls from th e PD, yet are insensitive to the p o w e r fre q u e n c y voltage a n d its h a r m o n i c s [25]
Broken Rotor Bar Fault
T h e b ro k e n r o to r b a r fault c o n d i t i o n is sh o w 'n in F ig u r e 2.2, w h ic h
a c c o u n ts for m o r e t h a n 5% of all th e e lectric m o t o r f a ilu r e s in i n d u s t r y
C a g e rotors a r e b a s ic a lly of t w o ty p e s : cast a n d fa b ric a ted P re v io u sly ,
Trang 2814 Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis
FIG U RE 2.2
B ro k en r o to r b a r in a n in d u c t io n m otor.
fa b ric a te d ty p e , c a n h a r d l y b e r e p a i r e d o n c e fa u lts lik e c r a c k e d o r breiken
r o t o r b a r s d e v e l o p in th e m
T here are a n u m b e r of reaso n s for ro to r b ar a n d e n d -rin g breakage T h e y can
b e ca u se d b y th erm al, m agnetic, d y n a m ic , en v iro n m e n ta l, m e c h a n ic al, a n d resid u al stresses Normally, the stresses re m a in w ith in the tolerance b a n d - w'idth a n d the m o to r op erates p ro p erly for years A n incipient b r o k e n rotor
b a r condition agg rav ates itself a lm o s t e x p o n e n tia lly in tim e as excessive c u r ren t flow' is e x p e c te d to b e co n cen trated o n adjacent b a r s in ste a d of th e b ro k e n one, W'hich p ro v id e s p ro p a g a te d electrical stress to adjacent areas W h e n any
of these stresses are above allowable levels, the lifetim e of the m o to r shortens
A b ro k e n ro to r b a r can be c o n sid e re d as ro to r a s y m m e t r y [17] th a t causes
u n b a l a n c e d line c u rre n ts , to rq u e p u lsa tio n , a n d d e c re a s e d a v e ra g e torc[ue[12] T h e electric a n d m a g n e tic a s y m m e t r y in in d u c tio n m a c h i n e rotors
b o o s ts u p the left sid e b a n d of s u p p ly fre q u e n c y [17]
E lk a s a b g y et al [29] show' th at b r o k e n ro to r b a r fault can be d e te c te d by tim e a n d f re q u e n c y d o m a i n an a ly sis of i n d u c e d voltages in s e a r c h coils
p laced in the motor D u r i n g r e g u l a r o p eratio n s, a s y m m e tr ic a l s ta to r w 'ind
in g excited at fre q u e n c y / , in d u c e s ro to r b a r c u r r e n ts at s/, fre q u e n c ies [27],
W h e n a n a s y m m e t r y is i n t r o d u c e d in the rotor s tru c tu r e , the backw 'a rd
ro ta tin g n e g ativ e se q u e n c e -s/, c o m p o n e n t sta rts the c h a in electrical a n d
m e c h a n ic a l in tera c tio n s b e t w e e n th e ro to r a n d stato r of the m otor Initially, sta to r e le ctro m o tiv e force (EMF) at f re q u e n c y (1 - 2s)/, is i n d u c e d t h a t c a u s e s
to rq u e a n d s p e e d ripples A f te r w a r d , to rq u e a n d s p e e d ripples a re reflected
to th e stato r as line c u r r e n t o scillations at fre q u e n c y (1 + 2s)/, N ex t, (1 -f 2s) / , c o m p o n e n t in d u c e s ro to r c u r r e n t s at ±3s/, a n d th is c h a in rea c tio n g o e s on
u n t i l co m p letely b e in g filtered b y th e ro to r in ertia A p a r a m e te r- e s tim a tio n -
b a s e d b r o k e n ro to r b a r d e te c tio n is r e p o r t e d in [30] T h e h a r m o n i c s at the stato r te r m i n a l voltages i m m e d ia te ly after s w itc h in g off the m o t o r c a n be
u s e d as a d ia g n o stic m e t h o d [31]
Trang 29¡units in Induction and Si/nclironous Motors 15
c o n s ta n t offset fro m the center of th e stator or the rotor is m is a lig n e d along the stator bore O n the o th e r h a n d w h e n d y n a m i c eccentricity occurs, the c e n terline of the s h a ft is at a \'a riable offset from the cen ter of the stato r o r m in i- mLim air-g ap revolves w ith the rotor If the d is ta n c e b e t u ’een the stator bore
an d ro to r is not ec^ual t h r o u g h o u t the e n tire m achine, v a r y i n g m a g n e tic flux
u 'ith in the air-g a p creates im b a la n c e s in the c u r r e n t flow, w h ic h can be iden- tilied in the c u r r e n t s p e c tr u m I m p r o p e r m o u n tin g , a loose or m is s in g bolt,
m is a lig n m e n t, o r ro to r u n b a la n c e m ig h t be cau ses of air-g a p eccentricity.Eccentricity is a c'juite w e ll- k n o w n p ro b le m a n d a n a ly tic a l resu lts s u p
p o rte d b)- e x p e r i m e n t s h ave a lre a d y b een re p o rte d In the literature, there are sexeral successful w o rk s r e p o r tin g fault d ia g n o s is of eccentricity based
on line c u r r e n t m e a s u r e m e n t U n lik e b e a r i n g faults, it is easier to d ia g n o s e ecci'ntricity ev'en for in\-erter-fed m a c h i n e cases d u e to th e ir h ig h a m p l i t u d e
I K iU R E 2.4
I
Trang 3016 Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis
of fault s ig n a tu r e s w ith re sp e c t to th e noise floor in the line c u r r e n t s p e c
tr u m Because b o t h static anci d y n a m i c eccentricities tend to co ex ist in p r a c tice, on ly m ix e d eccentricity is c o n s id e re d to sh o w th e effects of i m e r t e r
h a rm o n ic s M a g n e tic field in th e a ir-g ap of a n eccentric m o to r is alw'ays n o n -
u n if o r m Since th e flux lin k a g e s in the air-g a p oscillate w i t h s y n c h r o n o u s frecjuency, a n y a d d itio n a l h a r m o n ic s oscillatin g at the s p e e d d u e to n o n u n i
fo rm s t r u c t u r e a re e x p e c te d to take place at ro ta tin g f re q u e n c y s i d e b a n d s of the s y n c h r o n o u s frequency
H ow ever, so m e faults like ro to r w i n d i n g faults, b ro k e n d a m p e r bars, or
en d -rin g s, are specific to w o u n d ro to r s y n c h r o n o u s m a c h in e s , a n d d e m a g
n e tiz a tio n faults are lim ite d to p e r m a n e n t m a g n e t s y n c h r o n o u s m a c h in e s (PMSMs)
Like in d u c tio n m a c h in e s, s y n c h r o n o u s m a c h in e s are subject to m a n y d if ferent t y p e s of m e c h a n ic a l a n d electrical faults, w h ic h c a n b r o a d ly be c la s sified in to the following: (1) o p e n or s h o rt circuit in o n e or m o r e t u r n s of
a stator w in d in g ; (2) o p e n o r s h o rt circu ited rotor w i n d i n g in w o u n d ro to r
s y n c h r o n o u s m ach in es; (3) b ro k e n d a m p e r b a r s or en d -rin g s; (4) ecce n tricities; (5) ro to r m e c h a n ic al faults su c h as b e a r i n g d a m a g e , b e n t s haft, a n d m i s
a lig n m e n t; a n d (6) d e m a g n e tiz a t io n fault in PMSMs
Each of th e se fault c o n d itio n s p r o d u c e s specific s y m p t o m s d u r i n g m o to r
S o m e of the fault c o n d itio n s in s y n c h r o n o u s m a c h in e s h ave s i m i l a r c a u s e s
a n d s y m p t o m s of the s a m e faults in th e in d u c tio n m a c h in e s , w h ic h h a v e
b e e n d i s c u s s e d in Section 2.1
Trang 31faults in Induction and Si/Iĩcliroiìoiis Motors 17
2.2.1 Dam per W inding Fault
To p r o d u c e to rq u e in s y n c h r o n o u s m a c h in e s, the ro to r m u s t be t u r n i n g at
s y n c h r o n o u s s p e e d , w h ic h is th e s p e e d of th e stator field At an y o th e r s p e e d , thi' ro ta tin g field of stato r poles w ill n o t be s y n c h r o n i z e d w ith rotor poles,
b u t first attracts, a n d th e n rep els them T h is co n d itio n p ro d u c e s n o average
to rq u e a n d the m a c h in e w ill n o t start U sin g a d ire c t c u r r e n t (DC) m o to r or
a d a m p e r w i n d i n g , the m a c h i n e c a n be b r o u g h t n e a r to the s y n c h r o n o u s speed D a m p e r w in d in g s , as s h o w n in F ig u re 2.5, consist of h e a v y c o p p e r bars, w i t h th e tw'o e n d s s h o r te d together, in s ta lle d in ro to r slots T h e c u r ren ts i n d u c e d in the b a rs interact by th e ro ta tin g air-g a p field a n d p r o d u c e s torque In o t h e r w o rd s, the m a c h i n e is s ta r te d as an in d u c tio n m o to r [33]
T h e field w i n d i n g is excited b y a d ire c t c u r r e n t w'hen the m a c h i n e is b r o u g h t
u p to th e s y n c h r o n o u s s p eed W h e n th e load is s u d d e n l y c h a n g e d , a n oscillatory m o tio n w ill be s u p e r i m p o s e d o n th e n o r m a l s y n c h r o n o u s ro ta tio n of
th e shaft T h e d a m p e r w i n d i n g h e lp s d a m p o u t these oscillations
D iag n o stic s of b ro k e n d a m p e r b a rs in s y n c h r o n o u s m a c h in e s h a s n o t b e e n
c o v e re d as w id e ly as the o th e r faults like eccentricity a n d i n te r - tu r n faults [34-37], D u r i n g transience, the e le c tro m a g n e tic b e h a v io r of a s y n c h r o n o u s
m a c h i n e s w i t h d a m p e r w i n d i n g is s im ila r to th at of a n in d u c tio n m ach in e
D u r i n g tra n s ie n t time, w h e n the m a c h in e accelerates fro m zero s p e e d to s y n
c h r o n o u s s p e e d , a significant c u r r e n t flow's in the d a m p e r w in d in g Excessive
FIG U RE 2.5
A s a lie n t pi>le s y n c h r o n o u s m a c h in e w it h
(( (H ỉĩtesN ’ o f T H C O -W e st in g lio iise )
TRƯƠNG 'DH f-A \G
w iiiiJ iiig a n d in t pr r iip ti‘i1 e n d - r in g
TAI LIỆU THƯ VIEN
Trang 3218 Electric Machines: Modeling, Condition Monitoring, and f a u l t Diagnosis
s t a r t - s t o p cycles o r fre q u e n t load or s p e e d c h a n g e s can c a u s e the b re a k a g e
of the d a m p e r bars
A n on-line fault d ia g n o s is m e t h o d for d e te c tio n of b r o k e n r o to r b a rs h as
b e e n p r o p o s e d b y K r a m e r [38] u s in g flux p ro b e a n d finite e le m e n t (FE) niod- eling For the sq u irre l-c a g e in d u c tio n m a c h in e s , several m e t h o d s of d e te c tion of b ro k e n ro to r b a r s h a v e b e e n r e p o r t e d in the literatu re It h a s b e e n
f o u n d th a t in s q u irrel-cag e in d u c tio n m a c h in e s w h e n a b a r b r e a k s so m e of the c u r r e n t th at w o u l d have flowed in th a t b a r w ill flow in to th e tu-o adjacont
b a rs on e ith e r side T h is co u ld result in b r e a k a g e of several b a r s [39] Sim ilar effects h a v e b e e n r e p o r t e d for the con\'e rter-fed s y n c h r o n o u s m a c h i n e s w ith
b ro k e n d a m p e r b a rs [40] W i n d i n g fu n c tio n an aly sis a n d ti m e - s t e p p i n g FE
a n aly sis h ave b e e n u s e d to s t u d y th e b ro k e n d a m p e r b a r s a n d e n d - r in g s [38,41],
For d e te c tin g the b r o k e n d a m p e r bars, flux p ro b e s c a n be a tta c h e d to the stator b o re surface for m e a s u r e m e n t of air-g a p flux w a v e f o r m d u r i n g acceleration from s ta n d s till to rated sp e e d [38], A n o th e r m e t h o d is th e s e p a ra tio n
of pole voltages of th e field w i n d i n g a c c o rd in g to its polarity T h is way, the
d ifference of the pole voltages c a n be d e te r m in e d T he m a i n field of a s y m
m e tric a l b u ilt m a c h i n e d i s a p p e a r s in the differen ce voltage, b u t the d iffe rence voltage, w h ic h is c a u s e d b y p e r t u r b e d field of the m i s s i n g d a m p e r bar,
h ig h efficiency, low noise, h ig h to rq u e to c u r r e n t ratio, h i g h p o w e r to w e ig h t ratio, a n d ro b u stn ess
D u r i n g the n o r m a l o p e ra tio n of th e PMSM, th e in v e rs e m a g n e tic field
p r o d u c e d by the stato r c u r r e n t o p p o s e s the p e r m a n e n t m a g n e t s ' r e m a n e n t
in d u c tio n W h e n th is p h e n o m e n o n is re p e a te d , the p e r m a n e n t m a g n e t s will
b e d e m a g n e tiz e d T h is d e m a g n e t i z a t i o n c a n be all ov er th e p o le (complete
d e m a g n e tiz atio n ), or o n a p a r t of the pole (partial d e m a g n e tiz a tio n ) H ig h
t e m p e r a t u r e c a n also d e m a g n e t i z e the m a g n e t Stator w i n d i n g sh o rt-circu it fault m a y p a r tia lly d e m a g n e t i z e a su rfa c e m o u n t m a g n e t P a r tia l d e m a g n e tiza tio n c au ses m a g n e tic force h a r m o n ic s , noise, a n d m e c h a n i c a l vib ratio n ,
c a u s in g u n b a l a n c e d m a g n e tic p u l l in th e m achine
T h e d e m a g n e t i z a t i o n effects o n the p a r a m e te rs of the m o to r, su c h a s cog
g in g torque, to rq u e ripple, back-EMF, a n d load an g le c u rv e , w e r e in v e s ti
g a te d b y R uiz e t al.[43] For steady-state a n aly sis u n d e r d e m a g n e t i z a t i o n
c o n d itio n s, fast Fou rier tr a n s f o r m (FFT) of the s ta to r c u r r e n t is u s e d for
Trang 33faults in Induction a n d Si/nchwnoHS Motors 19
freq u en cy analysis T im e -fre q u en c y an a ly sis methcids have b e e n u s e d for
n o n s ta tio n a r y con d itio n s T hese te c h n iq u e s, such as sh o rt-tim e F ourier tra n sfo rm (STFT), c o n t i n u o u s u ’avelet tr a n s f o r m (CVVT), a n d d isc re te w a v e let tra n sfo rm (DWT), r e q u ir e the p r o p e r selection of the p a r a m e te rs s u c h as
w 'in d o w size a n d coefficients
Field r e c o n s tru c tio n m e th o d (FRM) can also be u s e d to d etect th e d e m a g
n e tiz a tio n fault in PM SM s The flux lin k a g e s of the stato r ph a se s, w h ic h are calcu lated by FRM, a r e u s e d to m o n ito r the faults [44]
T h e re a re tw o t y p e s of eccentricity in the s y n c h r o n o u s m o to r as in the
i n d u c tio n m otor: static a n d d y n a m ic In the case of static eccentricity, the
c enterline of the s h a f t is at a c o n s ta n t offset from the cen ter of the stator Therefore, th e n o n u n i f o r m air-g a p d o e s no t v a r y in time O n the o th e r h a n d , v\'hen d y n a m i c eccentricity occurs, the cen terlin e of the sh a ft is at a variable offset from the c e n te r of the stator a n d the air-g a p le n g th c h a n g e s as th e ro tor rotates d y n a m ic a lly In reality, b o th static a n d d y n a m i c eccentricities tend
to coexist I m p r o p e r m o u n t i n g , the n o n c ir c u la r ity of the stato r core, a loose
or m is s in g bolt, a b e n t ro to r sh a ft o r m is a lig n m e n t, b e a r in g wear, a n d rotor
u n b a la n c e m ig h t be c a u s e s of air-g a p eccentricity
V arious fault d ia g n o s i s m e t h o d s for eccentricity fault d e te c tio n in s y n
c h r o n o u s m a c h i n e s h a \ e been p r o p o s e d in literature The m o d ifie d w i n d i n g
fu n ctio n a p p r o a c h (MWFA) a c c o u n tin g for all space h a rm o n ic s , a n d th e FE
m e th o d h a v e been u s e d to m o d e l th e salien t pole s y n c h r o n o u s m a c h in e s
T h e s e m o d e ls s h o w th e effect of d y n a m i c air-g a p eccentricity on the p e r f o r
m a n c e of a salient p o le s y n c h r o n o u s m a c h i n e [45]
E b ra h im i et al p r e s e n t a m e t h o d of d e te c tin g static eccentricity (SE),
d ) ’n a m ic eccentricity (DE), a n d m ix e d eccentricity (ME) in t h r e e - p h a s e i’MSVls [46] The n o m i n a t e d in dex is the a m p l i t u d e of sid e b a n d c o m p o
n e n t s w ith a p a r t i c u l a r fre q u e n c y p a tte r n in th e stato r c u r r e n t s p e c t r u m
T h e occu rren ce, as well as the t y p e a n d percentage, of eccentricity c a n be
i l e te r m in e d u sin g t h is index A fter d e t e r m i n a t i o n of the co rrelatio n b e tw e e n
th e in dex a n d the SE a n d DE, the t y p e of the eccentricity is d e t e r m i n e d by a A-nearest n e ig h b o r classifier T h e n a th ree-lay er artificial n e u ra l n e tw o r k is
e n ip lo v e d to e s tim a te the eccentricity d e g r e e a n d its type
Trang 3420 Electric Machines: Modeling, Condition Monitoring, and Fault D iapiosis
Le R oux et al in v estig ate im p le m e n ta tio n a n d d e te c tio n of ro to r faults
u ltim a te failure is th e r m a l stress T h e dielectric, c orona, tra c k in g , an d t r a n sient voltage c o n d itio n s a re so m e of th e electrical stre sse s le a d in g to in te r
t u r n s h o r t circuit failures [48]
In th e case of a n in te r - tu r n fault in stato r w i n d i n g , th e s y m m e t r y of the
m a c h in e is d e stro y e d T h is p r o d u c e s a r e \’erse ro ta tin g field th a t decreases
th e o u t p u t to rq u e a n d in c re a se s losses p e r a m p e r e of fu n d a m e n t a l frequency
of the positive s e q u e n c e c u rre n t T h e stator faults in s y n c h r o n o u s reluctance
m o to rs (SynRM) u n d e r steady-state o p e r a tin g c o n d itio n s h a v e b e e n s tu d ie d
in [49] T h e d e ta ile d m o d e lin g of the faulted m a c h in e h a s b e e n carried o u t
u s i n g a m o d ifie d w i n d i n g fu n c tio n a p p r o a c h (MWFA) M o n ito r in g the stator
c u r r e n t in th e p re se n c e of su c h faults s h o w s th at o d d triple h a rm o n ic s a re
in c re a s e d in the line c u r r e n t of S ynR M w ith in te r - tu r n fault The line c u r r e n t
of th e faulty p h a s e in creases f u r th e r w h e n the n u m b e r of sh o r te d t u r n s g o e s
up T h e in c re a se of the 9 th h a r m o n i c se e m s to be a g o o d in d icatio n of th e
c o m p o n e n ts clearly in c re a s e d w ith stato r in te r - tu r n fault T h e fin d in g s a r e
h e lp fu l to d etect faults in v o lv in g few t u r n s w ith o u t a m b ig u ity , in spite of
s u p p ly u n b a la n c e a n d tim e harm cm ics [35]
For a n a ly z in g in te rn a l p h a s e a n d g r o u n d faults in stator w in d in g , a
m a th e m a tic a l m o d e l for a s y n c h r o n o u s m a c h in e h a s b e e n p re s e n te d b y
R e ic h m e id e r et al [50] T h is m e t h o d e m p lo y s a d ir e c t p h a s e represer.tation,
u s i n g a tra d itio n a l c o u p le d circuit a p p ro a c h
A specific fre q u e n c y p a t t e r n of th e s ta to r c u r r e n t is d e r iv e d for short-circuit fault d e te c tio n in PM SM s [51] T h e a m p l i t u d e of th e s i d e - b a n d c o m p o n e n ts at
th e se fre q u e n c ies is u s e d to d e t e r m i n e th e n u m b e r of sh o rt-c irc u ite d t u r n s
U sin g th e m u t u a l in f o r m a tio n index, th e relation b e t w e e n the n o m in a te d c r i terio n a n d the n u m b e r of sh o rt-c irc u ite d t u r n s is specified T h e o c c u rre n ce
Trang 35/ aults ill Induction and S}/nchronous Motors 21
a n d the n u m b e r of sh o rt-c irc u ite d t u r n s a re p re d ic te d u s in g s u p p o r t x’ector
m a c h in e (SVM) as a classifier
The tw o -reactio n th e o ry is well su ite d for c o m p u te r m o d e lin g s y n c h r o n o u s
m achines How ever, in the d eriv a tio n of th e dqO m o d e l of a s y n c h r o n o u s
m achine, th e m a c h i n e w i n d i n g s a re a s s u m e d to b e s in u s o id a lly d is trib u te d
T his im plies th at all h i g h e r space h a r m o n ic s p r o d u c e d in the case of an
in tern al fault, the s ta to r w i n d i n g s n o longer h a v e th e ch aracteristics of s i n u soidally d is tr ib u te d w i n d i n g s The faulted w i n d i n g s w ill p r o d u c e s tro n g e r space h a rm o n ic s M oreover, the s y m m e t r y b e t w e e n the m a c h i n e w i n d i n g s W’ill no lo n g er be presen t Therefore, the co n v e n tio n a l dqO m o d e l is n o t su ite d
to an a ly z e in te rn a l faults
In ter-tu rn faults of a s y n c h r o n o u s m a c h in e can be m o d e le d b a s e d on the actual w i n d i n g a r ra n g e m e n ts T his m e th o d , w h ic h is k n o w n as w i n d i n g function a p p ro a c h , calculates the m a c h in e in d u c ta n c e s directly fro m the
m a c h in e w i n d i n g d istrib u tio n U sin g th is m odel, th e space h a r m o n ic s p r o
d u ced by th e m a c h in e w i n d i n g s are ta k e n into acco u n t [52] A b d a lla h et al
u s e a w i n d i n g fu n c tio n a p p r o a c h to sim u la te in te r-tu rn faults in stator w i n d ings of the p e r m a n e n t m a g n e t s y n c h r o n o u s m a c h in e s [53]
The ti m e - s t e p p i n g finite e le m e n t m e t h o d (FEM) is a n o t h e r a n a ly s is
m i'th o d to s t u d y a s y n c h r o n o u s m a c h i n e w ith in te r - tu r n fault V aseghi et
al e m p lo y FEM for in te r n a l fault a n a ly s is of a s u r f a c e - m o u n te d p e r m a n e n t -
m a g n e t s y n c h r o n o u s m a c h i n e [54] It is u s e d for m a g n e tic field s t u d y a n d
d e t e r m i n i n g th e m a c h i n e p a r a m e t e r s u n d e r \'a r io u s fault c o n d itio n s a n d
th e effect of m a c h i n e p ole n u m b e r a n d n u m b e r of faulted t u r n s on m a c h in e
p a ra m e te rs
2.2.5 Rotor Inter-Turn Fault
Kotor w i n d i n g in te r - tu r n fault is a c o m m o n electrical fault in s y n c h r o n o u s
m a c h in e s Its existence m a y result in s e rio u s p ro b le m s su c h as h i g h rotor
c u rre n t, h ig h w i n d i n g te m p e r a tu r e , low reactive o u t p u t pow'er, d is to rte d
\ o l t a g e w a v e fo rm , a n d m e c h a n ic a l vibration T he rotor w i n d i n g in te r - tu r n fault is m a in ly c a u s e d by p o o r m a n u f a c t u r i n g o r o p e r a tin g c o n d itio n s such
as loose ro to r end w i n d i n g , loose s p acer block, p o o r t r i m m i n g of s o ld ered joint, d e fo rm a tio n of h i g h - s p e e d rotor w i n d i n g d u e to cen trifu g a l force, o v e rheating, a n d p o o r in su la tio n
T h e re a re m a n y s t u d ie s a b o u t fault d ia g n o s is of ro to r w i n d i n g tu rn -to -
t u r n faults O n e m e t h o d is b a s e d on in d ire c t m e a s u r e m e n t of the i m p e d a n c e
of the rotor field w i n d i n g d u r i n g o p e ra tio n [55] T h is m e th o d is u se fu l vs'hen thi' n i u n b e r of s h o rte d t u r n s is significant
S o m e m e t h o d s a re b a s e d on d e te c tio n of flux a s y m m e t r y c re a te d by
s h o rte d t u r n s by a p p ly in g a l te r n a tin g c u r r e n t to the field [56] T h is m e t h o d
is a c c u ra te b u t n ot e a sy to i m p le m e n t b e cau se it r e q u ire s r e m o v in g the rotor from the bore
Trang 3622 Electric Machines: Modeling, Condition Monitoring, and Fault D iapiosis
So m e reliable m e t h o d s b a s e d on d ir e c t m e a s u r e m e n t of the air-g ap m a g netic flux can b e a p p lie d to the m a c h i n e in o p e ra tio n [57] T h e flux i> m e a
s u r e d b y a s earch coil in stalled in the a ir gap
The n e u r a l n e tw o r k m o d e ls of m a c h in e s can b e u s e d to d e te c t th t rotor
t u r n faults T h is m e t h o d re q u ire s tr a i n i n g d a ta t h r o u g h s im u la tio n o r experiment A m a th e m a tic a l m o d e l of the m a c h in e is n e e d e d for s im u la to c data The e x p e r im e n ta l t r a in in g d a ta can b e acc^uired u s in g a m a c h i n e in w hich
th e ro to r t u r n s can be sh o rted , Streifel et al p r o p o s e a m e t h o d b a s e d on tra\ - elin g w a v e [58] T h is m e t h o d alo n g w i t h n e u r a l n e tw o r k fe a tu re ex tr.u tio n
a n d n o v e lty d etectio n a lg o rith m is u s e d for fault d ia g n o s is of short-circuited
w i n d i n g s in an y ro ta tin g m a c h in e r y a n d o th e r e q u i p m e n t c o n t a in in g s y m
m etrical w in d in g s
T he t e r m in a l p a r a m e te rs a re affected by the fault c o n d itio n of the rotor
w i n d i n g , b u t it is difficult to relate th e m to g e th e r b y ac c u ra te m a th e m a tical exp ressio n s A n artificial n e u ra l n e tw o r k m e t h o d is in\'e stigated by
H o n g z h o n g et al for ro to r s h o r te d w i n d i n g fault d ia g n o s is [59] Since it is difficult to find the faulty sa m p le s in practical applications, th e se sam ples are g a in e d t h r o u g h calculation U sing th is m e th o d , the se\ erity of the fault
c an b e d e te c te d , b u t the location of the fault c a n n o t be d e t e r m in e d
2.2.6 Bearing Fault
Even u n d e r n o r m a l o p e r a tin g c o n d itio n s w ith b a la n c e d load a n d good
a l ig n m e n t, b e a r i n g failu res m a y tak e place F la k in g of b e a r i n g s m i g h t occur
w h e n fatig u e c a u se s sm a ll pieces to s e p a r a te fro m th e b e a rin g S o m e tim e s
b e a r i n g faults a re c o n s id e r e d as r o to r a s y m m e t r y faults, w h i c h a re u sually
c o v ered u n d e r the eccentricity-related faults T h e b e a r i n g fa ilu re s have been
r e p o r t e d fre q u e n tly in in d u stry D ifferent t e c h n iq u e s for a jo int tim e fre
q u e n c y a n a ly s is a n d a n e x p e r i m e n t a l s t u d y of d e te c tio n a n d fault d ia g n o sis
of d a m a g e d b e a r i n g s o n a PM SM w e r e in v estig a te d by R o sero et al [60(
W h e n th e m o to r is r u n n i n g u n d e r n o n s t a t i o n a r y co n d itio n s, c o n \ e n t i o n a l sig n a l p ro c e s s in g m e t h o d s su c h as FFT in m o to r c u r r e n t s i g n a t u r e analysis (MCSA) d o n o t w o r k w'ell In s u c h co n d itio n s, th e s ta to r c u r r e n t can be a n a
ly zed b y m e a n s of STFT a n d G a b o r s p e c t r o g r a m for d e te c tin g th e b e a r in g
d a m a g e
A n o t h e r fault d ia g n o s is m e t h o d for d e te c tin g b e a r i n g fault in PMSM b a se d
o n f re q u e n c y r e s p o n s e an aly sis is p r o p o s e d by Pacas et al [61] The torque
a n d velocity sig n als of th e m a c h i n e w ill b e p erio d ic a lly d i s t u r b e d w h e n the
b e a r i n g is d a m a g e d T h e se d i s t u r b a n c e s cau se the f re q u e n c y r e s p o n s e of the
m e c h a n ic a l s y ste m to c h a n g e at specific frequencies U tiliz in g th e velocity of
th e m o to r a n d th e t o r q u e - g e n e r a tin g c o m p o n e n t of th e stato r c u r r e n t (/,,), the fre q u e n c y re s p o n s e of th e m a c h i n e in th e closed lo o p s p e e d control can be
d e riv e d T h e fre q u e n c y re s p o n s e an a ly sis p r o p o s e d in th is s t u d y yields more reliable fault d e te c tio n resu lts t h a n th e FFT analysis
Trang 37ỉ íìiilts in Induction and Synchronous Motors 23
R e f e r e n c e s
|11 s X a n d i, H.A Toliyat, an d X Li, "C o n d itio n m o n ito rin g a n d fau lt d ia g n o sis of I'lectrical m a c h in e s— A rev iew ," IEEE T ra)ifiictioiis on E iietỵụ C onversion , vol 20,
no 4, p p 719-729, D e c e m b e r 2005
|2 | A S id d iq u e , G.S Y adava, a n d B S in g h , “ A re v ie w o f s ta to r fa u lt m o n ito rin g
te c h n iq u e s of in d u c tio n m o to rs," IEEE T ransactions on Eiieriịỵ C oiu 'erfiou , \ ol 20,
|5| w Z h o u , T.G H ab etle r, a n d R.G H arley, "In c ip ie n t b e a rin g fa u lt d e te c tio n via
m o to r s ta to r c u rr e n t n o ise c a n c e lla tio n u sin g W ien e r F ilter," IEEE Tm iisnctious
on liulustrinl A p p liailio ii, \ ol 43, p p 1309-1317, j u l v / A u g u s t 2009
|6 | w Z h o u , T.G H abetler, a n d R.G H arlev, "B earin g fau lt d e te c tio n via s ta to r c u rren t n o is e c a n c e lla tio n a n d sta tistic a l c o n tro l,” IEEE TraiiỉíK-tioiis 0)1 Industriaì
E lectronics, \'ol 55, no 12, p p 4260—4469, D e c e m b e r 2(i08
|7 | j Liu, w W ang, a n d F C iolnaraghi, "A n e x te n d e d w a v e le t s p e c tru m fo r b e a rin g t'ault d ia g n o s tic s ," IEEE Trnnsíỉctiủiiỉ on InM rumentntion and M cnsurcitifiit, vol
57, p p 2801-2812, D ecem b er 2008
|8 | S.Vl.A C ru z , H A , T oliyat, a n d A.J.M C a rd o so , “ DSP im p le m e n tn tio n o f th e
m u ltip le referen ce fra m e s th e o rv for the d ia g n o s is o f s ta to r fa u lts in a DTC
in d u c tio n m o to r d r i\ e," IEEE Trniisnctioiif on Eiwri^y C onversion , \ ol 20, no 2,
pp 329-335, Ju n e 2005
|9| D S h ah , s X a n d i, a n d p N eti, " S ta to r in te r-tu rn fa u lt d e te c tio n o f d o u b ly -fe d
in d u c tio n g e n e ra to rs u s in g ro to r c u rr c n t a n d se a rc h coil v o lta g e s ig n a tu re a n a lysis," lEHL T nm siictiivif on hnltistn/ A p p liaitioiis, \ ol 43, no 5, p p 1831-1842, Sop t m b e r-O c to b e r 2009
|IO j R S ch o en , T H ab etle r, K K a m ra n , a n d R B artfield, " M o to r b e n rin g d a m
ag e d e te c tio n u sin g s ta to r c u rr e n t m o n ito rin g ," IEEE Tnìnsiỉctiou^ O i l Industry
A ppliciilioii^, \ ol 31, no 6, p p 1274-1279, Ncn e m b e r /D e c e m b e r 1993
111] L I'.ren, "B earin g D tim age D e tectio n via W avelet [’a c k a g e D e c o m p o sitio n of
S ta to r C u rre n t," P h D d is s e rta tio n , School o f Electrical E n g in e e rin g , U n iv e rs ity I)t M isso u ri-C o lu m b in , 2002
112] 1 Ilo n cn , J.-K K am n ra in c n , T L in d h , J A h o la, H K aU 'ininen, a n d | P a rta n e n ,
" D ia g n o s is tool for m o to r c o n d itio n m o n ito rin g ," IEEE T n visactioiif oil In d iiỉìry
A pplicntioiif, \-ol 41, p p 963-971, A p ril 2(105
[13] R,R Schcicn, B.K Lin, EG H a b e tte r, H.J S hlog, a n d s F arag , "A n u n s u p e r v is e d
o n -lin e sv s te m for in d u c tio n m o to r fa u lt d e te c tio n u s in g s ta to r c u rr e n t m o n ito r
in g ," IE EE T n iiifiiclioiii oil In d u ỉtn / A pplication s, \ ol 31, no 6, p p 1280-1286,
Trang 3824 Electric Machines: Modeling, Condition Monitoring, and Vault Diagnosis
[15] H O cak, " F a u lt D etectio n , D ia g n o sis a n d P ro g n o s is o f R olling E le m e n t Be.-rings:
F re q u e n c y D o m a in M e th o d s a n d H id d e n M ark o v M o d e lin g ," P h D d isso r:a tio n School o f E lectrical E n g in e e rin g , C a se W estern R eserv e U n i\'e rsity , C k ’\.'la n d ,
O H , 2004
[16] B Yazici a n d G.B K lim an, "A n a d a p tiv e sta tistic a l tim e -fre q u e n c y m eth id for
d e te c tio n o f b ro k e n b a rs a n d b e a rin g fa u lts in m o to rs u s in g s ta to r c u rre n t, IEEE
T ransactions on Indu stry A pplication s, v ol 35, no 2, p p 442-452, M a rc h 19'^9.[17] S N a n d i, H T oliyat, a n d X Li, " C o n d itio n m o n ito rin g a n d fa u lt d ia g n o s is o f elec trical m o to rs — A rev iew ," IEEE T ransactions on E nergy C onversion s, \ j1 20,
[21] H an dbook to A ssess Stator Insulation M echan ism , Ef’RI EL-5036, vol 16, N ew York:
P o w e r P la n t E lectrical R eference Series
[22] J D o u g la s, " H y d ro g e n e ra to r fa ilu re ," IEEE P ow er E ngiiw cring R eview , vol 8, no
11, p p 4 -6 , N o v e m b e r 1988
[23] G S to n e, S C a m p b e ll, a n d S T etre au lt, " In v e rte r-fe d d ri\ es: W hich m o to r sta to rs
a re a t risk ," IEEE Industry A pplication M agazine, vol 6, p p 17-22, S e p te m b e r/
O c to b e r 2000
[24] B F e rn a n d o , " O n lin e sta to r w in d in g fa u lt d ia g n o s is in in v e rte r-fe d A C m ach in es
u s in g h ig h -fre q u e n c y sig n a l in jectio n ," IEEE Transactions ou Indu stry A pplication,
vol 39, no 4, p p 1109-1117, A u g u s t 2003
[25] S Lee a n d G.B K lim an , "A n o n lin e te c h n iq u e for m o n ito rin g th e in s u la tio n c o n
d itio n o f ac m a c h in e s ta to r w in d in g s ," IEEE Transactions on E nergy C onversions,
vol 20, no 4, p p 737-745, D e c e m b e r 2005
[26] G C S tone, " A d v a n c e m e n ts d u r in g th e p a st q u a rte r c e n tu r y in o n -lin e m o n ito r
in g o f m o to r a n d g e n e ra to r w in d in g in s u la tio n ," IEEE T ransactions on Dieh'clrics
an d E lectrical Insulation, vol 9, no 5, p p 746-751, O c to b e r 2002
[27] F F ilip p etti, G F ra n c e sc h in i, C T assoni, a n d P Vas, "A l te c h n iq u e s in in d u c tio n m a c h in e s d ia g n o s is in c lu d in g th e s p e e d rip p le effect," IEEE Transactions on Indu stry A pplication s, vol 34, p p 9 8 -108, 1998
[28] G.B K lim an , R.A K oegl,J Stein, R.D E n d ic o tt, a n d M.W M a d d e n , " N o n in \'a s iv e
d e te c tio n o f b ro k e n ro to r b a rs in o p e ra tin g in d u c tio n m o to rs," IE E E Transactions
on E nergy C onversion s, vol 3, p p 873-879, D e c e m b e r 1988
[29] N M E lkasabgy, A.R E a sth a m , a n d G.E D a w so n , "D e te c tio n o f b ro k en b a rs
in th e cag e ro to r o n a n in d u c tio n m a c h in e ," IEEE T ransactions on Industry
A pplication s, vol 28, no 1, p p 165-171, J a n u a r y /F e b r u a r y 1992
[30] K.R C h o , J.H L ang, a n d S.D U m a n s, " D e te c tio n o f b ro k e n ro to r b a rs in in d u c tio n m o to rs u s in g sta te a n d p a ra m e te r e s tim a tio n ," IEEE T ransactions on Industry
A pplication s, vol 28, no 3, p p 702-709, M a y /J u n e 1992
[31] J M ilim o n fa re d , H M K elk, S N a n d i, A D M in a ssia n s, a n d H A Toliyat, "A
n o v e l a p p ro a c h fo r b ro k e n -ro to r-b a r d e te c tio n in cage in d u c tio n m o to r s /' IEEE
T ransactions on Indu stry A pplication s, v ol 35, no 5, p p 1000-1006, S e p te m b e r/
O c to b e r 1999
Trang 39hJiilts in Iiuluction a n d Synclwonotis Motors 25
[32] D.G D o rrell, W.T T hom son, a n d S R oach, " A n a ly s is o f a irg a p flux, c u rre n t,
\ ib ra tio n sig n a ls a s a fu n c tio n o f th e c o m b in a tio n o f static a n d d y n a m ic air
g a p e c c e n tric ity in 3 -p h a se in d u c tio n m o to rs ," IEEE Triuisiictions on Indu stry
[35] P .Meti a n d S N a n d i, "S ta to r in te r-tu rn fa u lt d e te c tio n o f s y n c h r o n o u s m a c h in e s
u s in g field c u r r e n t s ig n a tu re a n a ly s is," IEEE Indu stry A pplication s C onference,
T am p a, FL, O c to b e r 2006
[36] N A A l-X u a im a n d H A T olivat, "A m e th o d for d y n a m ic s im u la tio n an d
d e te c tio n o f d y n a m ic a ir g a p e c c e n tric ity in s y n c h r o n o u s m a c h in e s," IEEE
In tern ation al E lectric M achines and D rives C onference, M ay 1997
[37] H A T o liy at a n d \ A A l-N u a im , " S im u la tio n a n d d e te c tio n o f d y n a m ic a ir-g a p
e c c e n tric ity in sa lie n t-p o le s y n c h r o n o u s m a c h in e s," IEEE T ransactions Industry
A pplication s, vol 35, no 1, p p 86-93, J a n u a r y -F e b ru a ry 1999
[38] H C K ram er, "B ro k e n d a m p e r b a r d e te c tio n s tu d ie s u s in g flux p ro b e m e a s u re
m e n ts a n d tim e - s te p p in g finite e le m e n t a n a ly s is for sa lie n t p o le s y n c h r o n o u s
m a c h in e s," IE EE In tern ation al Sym posium on D iagnostics for E lectric M achines, I’ozver E lectron ics a n d D rives, SD E M P E D '03, p p 193-197, A u g u s t 2003
[39] (;.B K lim a n , a n d R.A K oegl, " N o n in v a s iv e d e te c tio n o f b ro k e n ro to r b a rs in
o p e r a tin g in d u c tio n m o to rs," IEEE Transactions E nergy Coni'ersion, vol 3, no 4,
[43] J.F^.R R u iz, J.A R o sero , A.G E sp in o sa, a n d L R o m eral, "D e te c tio n o f d e m a g
n e tiz a tio n fa u lts in p e rm a n e n t- m a g n e t s y n c h r o n o u s m o to rs u n d e r n o n s ta tio n
a ry c o n d itio n s ," IE EE T ransactions on M agn etics, vol 45, no 7, p p 2961-2969,
Ju ly 2009
|44] A K h o o b ro o a n d B F ahim i, "A n o v el m e th o d for p e rm a n e n t m a g n e t d e m a g
n e tiz a tio n fa u lt d e te c tio n a n d tr e a tm e n t in p e rm a n e n t m a g n e t s y n c h r o n o u s
m a c h in e s," A p p lied P ow er E lectronics C on feren ce an d E xposition , p p 2231-2237,
2010.
[4.S] H A T oliyat a n d N A A l-N u a im , " S im u la tio n a n d d e te c tio n o f d y n a m ic air-
g a p e c c e n tric ity in s a lie n t-p o le s y n c h r o n o u s m a c h in e s," IEEE T ransactions on Indu stry A pp lication s, vol 35, n o 1, p p 86-93, J a n u a r y /F e b r u a r y 1999
[4(i] B.M E b ra h im i, J Faiz, a n d M.J R o sh tk h a ri, "S tatic-, d y n a m ic -, a n d m ix ed -
e c c e n tric ity fa u lt d ia g n o s e s in p e rm a n e n t- m a g n e t sy n c h ro n o u s m o to rs ," IEEE TranM ctions on In du strial E lectronics, \ ol 56, no 11, p p 4727-4739
Trang 4026 Electric Machines: Moiieling, Condition Monitoring, and Vault Dta^ncsis
[47] W le R oux, R.G H arley, a n d T.G H abotler, "D e te c tin g ro to r fault-'- :n low
p o w e r p e r m a n e n t m a g n e t s y n c h r o n o u s m a c h in e s," IEEE Tnm fuctioii< rii P oT cr
E lectronics, vol 22, no 1, p p 322-328, J a n u a ry 2007
|48] A S id d iq u e , G.S Y adava, a n d B S in g h , "A rev iew o f s ta to r fa u lt m o n ito rin g
te c h n iq u e s o f in d u c tio n m o to rs," IEEE Trnnsactioiis On Energy C on version , \o l
20, p p 106-114, M arch 2005
[49] P X eti a n d S X a n d i, "S ta to r in te r-tu rn fau lt a n a ly s is o f re lu c ta n c e s y n c h r o n o u s
m o to r," Civnidiiin C onference on E lectrical atid C om pu ter E ngineering, p y 12S3- 1286,2005
[50] P.P R eich m eid er, G.A G ro ss, D Q u errey , D X o v o se l, a n d S S alo n , ' In te rn a l
fa u lts in s y n c h r o n o u s m a c h in e s, P a rt I: T he m a c h in e m o d e l," IEEE Tmns^icthVis
on E nergy C oin vrsion , \ ol 15, no 4, p p 376-379, 2000
[51] B M E b rah im i a n d J Faiz, "F e a tu re e x tra c tio n for s h o r t circu it fa u lt d o to c tio n in
p e rm a n e n t m a g n e t sy n c h ro n o u s m o to rs u s in g s ta to r c u rr e n t m o n ito r in g ," IEEE Transactions on P ow er E lectronics, \ ol 25, no 10, p p 2673-2682, 2010
[52| T X iao p in g , L.A D essain t, M.E K ahel, a n d A O Barry, "A n e w m o d e l of
s y n c h r o n o u s m a c h in e in te rn a l fa u lts b a se d o n w in d in g d is trib u tio n ," IIE E
T ransactions on Indu strial E lectronics, vol 53, no 6, p p 1818-1828, 2006
[53] A A li A b d a lla h , J R egnier, J F aucher, an d B D ag u es; " s im u la tio n of in te rn a l
fa u lts in p e rm a n e n t m a g n e t s y n c h r o n o u s m a c h in e s," In tern ation al C onfcreu cc on
P oiver E lectronics an d D rive System s, \ ol 2, p p 139t)-1395, 2005
[54] B V aseghi, B X a h id -M o b a ra k e h , , \ T ak o rab et, a n d F M e ib i> d \-la b a r,
P la n t Electrical R eference Series, vol 16, p p 5-24-5-31
[57] D R A lb rig h t, " I n te r tu r n s h o rt-c irc u it d e te c tio n for tu rb in e g e n e ra to r n 'to r
w in d in g ," IEEE T ransactions on Poiver and A pparatus System s, \ ’ol l’AS-90, pp 478-483, 1971
[58] R.J Streifel, R.J M ark s, M.A E l-S h ark aw i, a n d I K e rsz e n b a u m , "D etectii>n of
s h o r te d tu r n s in th e field w in d in g o f tu rb in e g e n e ra to r ro to rs u s in g n o v e lty
d e te c to r d e v e lo p m e n t a n d field te s t," IEEE T ransactions on E nergy C on iv rsion ,
v ol 11, no 2, p p 312-317, 1996
]59] M H o n g z h o n g , D Y u an y u an , R Ju, a n d Z l.im in , "T h e a p p lic a tio n of A N N in
fa u lt d ia g n o s is for g e n e ra to r ro to r w in d in g tu r n -to - tu rn fa u lts," IEEE P o w e r
a n d E n erg y Society G e n e ra l M e e tin g — C o n v e rs io n o f E lectrical E n erg y in th e 21st C e n tu ry , 2008.^
[60] J R osero, J C u s id o , A G arcia E sp in o sa , J.A O rte g a , L, R o m eral, "B ro k e n b e a r
in g s fa u lt d e te c tio n for a p e rm a n e n t m a g n e t s y n c h r o n o u s m o to r u n d e r n o n
c o n s ta n t w o rk in g c o n d itio n s b y m e a n s o f a jo in t tim e fre q u e n c y a n a ly s is ," liiEE
In te rn a tio n a l S y m p o s iu m o n In d u s tria l E lectronics, 2007
[61] M P acas, S V illw ock, a n d R D ietrich , "B earin g d a m a g e d e te c tio n in p e r m a
n e n t m a g n e t s y n c h r o n o u s m a c h in e s," IEEE Energy C onversion C on gress and
E xposition , p p 1098-1103, 2009