1. Trang chủ
  2. » Thể loại khác

North holland series in applied mathematics and mechanics 21 an introduction to thermomechanics

364 349 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 364
Dung lượng 12,92 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, wi

Trang 2

AN INTRODUCTION TO THERMOMECHANICS

Hans ZIEGLER

Swiss Federal Institute of Technology, Zurich

and University of Colorado, Boulder

Second, revised edition

1983

N O R T H - H O L L A N D PUBLISHING C O M P A N Y - A M S T E R D A M · NEW YORK · O X F O R D

Trang 3

All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior

permission of the Copyright owner

First printing 1977 Second, revised edition 1983

PUBLISHERS:

NORTH-HOLLAND PUBLISHING COMPANY

AMSTERDAM OXFORD NEW YORK

SOLE DISTRIBUTORS FOR THE U.S.A A N D C A N A D A :

ELSEVIER SCIENCE PUBLISHING COMPANY, Inc

52 VANDERBILT A V E N U E NEW YORK, N.Y 10017, U.S.A

Library of Congress Cataloging in Publication Data

Ziegler, Hans, 1910 - An introduction to thermomechanics

{North-Holland series in applied mathematics and mechanics, 21)

PRINTED IN THE N E T H E R L A N D S

Trang 5

o b j e c t of t h e r m o d y n a m i c s , o n t h e o t h e r h a n d , h a s a l w a y s b e e n a finite

v o l u m e , e g , a m o l e , a n d t h e s t a t e w i t h i n t h e b o d y h a s b e e n tacitly

a s s u m e d t o b e t h e s a m e t h r o u g h o u t t h e e n t i r e v o l u m e It is s u r p r i s i n g t h a t this p h i l o s o p h y h a s b e e n m a i n t a i n e d even at t h e a g e o f statistical a n d

q u a n t u m m e c h a n i c s , a l t h o u g h it is clearly i n c o n s i s t e n t w i t h t h e first

f u n d a m e n t a l law in its c o m m o n f o r m : A t least p a r t of t h e h e a t s u p p l y

a p p e a r i n g in this law is d u e t o h e a t flow t h r o u g h t h e s u r f a c e of t h e b o d y

t h e r m o d y n a m i c s as a field t h e o r y in m u c h t h e s a m e w a y as c o n t i n u u m

m e c h a n i c s h a s b e e n t r e a t e d for m o r e t h a n 2 0 0 y e a r s In s u c h a field t h e o r y ,

r e a s o n a b l y fast p r o c e s s e s c a n b e t r e a t e d w i t h t h e s a m e e a s e as slow o n e s ,

Trang 6

vii

a n d r e s t r i c t i o n t o r e v e r s i b l e p r o c e s s e s b e c o m e s u n n e c e s s a r y F i n a l l y , this field t h e o r y is t h e p r o p e r f o r m in w h i c h t h e r m o d y n a m i c s a n d c o n t i n u u m

T h e first is a s t a t e f u n c t i o n , d e p e n d e n t o n t h e free e n e r g y , t h e s e c o n d is

c o n n e c t e d w i t h t h e d i s s i p a t i o n f u n c t i o n I n view of later d e v e l o p m e n t s ( C h a p t e r 14) t h e r o l e o f t h e t w o f u n c t i o n s is e m p h a s i z e d T h e d e f o r m a t i o n

h i s t o r y is r e p r e s e n t e d in t h e s i m p l e s t p o s s i b l e m a n n e r , n a m e l y b y i n t e r n a l

p a r a m e t e r s

C h a p t e r 5 d e a l s w i t h t h e c h a r a c t e r i s t i c p r o p e r t i e s o f v a r i o u s m a t e r i a l s A

Trang 7

c o n t r o v e r s y c a n n o t b e a v o i d e d ; in this r e s p e c t I a s s u m e full r e s p o n s i b i l i t y for t h e final c h a p t e r s

C h a p t e r 14 r e t u r n s t o t h e b a s i s of t h e r m o d y n a m i c s T h e classical t h e o r y ,

r e s t r i c t e d t o r e v e r s i b l e p r o c e s s e s , tacitly e x c l u d e s g y r o s c o p i c f o r c e s W i t h exactly t h e s a m e r i g h t t h e y m a y b e e x c l u d e d in t h e i r r e v e r s i b l e c a s e T h e

Trang 9

g e n e r a l i t y A special w o r d of t h a n k s is d u e t o m y s o n , P r o f e s s o r

H a n s h e i n r i c h Ziegler, for his v a l u a b l e linguistic a s s i s t a n c e in t h e

p r e p a r a t i o n of t h e t e x t I finally e x p r e s s m y g r a t i t u d e t o D r C a r l o S p i n e d i for his h e l p , p a r t i c u l a r l y in p r o o f r e a d i n g , a n d t o t h e D a n i e l J e n n y

F o u n d a t i o n for s u p p o r t in t h e p r e p a r a t i o n of t h e d r a w i n g s

Trang 10

C H A P T E R 1

MATHEMATICAL PRELIMINARIES

I n o r d e r t o d e s c r i b e t h e configuration of a n a r b i t r a r y b o d y , w e n e e d a

reference system, e g , a rigid b o d y o r f r a m e s e r v i n g a s a b a s i s f o r t h e

o b s e r v e r A n y q u a n t i t a t i v e t r e a t m e n t r e q u i r e s a coordinate system fixed t o

Trang 14

I n this s e c t i o n w e will briefly d i s c u s s t h e p r i n c i p a l r u l e s o f t e n s o r a l g e b r a

I n s o m e cases w e will restrict o u r s e l v e s t o t y p i c a l e x a m p l e s w h i c h a r e easily

g e n e r a l i z e d , a n d w e will l e a v e p a r t of t h e p r o o f s t o t h e p r o b l e m s e c t i o n

Trang 15

T h i s is in fact t h e t r a n s f o r m a t i o n (1.16)i for η = 3 A n o t h e r f o r m o f t h e

q u o t i e n t l a w s t a t e s t h a t t h e set t(i j k) d e f i n e s a t e n s o r t if t(i j k)^ is a

Trang 17

T h e y a r e i d e n t i c a l w i t h t h e c o m p o n e n t s o f t h e a n t i m e t r i c p a r t o f t h e t e n s o r

Sj k a n d h e n c e d o n o t d e p e n d o n its s y m m e t r i c p a r t O n a c c o u n t o f (1.30)

a n d ( 1 2 9 ) ! ,

^ijk^k = i^ijk^kpq^pq = \^kij^kpq s pq

= \ (Sipdjq ~ diqdjp)Spq = ! ( % ~ ty) = % ] · (1.32)

T h u s , t h e r e l a t i o n

Trang 19

4 P r o v e t h a t t h e set t(ij, k) d e f i n e s a t e n s o r tijk if t(i,j, k)ry is a v e c t o r

Xi A s s u m e t h a t t h e b o d y is a g y r o w i t h fixed p o i n t Ο a n d a n g u l a r velocity

ω , , a n d find its a n g u l a r m o m e n t u m Z), a n d its k i n e t i c e n e r g y Γ

Trang 21

real s o l u t i o n μ) satisfying ( 1 4 2 ) T h i s s o l u t i o n d e f i n e s t h e first p r i n c i p a l

axis o f ty L e t u s i n t r o d u c e a n e w c o o r d i n a t e s y s t e m x[ t h e first axis o f

Trang 24

f u n c t i o n is itself a s c a l a r , w e call it a scalar-valued function o f t h e given

t e n s o r s I n a s i m i l a r m a n n e r , w e d e f i n e vector- o r tensor-valued tensor

Trang 28

b u t m a k e it a r u l e t o t r e a t i n d i c e s f o l l o w i n g a c o m m a as if t h e y w e r e t h e first o n e s

T h e c o n c e p t s d e f i n e d a b o v e a r e called differential operators T h e i r i n d e x

Trang 29

theorem of Gauss It is easily g e n e r a l i z e d for r e g u l a r , i e , for piecewise

s m o o t h s u r f a c e s a n d a l s o for n o n - c o n v e x b o d i e s since a n y b o d y o f this t y p e

Trang 31

called Green's first identity E x c h a n g i n g t h e r o l e s o f φ a n d ψ a n d

s u b t r a c t i n g t h e r e s u l t f r o m ( 1 1 0 2 ) , w e o b t a i n Green's second identity

Trang 32

of a s i n g l e - v a l u e d p o t e n t i a l φ satisfying Laplace's equation Δφ = 0 in K,

a n d t h e last c o n d i t i o n yields v * g r a d ^ = d ^ / d v = 0 o n A G r e e n ' s first

Trang 33

2 Verify t h e i d e n t i t i e s

d i v c u r l u i = 0,

c u r l c u r l ν = g r a d div ν - A v

3 T h e i n s t a n t a n e o u s v e l o c i t y field Vi(x k ) o f a rigid b o d y m a y b e w r i t t e n

as Vj = i>,-0) + e ijk a>jX ky w h e r e i>/0) a n d ω ] a r e c o n s t a n t v e c t o r s S h o w t h a t t h e

in O

5 R e c o n s i d e r t h e p r o o f c o n t a i n e d in t h e last a l i n e a o f t h i s s e c t i o n W h y

is t h e c o n d i t i o n t h a t V b e s i m p l y c o n n e c t e d e s s e n t i a l ?

Trang 34

a sufficiently l a r g e n u m b e r o f a t o m s W e will see, h o w e v e r , t h a t for t h e

e x p l a n a t i o n o f c e r t a i n p h e n o m e n a (crystal elasticity, t h e r m a l effects, etc.)

t h e m o l e c u l a r s t r u c t u r e h a s t o b e t a k e n , a t least t e m p o r a r i l y , i n t o a c c o u n t

W e will n o t specify a t p r e s e n t w h e t h e r t h e continuum c o n s i d e r e d is a g a s ,

a l i q u i d , o r a solid; in fact, t h e s e t e r m s will n o t b e d e f i n e d u n t i l C h a p t e r 5

W e will a s s u m e , h o w e v e r , t h a t t h e b o d y is d e f o r m a b l e , in c o n t r a s t t o t h e rigid b o d y t r e a t e d in e l e m e n t a r y m e c h a n i c s R e f e r r i n g a c o n t i n u u m t o a

c a r t e s i a n c o o r d i n a t e s y s t e m , w e d i s t i n g u i s h b e t w e e n spatial points, fixed in

t h e r e f e r e n c e s y s t e m , a n d material points o r particles, c o n s i d e r e d t o b e

e l e m e n t s o f t h e c o n t i n u u m a n d t h u s t a k i n g p a r t in its m o t i o n I n a s i m i l a r

m a n n e r w e d i s t i n g u i s h b e t w e e n s p a t i a l a n d m a t e r i a l c u r v e s , s u r f a c e s a n d

v o l u m e s

Trang 35

F o r a n a r b i t r a r y t i m e t t h e s t a t e of m o t i o n of a c o n t i n u u m is d e s c r i b e d b y

a velocity field vk (Xj) It specifies t h e velocities of all m a t e r i a l p o i n t s at t i m e

t a n d will b e a s s u m e d t o b e c o n t i n u o u s a n d d i f f e r e n t i a b l e T h e field lines of

Trang 37

vicinity of Ρ w i t h a n g u l a r velocity w a b o u t P T h i s a n g u l a r velocity,

Trang 40

r a t e plane; if t w o p r i n c i p a l e x t e n s i o n r a t e s v a n i s h , w e call it uniaxial

A velocity field is called plane if all v e l o c i t y v e c t o r s a r e p a r a l l e l t o a given

Trang 43

T h e instantaneous distribution o f t h e t e n s o r t k l n in t h e vicinity o f Ρ is

Trang 47

is called t h e circulation o f t h e flow a r o u n d t h e c l o s e d c u r v e C , d e n o t e d in

Trang 50

41

for every c l o s e d r e g u l a r s u r f a c e T h e v o r t e x lines h a v e b e e n d e f i n e d in

S e c t i o n 2.1 as t h e field lines o f w k(xj, t) A vortex tube is f o r m e d b y t h e

v o r t e x lines p a s s i n g t h r o u g h t h e p o i n t s o f a closed c u r v e A vortex filament

Trang 51

KINETICS

K i n e t i c s d e a l s w i t h t h e forces a c t i n g o n a b o d y a n d w i t h t h e m a n n e r t h e s e forces i n f l u e n c e its m o t i o n W e k n o w f r o m p a r t i c l e m e c h a n i c s t h a t , t o a

c e r t a i n e x t e n t , t h e c o n n e c t i o n b e t w e e n forces a n d m o t i o n d e p e n d s o n t h e

c h o i c e ( o r , t o b e m o r e p r e c i s e , o n t h e s t a t e of m o t i o n ) of t h e r e f e r e n c e

s y s t e m T h i s a m b i g u i t y , h o w e v e r , d i s a p p e a r s if w e restrict o u r s e l v e s t o inertial s y s t e m s as r e f e r e n c e f r a m e s

Trang 52

I n o r d e r t o f o r m u l a t e t h e s e p r i n c i p l e s , let u s recall a few c o n c e p t s u s e d

t h r o u g h o u t m e c h a n i c s (cf [4]) T h e power o r rate of work of a f o r c e is t h e

Trang 53

r e m a i n i n g faces a r e dAj = dAvj W e d e n o t e t h e stress v e c t o r a c t i n g o n dA

b y σ ( ν ) a n d t h e stress v e c t o r s o n t h e o t h e r faces b y - a y I n this w a y , t h e

stress v e c t o r o f a s u r f a c e e l e m e n t t h e e x t e r n a l u n i t v e c t o r o f w h i c h p o i n t s in

t h e p o s i t i v e d i r e c t i o n Xj is aj, a n d its c o m p o n e n t s <7,y a r e t h e normal stresses

Trang 54

45

Fig 3.2 Stresses acting on an infinitesimal tetrahedron

(i=j) a n d t h e shear stresses (/=£/) a c t i n g o n t h e e l e m e n t

T h e stresses give rise t o s e c o n d - o r d e r f o r c e s , w h e r e a s t h e b o d y a n d t h e

Trang 55

Fig 3.3 Stresses acting on an infinitesimal cuboid

Trang 57

ie uk Xj(Qv k \ 0 dV=\e iJk XjQf k dV+^e iJk Xj(a k/ -gv k Vi)vi dA

3 2 T h e state of stress

A c c o r d i n g t o S e c t i o n 3.1 t h e s t a t e o f stress w i t h i n a c o n t i n u u m is

d e s c r i b e d b y t h e field o f t h e stress t e n s o r O n c e t h i s field is k n o w n , t h e stress v e c t o r a c t i n g o n a n y s u r f a c e e l e m e n t in a n a r b i t r a r y p o i n t is g i v e n b y ( 3 6 ) S i n c e t h e stress t e n s o r is s y m m e t r i c , it is s u b j e c t t o t h e r e s u l t s

o b t a i n e d in S e c t i o n 1.3 T h u s , t h e r e exists a t least o n e s y s t e m o f o r t h o g o n a l

principal axes a t e a c h p o i n t P T h e s u r f a c e e l e m e n t s n o r m a l t o t h e s e a x e s

a r e called principal elements T h e y a r e free o f s h e a r s t r e s s e s , a n d t h e

c o r r e s p o n d i n g n o r m a l stresses σ λ , , r e f e r r e d t o a s principal stresses, a r e

Trang 59

r e f e r r e d t o as t h e mean normal stress

A s t a t e of stress is called plane in a given p o i n t Ρ if o n e of t h e p r i n c i p a l

stresses, e g , o m is z e r o T h e s u r f a c e e l e m e n t p e r p e n d i c u l a r t o t h e

c o r r e s p o n d i n g p r i n c i p a l axis x3 is t h e n stress-free A c c o r d i n g t o ( 3 1 8 ) , t h e

stress v e c t o r a c t i n g o n a n a r b i t r a r y s u r f a c e e l e m e n t p a s s i n g t h r o u g h Ρ h a s

t h e c o m p o n e n t s σ λ v {, σπν2, 0, a n d h e n c e is p a r a l l e l t o t h e e l e m e n t w h i c h is

free of stresses If t w o p r i n c i p a l stresses, e g , σ η a n d σΙ Π v a n i s h in P , t h e

s t a t e of stress is called uniaxial H e r e t h e c o m p o n e n t s of t h e stress v e c t o r

Trang 66

57

vicinity o f e q u i l i b r i u m U n d e r t h i s c o n d i t i o n , m o s t p r o c e s s e s a r e r e v e r s i b l e ,

a n d as a c o n s e q u e n c e c e r t a i n t e x t s o n t h e r m o d y n a m i c s c l a i m t h a t every sufficiently s l o w p r o c e s s is r e v e r s i b l e E v e n t h i s s t a t e m e n t is i n c o r r e c t : t h e

b e d e s c r i b e d b y a set o f m u t u a l l y i n d e p e n d e n t kinematical coordinates o r

parameters ak ( £ = 1 , 2 , , n) a n d b y t h e a b s o l u t e temperature, w h i c h will

Trang 67

s y s t e m ; w e call t h e s e q u a n t i t i e s independent state variables A n y f u n c t i o n

of t h e m will b e r e f e r r e d t o as a dependent state variable o r a state function

T h e first fundamental law o f t h e r m o d y n a m i c s s t a t e s t h a t t h e r e exists a

s t a t e f u n c t i o n U(a k, t9), called t h e internal energy, s u c h t h a t

A c c o r d i n g t o t h i s t h e o r e m t h e t o t a l d i f f e r e n t i a l o f t h e i n t e r n a l e n e r g y is t h e

s u m of t h e e l e m e n t a r y w o r k d o n e o n t h e s y s t e m a n d t h e e l e m e n t a r y h e a t

Ngày đăng: 14/05/2018, 12:39

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm