No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, wi
Trang 2AN INTRODUCTION TO THERMOMECHANICS
Hans ZIEGLER
Swiss Federal Institute of Technology, Zurich
and University of Colorado, Boulder
Second, revised edition
1983
N O R T H - H O L L A N D PUBLISHING C O M P A N Y - A M S T E R D A M · NEW YORK · O X F O R D
Trang 3All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of the Copyright owner
First printing 1977 Second, revised edition 1983
PUBLISHERS:
NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM OXFORD NEW YORK
SOLE DISTRIBUTORS FOR THE U.S.A A N D C A N A D A :
ELSEVIER SCIENCE PUBLISHING COMPANY, Inc
52 VANDERBILT A V E N U E NEW YORK, N.Y 10017, U.S.A
Library of Congress Cataloging in Publication Data
Ziegler, Hans, 1910 - An introduction to thermomechanics
{North-Holland series in applied mathematics and mechanics, 21)
PRINTED IN THE N E T H E R L A N D S
Trang 5o b j e c t of t h e r m o d y n a m i c s , o n t h e o t h e r h a n d , h a s a l w a y s b e e n a finite
v o l u m e , e g , a m o l e , a n d t h e s t a t e w i t h i n t h e b o d y h a s b e e n tacitly
a s s u m e d t o b e t h e s a m e t h r o u g h o u t t h e e n t i r e v o l u m e It is s u r p r i s i n g t h a t this p h i l o s o p h y h a s b e e n m a i n t a i n e d even at t h e a g e o f statistical a n d
q u a n t u m m e c h a n i c s , a l t h o u g h it is clearly i n c o n s i s t e n t w i t h t h e first
f u n d a m e n t a l law in its c o m m o n f o r m : A t least p a r t of t h e h e a t s u p p l y
a p p e a r i n g in this law is d u e t o h e a t flow t h r o u g h t h e s u r f a c e of t h e b o d y
t h e r m o d y n a m i c s as a field t h e o r y in m u c h t h e s a m e w a y as c o n t i n u u m
m e c h a n i c s h a s b e e n t r e a t e d for m o r e t h a n 2 0 0 y e a r s In s u c h a field t h e o r y ,
r e a s o n a b l y fast p r o c e s s e s c a n b e t r e a t e d w i t h t h e s a m e e a s e as slow o n e s ,
Trang 6vii
a n d r e s t r i c t i o n t o r e v e r s i b l e p r o c e s s e s b e c o m e s u n n e c e s s a r y F i n a l l y , this field t h e o r y is t h e p r o p e r f o r m in w h i c h t h e r m o d y n a m i c s a n d c o n t i n u u m
T h e first is a s t a t e f u n c t i o n , d e p e n d e n t o n t h e free e n e r g y , t h e s e c o n d is
c o n n e c t e d w i t h t h e d i s s i p a t i o n f u n c t i o n I n view of later d e v e l o p m e n t s ( C h a p t e r 14) t h e r o l e o f t h e t w o f u n c t i o n s is e m p h a s i z e d T h e d e f o r m a t i o n
h i s t o r y is r e p r e s e n t e d in t h e s i m p l e s t p o s s i b l e m a n n e r , n a m e l y b y i n t e r n a l
p a r a m e t e r s
C h a p t e r 5 d e a l s w i t h t h e c h a r a c t e r i s t i c p r o p e r t i e s o f v a r i o u s m a t e r i a l s A
Trang 7c o n t r o v e r s y c a n n o t b e a v o i d e d ; in this r e s p e c t I a s s u m e full r e s p o n s i b i l i t y for t h e final c h a p t e r s
C h a p t e r 14 r e t u r n s t o t h e b a s i s of t h e r m o d y n a m i c s T h e classical t h e o r y ,
r e s t r i c t e d t o r e v e r s i b l e p r o c e s s e s , tacitly e x c l u d e s g y r o s c o p i c f o r c e s W i t h exactly t h e s a m e r i g h t t h e y m a y b e e x c l u d e d in t h e i r r e v e r s i b l e c a s e T h e
Trang 9g e n e r a l i t y A special w o r d of t h a n k s is d u e t o m y s o n , P r o f e s s o r
H a n s h e i n r i c h Ziegler, for his v a l u a b l e linguistic a s s i s t a n c e in t h e
p r e p a r a t i o n of t h e t e x t I finally e x p r e s s m y g r a t i t u d e t o D r C a r l o S p i n e d i for his h e l p , p a r t i c u l a r l y in p r o o f r e a d i n g , a n d t o t h e D a n i e l J e n n y
F o u n d a t i o n for s u p p o r t in t h e p r e p a r a t i o n of t h e d r a w i n g s
Trang 10C H A P T E R 1
MATHEMATICAL PRELIMINARIES
I n o r d e r t o d e s c r i b e t h e configuration of a n a r b i t r a r y b o d y , w e n e e d a
reference system, e g , a rigid b o d y o r f r a m e s e r v i n g a s a b a s i s f o r t h e
o b s e r v e r A n y q u a n t i t a t i v e t r e a t m e n t r e q u i r e s a coordinate system fixed t o
Trang 14I n this s e c t i o n w e will briefly d i s c u s s t h e p r i n c i p a l r u l e s o f t e n s o r a l g e b r a
I n s o m e cases w e will restrict o u r s e l v e s t o t y p i c a l e x a m p l e s w h i c h a r e easily
g e n e r a l i z e d , a n d w e will l e a v e p a r t of t h e p r o o f s t o t h e p r o b l e m s e c t i o n
Trang 15T h i s is in fact t h e t r a n s f o r m a t i o n (1.16)i for η = 3 A n o t h e r f o r m o f t h e
q u o t i e n t l a w s t a t e s t h a t t h e set t(i j k) d e f i n e s a t e n s o r t if t(i j k)^ is a
Trang 17T h e y a r e i d e n t i c a l w i t h t h e c o m p o n e n t s o f t h e a n t i m e t r i c p a r t o f t h e t e n s o r
Sj k a n d h e n c e d o n o t d e p e n d o n its s y m m e t r i c p a r t O n a c c o u n t o f (1.30)
a n d ( 1 2 9 ) ! ,
^ijk^k = i^ijk^kpq^pq = \^kij^kpq s pq
= \ (Sipdjq ~ diqdjp)Spq = ! ( % ~ ty) = % ] · (1.32)
T h u s , t h e r e l a t i o n
Trang 194 P r o v e t h a t t h e set t(ij, k) d e f i n e s a t e n s o r tijk if t(i,j, k)ry is a v e c t o r
Xi A s s u m e t h a t t h e b o d y is a g y r o w i t h fixed p o i n t Ο a n d a n g u l a r velocity
ω , , a n d find its a n g u l a r m o m e n t u m Z), a n d its k i n e t i c e n e r g y Γ
Trang 21real s o l u t i o n μ) satisfying ( 1 4 2 ) T h i s s o l u t i o n d e f i n e s t h e first p r i n c i p a l
axis o f ty L e t u s i n t r o d u c e a n e w c o o r d i n a t e s y s t e m x[ t h e first axis o f
Trang 24f u n c t i o n is itself a s c a l a r , w e call it a scalar-valued function o f t h e given
t e n s o r s I n a s i m i l a r m a n n e r , w e d e f i n e vector- o r tensor-valued tensor
Trang 28b u t m a k e it a r u l e t o t r e a t i n d i c e s f o l l o w i n g a c o m m a as if t h e y w e r e t h e first o n e s
T h e c o n c e p t s d e f i n e d a b o v e a r e called differential operators T h e i r i n d e x
Trang 29theorem of Gauss It is easily g e n e r a l i z e d for r e g u l a r , i e , for piecewise
s m o o t h s u r f a c e s a n d a l s o for n o n - c o n v e x b o d i e s since a n y b o d y o f this t y p e
Trang 31called Green's first identity E x c h a n g i n g t h e r o l e s o f φ a n d ψ a n d
s u b t r a c t i n g t h e r e s u l t f r o m ( 1 1 0 2 ) , w e o b t a i n Green's second identity
Trang 32of a s i n g l e - v a l u e d p o t e n t i a l φ satisfying Laplace's equation Δφ = 0 in K,
a n d t h e last c o n d i t i o n yields v * g r a d ^ = d ^ / d v = 0 o n A G r e e n ' s first
Trang 332 Verify t h e i d e n t i t i e s
d i v c u r l u i = 0,
c u r l c u r l ν = g r a d div ν - A v
3 T h e i n s t a n t a n e o u s v e l o c i t y field Vi(x k ) o f a rigid b o d y m a y b e w r i t t e n
as Vj = i>,-0) + e ijk a>jX ky w h e r e i>/0) a n d ω ] a r e c o n s t a n t v e c t o r s S h o w t h a t t h e
in O
5 R e c o n s i d e r t h e p r o o f c o n t a i n e d in t h e last a l i n e a o f t h i s s e c t i o n W h y
is t h e c o n d i t i o n t h a t V b e s i m p l y c o n n e c t e d e s s e n t i a l ?
Trang 34a sufficiently l a r g e n u m b e r o f a t o m s W e will see, h o w e v e r , t h a t for t h e
e x p l a n a t i o n o f c e r t a i n p h e n o m e n a (crystal elasticity, t h e r m a l effects, etc.)
t h e m o l e c u l a r s t r u c t u r e h a s t o b e t a k e n , a t least t e m p o r a r i l y , i n t o a c c o u n t
W e will n o t specify a t p r e s e n t w h e t h e r t h e continuum c o n s i d e r e d is a g a s ,
a l i q u i d , o r a solid; in fact, t h e s e t e r m s will n o t b e d e f i n e d u n t i l C h a p t e r 5
W e will a s s u m e , h o w e v e r , t h a t t h e b o d y is d e f o r m a b l e , in c o n t r a s t t o t h e rigid b o d y t r e a t e d in e l e m e n t a r y m e c h a n i c s R e f e r r i n g a c o n t i n u u m t o a
c a r t e s i a n c o o r d i n a t e s y s t e m , w e d i s t i n g u i s h b e t w e e n spatial points, fixed in
t h e r e f e r e n c e s y s t e m , a n d material points o r particles, c o n s i d e r e d t o b e
e l e m e n t s o f t h e c o n t i n u u m a n d t h u s t a k i n g p a r t in its m o t i o n I n a s i m i l a r
m a n n e r w e d i s t i n g u i s h b e t w e e n s p a t i a l a n d m a t e r i a l c u r v e s , s u r f a c e s a n d
v o l u m e s
Trang 35F o r a n a r b i t r a r y t i m e t t h e s t a t e of m o t i o n of a c o n t i n u u m is d e s c r i b e d b y
a velocity field vk (Xj) It specifies t h e velocities of all m a t e r i a l p o i n t s at t i m e
t a n d will b e a s s u m e d t o b e c o n t i n u o u s a n d d i f f e r e n t i a b l e T h e field lines of
Trang 37vicinity of Ρ w i t h a n g u l a r velocity w a b o u t P T h i s a n g u l a r velocity,
Trang 40r a t e plane; if t w o p r i n c i p a l e x t e n s i o n r a t e s v a n i s h , w e call it uniaxial
A velocity field is called plane if all v e l o c i t y v e c t o r s a r e p a r a l l e l t o a given
Trang 43T h e instantaneous distribution o f t h e t e n s o r t k l n in t h e vicinity o f Ρ is
Trang 47is called t h e circulation o f t h e flow a r o u n d t h e c l o s e d c u r v e C , d e n o t e d in
Trang 5041
for every c l o s e d r e g u l a r s u r f a c e T h e v o r t e x lines h a v e b e e n d e f i n e d in
S e c t i o n 2.1 as t h e field lines o f w k(xj, t) A vortex tube is f o r m e d b y t h e
v o r t e x lines p a s s i n g t h r o u g h t h e p o i n t s o f a closed c u r v e A vortex filament
Trang 51KINETICS
K i n e t i c s d e a l s w i t h t h e forces a c t i n g o n a b o d y a n d w i t h t h e m a n n e r t h e s e forces i n f l u e n c e its m o t i o n W e k n o w f r o m p a r t i c l e m e c h a n i c s t h a t , t o a
c e r t a i n e x t e n t , t h e c o n n e c t i o n b e t w e e n forces a n d m o t i o n d e p e n d s o n t h e
c h o i c e ( o r , t o b e m o r e p r e c i s e , o n t h e s t a t e of m o t i o n ) of t h e r e f e r e n c e
s y s t e m T h i s a m b i g u i t y , h o w e v e r , d i s a p p e a r s if w e restrict o u r s e l v e s t o inertial s y s t e m s as r e f e r e n c e f r a m e s
Trang 52I n o r d e r t o f o r m u l a t e t h e s e p r i n c i p l e s , let u s recall a few c o n c e p t s u s e d
t h r o u g h o u t m e c h a n i c s (cf [4]) T h e power o r rate of work of a f o r c e is t h e
Trang 53r e m a i n i n g faces a r e dAj = dAvj W e d e n o t e t h e stress v e c t o r a c t i n g o n dA
b y σ ( ν ) a n d t h e stress v e c t o r s o n t h e o t h e r faces b y - a y I n this w a y , t h e
stress v e c t o r o f a s u r f a c e e l e m e n t t h e e x t e r n a l u n i t v e c t o r o f w h i c h p o i n t s in
t h e p o s i t i v e d i r e c t i o n Xj is aj, a n d its c o m p o n e n t s <7,y a r e t h e normal stresses
Trang 5445
Fig 3.2 Stresses acting on an infinitesimal tetrahedron
(i=j) a n d t h e shear stresses (/=£/) a c t i n g o n t h e e l e m e n t
T h e stresses give rise t o s e c o n d - o r d e r f o r c e s , w h e r e a s t h e b o d y a n d t h e
Trang 55Fig 3.3 Stresses acting on an infinitesimal cuboid
Trang 57ie uk Xj(Qv k \ 0 dV=\e iJk XjQf k dV+^e iJk Xj(a k/ -gv k Vi)vi dA
3 2 T h e state of stress
A c c o r d i n g t o S e c t i o n 3.1 t h e s t a t e o f stress w i t h i n a c o n t i n u u m is
d e s c r i b e d b y t h e field o f t h e stress t e n s o r O n c e t h i s field is k n o w n , t h e stress v e c t o r a c t i n g o n a n y s u r f a c e e l e m e n t in a n a r b i t r a r y p o i n t is g i v e n b y ( 3 6 ) S i n c e t h e stress t e n s o r is s y m m e t r i c , it is s u b j e c t t o t h e r e s u l t s
o b t a i n e d in S e c t i o n 1.3 T h u s , t h e r e exists a t least o n e s y s t e m o f o r t h o g o n a l
principal axes a t e a c h p o i n t P T h e s u r f a c e e l e m e n t s n o r m a l t o t h e s e a x e s
a r e called principal elements T h e y a r e free o f s h e a r s t r e s s e s , a n d t h e
c o r r e s p o n d i n g n o r m a l stresses σ λ , , r e f e r r e d t o a s principal stresses, a r e
Trang 59r e f e r r e d t o as t h e mean normal stress
A s t a t e of stress is called plane in a given p o i n t Ρ if o n e of t h e p r i n c i p a l
stresses, e g , o m is z e r o T h e s u r f a c e e l e m e n t p e r p e n d i c u l a r t o t h e
c o r r e s p o n d i n g p r i n c i p a l axis x3 is t h e n stress-free A c c o r d i n g t o ( 3 1 8 ) , t h e
stress v e c t o r a c t i n g o n a n a r b i t r a r y s u r f a c e e l e m e n t p a s s i n g t h r o u g h Ρ h a s
t h e c o m p o n e n t s σ λ v {, σπν2, 0, a n d h e n c e is p a r a l l e l t o t h e e l e m e n t w h i c h is
free of stresses If t w o p r i n c i p a l stresses, e g , σ η a n d σΙ Π v a n i s h in P , t h e
s t a t e of stress is called uniaxial H e r e t h e c o m p o n e n t s of t h e stress v e c t o r
Trang 6657
vicinity o f e q u i l i b r i u m U n d e r t h i s c o n d i t i o n , m o s t p r o c e s s e s a r e r e v e r s i b l e ,
a n d as a c o n s e q u e n c e c e r t a i n t e x t s o n t h e r m o d y n a m i c s c l a i m t h a t every sufficiently s l o w p r o c e s s is r e v e r s i b l e E v e n t h i s s t a t e m e n t is i n c o r r e c t : t h e
b e d e s c r i b e d b y a set o f m u t u a l l y i n d e p e n d e n t kinematical coordinates o r
parameters ak ( £ = 1 , 2 , , n) a n d b y t h e a b s o l u t e temperature, w h i c h will
Trang 67s y s t e m ; w e call t h e s e q u a n t i t i e s independent state variables A n y f u n c t i o n
of t h e m will b e r e f e r r e d t o as a dependent state variable o r a state function
T h e first fundamental law o f t h e r m o d y n a m i c s s t a t e s t h a t t h e r e exists a
s t a t e f u n c t i o n U(a k, t9), called t h e internal energy, s u c h t h a t
A c c o r d i n g t o t h i s t h e o r e m t h e t o t a l d i f f e r e n t i a l o f t h e i n t e r n a l e n e r g y is t h e
s u m of t h e e l e m e n t a r y w o r k d o n e o n t h e s y s t e m a n d t h e e l e m e n t a r y h e a t