The C-terminal variable region of TnT resides in theTnI–TnT interface in troponin complex and is in the proximity of TnCTakedaetal.,2003;Vinogradovaetal.,2005,whereasitsfunctionalsignif-
Trang 1I NTERNATIONAL R EVIEW OF
CELL AND MOLECULAR
BIOLOGY
Trang 2and Molecular Biology
Editorial Advisory Board
WALLACE F MARSHALL
Trang 3AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier
Trang 4525 B Street, Suite 1800, San Diego, CA 92101-4495, USA
125 London Wall, London EC2Y 5AS, UK
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
Copyright © 2016 Elsevier Inc All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher Details on how to seek permission, further information about the Publisher’s permissions policies and our arrange- ments with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions
This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).
Notices
Knowledge and best practice in this field are constantly changing As new research and experience broaden our understanding, changes in research methods, professional practices,
or medical treatment may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.
ISBN: 978-0-12-804707-1
ISSN: 1937-6448
For information on all Academic Press publications
visit our website at http://store.elsevier.com/
Trang 6Helen Nilsson Sko¨ld
Sven Loven Centre for Marine Sciences—Kristineberg, University of Gothenburg, Fiskeba¨ckskil, Sweden
Trang 7Evolution, Regulation,
International Review of Cell and Molecular Biology, Volume 321
1
Trang 8to the physiologic and pathophysiologic significances in modifying the contractility of skeletal and cardiac muscles during development and in adaptation to stress and disease conditions, the hyperplasticity of the N-terminal region of TnT demonstrates
an informative example for the evolution of protein three-dimensional structure and provides insights into the molecular evolution and functional potential of proteins.
Thecontractilemachineryofstriatedmuscles(representedbyskeletalandcardiacmusclesofvertebrates) isthemyofibrilsthatconsist oftandemrepeatsofsarcomeres.Asarcomereiscomposedofoverlappingmyosinthickfilamentsandactinthinfilaments.Contractionispoweredbyactin-activatedmyosin ATPase-catalyzedATP hydrolysis during actomyosin cross-bridgecycling.Thisprocessisregulatedbythethinfilament-associatedregulatoryproteinstroponinunderthecontrolofcytosolicCa2+(Gordonetal.,2000).Residing at ∼37-nm intervals along the thin filament in the form ofF-actin-tropomyosin double helices (Galinska-Rakoczy et al., 2008;Lehmanetal.,2009; Ohtsukietal.,1967),thetroponincomplexconsists
of three protein subunits: theCa2+-binding subunit troponin C (TnC1),actomyosinATPase-inhibitingsubunittroponinI(TnI),andtropomyosin-bindingsubunittroponinT(TnT)(GreaserandGergely,1971).ToconvertthecellularsignalofcytosolicCa2+transientoriginatedfromsarcolemmalelectrical activity to myofilament movements during each excitation–contraction–relaxationcycle,troponinfunctionsthroughcooperativeinter-actionsamongthethreesubunitsandwithtropomyosin(Gordonetal.,2000;Tobacman,1996).WhereasTnCisarelativeofthecalmodulingenefamily(Collins,1991)andfunctionsastheCa2+receptorofthethinfilamentregu-latory system in striated muscle, TnI and TnTare striated-muscle-specificproteinsencodedbycloselylinkedgenesandhavecoevolvedintothreepairs
offiber-type-specificisoforms(ChongandJin,2009; Jinetal.,2008)
Inadditiontoanchoringthetroponincomplextothethinfilament,TnTdirectly interacts with multiple proteins in the thin filament regulatorysystem to play an organizer role in the troponin complex (Perry, 1998).Throughisoformgeneregulation,alternativeRNAsplicing,andposttrans-lationalmodifications,structuralandfunctionalvariationsofTnTprovideamechanismtomodulatestriatedmusclecontractionandrelaxation
To understand thestructure–function relationshipof TnT, thisreviewoutlines the evolution of muscle type-specific TnT isoform genes, the
Trang 9multiplealternative spliceforms,thedevelopmental regulation ofisoformexpression and alternativesplicing, and theposttranslationalmodificationsduringphysiologicandpathophysiologicadaptations,withafocusontheN-terminal segment that is an evolutionarily diverged regulatory structure(ChongandJin,2009;Jinetal.,2008;WeiandJin,2011).Forbackgroundinformation, comprehensive summaries of striated muscle thin filamentregulation andthefunctionsofTnC,TnI,and tropomyosincanbe found
inseveralpreviouslypublishedreviews(Collins,1991;Gordonetal.,2000;Jin et al., 2008; Perry, 1998, 1999, 2001; Solaro and Rarick, 1998;Tobacman,1996;WeiandJin,2011;ShengandJin,2014)
TnT is a 30–35-kDa protein The sizes of vertebrate TnT withsequence information available range from 223 to 305 amino acids Thislargesize variation isalmost entirelydueto thevariable lengthoftheN-terminalregion,fromnearlyabsentincertainfishfastskeletalmuscleTnTtomorethan 70aminoacidslonginavian andmammalian cardiacTnT(Jin
etal.,2008;WeiandJin,2011).ThehypervariablenatureoftheN-terminaldomain ofTnT is furtherdemonstrated bythepresenceof 4–9 repeatingsequencemotifsinthebreastmusclefastTnTofavianordersGalliformesandCraciformes (Jin and Smillie, 1994) These five amino acid repeats form aclusterofhigh-affinity transitionmetal bindingsitesthatareonlyfound intheadultbreastmuscleofthesebirds(Jinand Samanez,2001; Ogutetal.,
1999).WhiletheN-terminalregionofTnTishypervariableinlengthandamino acid sequences, the amino acid sequences of the middle and C-terminal regions of TnTare highly conserved among the three muscle-type-specific isoforms and across vertebrate species (Jin et al., 2008; WeiandJin,2011)
Electron microscopic studies showed that the TnT molecule has anextended conformation (Cabral-Lilly et al., 1997; Wendt et al., 1997).ThefunctionaldomainsofTnThavebeen extensivelystudiedusing pro-teinfragmentsgeneratedfromlimitedchymotrypticandCNBrdigestions.Protein-bindingstudiesfoundthatthe∼100aminoacidsC-terminalchy-motryptic fragment T2 interacts with TnI and TnC and binds to themiddle regionoftropomyosin (Heeleyetal.,1987;Schaertl etal., 1995).ThechymotrypticfragmentT1thatcontainsboththeN-terminalvariableregion and the middle conserved region of TnT binds the head–tail
Trang 10junctionof tropomyosinsin theactin thin filament(Heeley etal., 1987).The tropomyosin-binding activity of the T1 fragment resides in the 81aminoacidsCNBrfragmentCB2ofrabbitfastskeletalmuscleTnT,whichrepresentsthemiddle conservedregionofTnT.TheN-terminalsegment
ofTnT(e.g.,theCNBrfragmentCB3inrabbitfastskeletalmuscleTnT)isthe hypervariable region and does not bind any known thin filamentproteinsinthesarcomere(Perry,1998)
Consistentwiththeprotein-bindingdata,X-raycrystallographyminedthepartialstructureofcardiacandskeletalmuscletroponincomplexshowingthattheassociationsofTnTwithTnIandTnCarethroughtheC-terminalT2region(Takedaetal.,2003;Vinogradovaetal.,2005).However,thecrystallographydataonlydeterminedthestructureforaportionoftheTnT–T2regioninthetroponincomplex.TheentireT1regionandtheveryC-terminal13 amino acidsof TnTwere missing from theresolvedhigh-resolutionstructures(Takedaetal.,2003;Vinogradovaetal.,2005).The13aminoacidC-terminalendsegmentencodedbythelastexon oftheTnTgeneishighlyconservedamongisoformsandacrossspecies(Jinetal.,2008;WeiandJin,2011).DeletionoftheC-terminal57aminoacidsoffastTnT(Jhaetal.,1996)orslowTnT(JinandChong,2010)hadnosignificanteffect
deter-onthebindingaffinityofTnTfortropomyosin.However,pointmutations
inthissegment havebeen foundto causefamilialhypertrophicopathy(ShengandJin,2014);thus,itsroleinthestructureandfunctionofTnTremainstobeinvestigated
cardiomy-The high-resolution structural data showed that the main TnT–TnIinterface in thetroponin complex is a coiled-coil structure (i.e., the I-Tarm)formedbythesegmentsofL224–V274incardiacTnTandF90–R136incardiacTnI inhuman cardiactroponin complex (Takeda et al., 2003) or
E199–Q245infastTnTandG55–L102infastTnIinchickenfastskeletalmuscletroponin(Vinogradovaetal.,2005).TheaminoacidsequencesofTnTandTnIinthiscoiled-coilinterfacearebothhighlyconservedamongisoformsandacrossvertebratespecies(Jinetal.,2008;WeiandJin,2011)
Whereasgrossmappingofthetropomyosin-bindingsitesofTnTusingthechymotrypsinandCNBrfragmentshadservedinguidingthestudiesofTnTfunctionandthin filamentregulation ofmuscle contractionfor overthreedecades(Perry,1998),thepreciselocalizationsofthetwotropomyosin-bindingsitesof TnTwerenot determineduntil recentlyusinggeneticallyengineeredTnTfragments(JinandChong,2010).Analysis ofserialdele-tionsofTnTproteinandmappingusingsite-specificmonoclonalantibodyepitopeprobesshowedthattheT1regiontropomyosin-bindingsiteofTnT
Trang 11involving a large content of α-helix interactions (Pearlstone et al., 1976,
1977)correspondsmainlytoa39aminoacidssegmentinthebeginningoftheconservedmiddleregion(JinandChong,2010).Ontheotherhand,theT2regiontropomyosin-bindingsitedependsonasegmentof25aminoacidsneartheverybeginningoftheT2fragment(JinandChong,2010).Aminoacidsequencesinthetwotropomyosin-bindingsitesare bothhighlycon-servedinthethreemuscle-typeTnTisoformsandacrossvertebratespecies(Jinetal.,2008;WeiandJin,2011)
Although the N-terminal variable region of TnT does not containbinding sites for TnI, TnC, or tropomyosin (Ohtsuki et al., 1984; Pan
et al., 1991; Pearlstone and Smillie, 1982), its structure is regulated byalternativesplicingduring lateembryonicandearlypostnataldevelopment
oftheheart(JinandLin,1988)andskeletalmuscles (WangandJin,1997),andinpathologicadaptation(Larssonetal.,2008).Thesedevelopmentalandadaptive regulations suggested functional significances of the N-terminalvariable region of TnT To investigate the molecular mechanism for theN-terminalvariableregiontoaffectTnTfunction,wedevelopedanepitopeconformationalanalysisusingmonoclonalantibodiesrecognizingthemiddleand C-terminal regions of TnTas three-dimensional structure-sensitiveprobes The studies demonstrated thatlocal structural changes in theN-terminalregionofTnT,suchasthatinducedbyZn2+-bindingtoatransitionmetalion(Cu(II),Ni(II),Co(II),andZn(II))bindingclusterinanα-helixintheN-terminalvariableregionofchickenbreastmuscle fastTnT,andthealternativesplicingofN-terminalcodingexonsincardiacTnT,alteredthestructuralconformationofremoteregionsandalteredthebindingaffinityforTnIand tropomyosin(Biesiadeckietal.,2007; Ogutand Jin,1996;WangandJin,1998).Fluorescencespectrometrystudiesfurtherdemonstratedthat
Cu2+-binding to the N-terminal metal-binding cluster in chicken breastmusclefastTnTalteredthefluorescenceintensityandanisotropyofTrp234,Trp236, Trp285, and fluorescein-labeled Cys263 in the C-terminal region(JinandRoot,2000).Theselong-rangeconformationaleffectsindicatethattheN-terminalvariableregionofTnTplaysaroleinmodulatingtheoverallmolecularconformationandfunctionofTnT
ThestructuralandfunctionaldomainsofTnTaresummarizedinFigure1
In addition to the hypervariable N-terminal region, there are two othervariable regions in the TnT polypeptide chain The C-terminalregion offastskeletalmuscleTnTcontainsasegmentof13aminoacidsencodedbyapairofmutuallyexclusive exons(exons16and 17).Thisregion alsoshowsdiversitybetweenmammalianandaviancardiacTnT,wheretheaviancardiac
Trang 12TnTgenecontainsanadditionalexonencodingtwoaminoacids(CooperandOrdahl, 1985) The C-terminal variable region of TnT resides in theTnI–TnT interface in troponin complex and is in the proximity of TnC(Takedaetal.,2003;Vinogradovaetal.,2005),whereasitsfunctionalsignif-icanceandtheregulationofitsalternativesplicingrequiremoreinvestigation.There is another minor variable region between the middle and C-terminal regionsof TnT(i.e.,between theT1and T2 fragments),where
analternativelysplicedexon(exon13)isfoundinmammaliancardiacTnTencodingashortsegmentof2or3aminoacids(Jinetal.,1992,1996).Thealternative splicing of this exon involves exclusion, complete, and partialinclusions(Jinetal.,1996).Thefunctionalsignificanceofthisminorvariableregion and the regulation of its alternative splicing also remain to beinvestigated
Threehomologousgeneshaveevolvedinmammalianandavianspeciesencoding TnTisoforms in cardiac muscle (TNNT2), slowskeletal muscle
Restricted calpain I cleavage
TnT
Tnl TnC
T1
Ch ymotr ypsin clea vage
T2 N-terminal variable region
H2N
HOOC
Tropomyosin-binding site 1 Tropomyosin-binding site 2
Figure 1 Structural and functional domains of TnT The diagram summarizes the structural and functional regions of TnT The high-resolution structure of partial troponin complex including a C-terminal segment of TnT that interacts with TnI and TnC is redrawn from published crystallography data ( Takeda et al., 2003 ) The arrows indicate the chymotryptic cleavage site between the T1 and T2 fragments ( Perry, 1998 ) and the calpain I cleavage site for the selective removal of the N-terminal variable region
of cardiac TnT ( Zhang et al., 2006 ) The two tropomyosin-binding segments ( Jin and Chong, 2010 ) are also outlined.
Trang 13(TNNT1), andfastskeletalmuscle(TNNT3) (Breitbart andNadal-Ginard,1986;CooperandOrdahl,1985;Farzaetal.,1998;Hiraoetal.,2004;Huang
etal.,1999b;Jinetal.,1992).ExpressionofthethreeTnTisoformgenesinadultcardiacandskeletalmusclesiscontrolledratherstrictlyinamusclefibertype-specificmanner.KnockoutofthecardiacTnTgeneresultedinembry-oniclethality(Nishiietal.,2008).AnonsensemutationinhumanslowTnTgenethat truncatestheproteinataminoacid180anddeletestheTnI-andTnC-bindingsitestogetherwithoneofthetropomyosin-bindingsitesintheC-terminalT2region(Jinetal.,2003;Johnstonetal.,2000)resultinginthelossofmyofilamentincorporationandrapiddegradationofslowTnT1–179inthemusclecells(Jinetal.,2003;Wangetal.,2005)andaclinicalphenotypeofrecessivenemalinemyopathywithinfantilelethality(Johnstonetal.,2000).Therefore,thethreeTnTisoformsplaynonredundantlycriticalrolesinthethreetypesofstriatedmuscle
Theprimarystructural diversityofthethreemuscle fibertype-specificTnTisoformsismainlyintheN-terminalregion(ChongandJin,2009;Jin
etal., 2008; WeiandJin, 2011;Sheng andJin, 2014) Thisobservationisconsistentwith theregulatoryfunctionof theN-terminal variableregionthatprovidesastructuralbasisforadaptationtovariousfunctionaldemands
indifferenttypesofmuscle,indifferentspecies,atdifferentstagesofopment,andunderpathologicconditions.Ontheotherhand,themiddleandC-terminalregionsofTnTarehighlyconservedamongthethreemuscletype-specificTnTisoformsandacrossvertebratespecies
devel-Investigatingtheevolutionarylineage ofthethree TnTisoform geneshelpstounderstandthestructure–functionrelationshipofTnT aswellasthephysiologicsignificance of theN-terminal hypervariable region Materialremains of ancestor nucleotides and proteins are largely unavailable forevolutionarystudies,thus,likeothermolecularevolutionarybiologystudies,nucleotideandaminoacidsequencecomparisonsamonghomologousTnTisoformgenesinpresent-dayorganismswereemployedtoprovidethecore
ofourcurrentknowledgefor themolecularevolutionofTnT Itisworthemphasizing thatthevariation in protein three-dimensional structure is abasisforfunctionaldiversity.Therefore,thestudyoftheevolutionofthree-dimensionalstructuresforTnTisoformsisa novelapproachtoenrichourknowledgeontroponinfunctionandthethinfilamentregulationofmusclecontraction
Usingmonoclonalantibodiesassite-specificepitopeprobes,wedetectedtherestorationofancestor-likeconformationinTnT afterremovingcertainevolutionarily added “suppressor” structure, for example, theN-terminal
Trang 14ofrestoringancestralconformationsthathavebeenallostericallysuppressedbythe evolutionary addition of a modulatory structure The results revealedthree-dimensional structural evidence for the evolutionary relationshipbetween TnIand TnT, twosubunits ofthe troponin complex,andamongthethreemusclefibertype-specificTnTisoforms(ChongandJin,2009).Consistent with sequence analysis that suggested a distant homology
of the genes encoding TnI and TnT, the epitope analyses demonstratedrestorationof TnI-likethree-dimensionalstructuresinTnT,supportingthatthese two subunits of troponin arose from a TnI-like ancestor protein(Chong and Jin, 2009) This common ancestor wouldhave had functions
inbothanchoringtotheactin-tropomyosinfilamentandinhibitingmyosinATPase.TnI andTnT havediverged prior tothe emerging ofvertebrates(ChongandJin,2009).Itremainstobeinvestigatedwhetheranypresent-dayproteincouldrepresentthe commonancestorof TnIandTnT,possiblyininvertebratespecies
FurthersupportingthenotionthatTnIandTnTgenesareduplicatesofacommonancestralgene,TnIisalsopresentinthree musclefibertypeiso-formsandthesixTnIandTnTisoformgenesarecloselylinkedinthreepairs(fastTnI–fastTnT,slowTnI–cardiacTnT,andcardiacTnI–slowTnT)inthegenomeofvertebrates(Chong andJin,2009;Jinetal.,2008).Embryoniccardiacmuscle expressessolelyslowskeletalmuscle TnIthatisreplacedbycardiac TnI during late embryonic and early postnatal development (Jin,1996;Sagginetal.,1989).ThefunctionalpairingofslowTnIandcardiacTnTinembryonicheartindicatesthattheevolutionarilylinkedTnI–TnTgenepairs,including theseemingly scrambled slowTnI–cardiac TnTandcardiacTnI–slowTnTgenepairs,representoriginallyfunctionallinkages
Inaddition to thegenomic linkages,TnIandTnTalsohavestructuralalikenessthatsupportstheiroriginationbygeneduplication.Likethestruc-ture of TnT, the N-terminal region of TnI is also a variable structure ascardiac TnI has an evolutionarily additive N-terminal extension that is aheart-specificregulator (Parmacek and Solaro, 2004; Perry, 1999) to finetune the conformation and function of cardiac TnI in physiologic andpathophysiologicadaptations(Akhteretal.,2012;Jinetal.,2008)
Byrevealingsuppressedthree-dimensional structures,wefurtheronstrated an evolutionary lineage of fast to cardiac to slow TnT isoformgenes(ChongandJin,2009).DifferentfromTnIandTnTthathaveevolvedintothree isoforms for thethree fiber typesof vertebratestriatedmuscle,TnCispresentinonlytwoisoforms:fastTnC(GahlmannandKedes,1990)
Trang 15dem-andslow–cardiacTnC(ParmacekandLeiden,1989).Theundifferentiatedutilization of the same TnCisoform in cardiac and slow skeletal musclessupportsthehypothesisthattheemergenceofthecardiacandslowTnI–TnTgenepairswasarelativelyrecenteventandthelinkedcardiacTnI–slowTnTgenes are the newest pair (Figure 2) (Chong and Jin, 2009) The latestemergence of the cardiac TnI–slow TnT gene pair is supported by thepresenceof theunique N-terminal extension in cardiacTnI (Chong andJin,2009;ParmacekandSolaro,2004).SummarizedinFigure2,thispattern
is consistent with the [fast skeletal (slow skeletal, cardiac)] phylogeneticrelationshipindicatedbysequenceanalysisofother muscleproteins(Oota
1998,2008).SuchconservationpatternindicatesthattheevolutionofTnTisoformgeneswasdrivenprimarilybyearlyadaptationstothedifferentiatedfunctionsofcardiac,fast,andslowskeletalmuscles.Thecriticalroleofmusclefibertype-specificTnTisoforms,thefunctionofskeletalmuscle,forexam-ple, slow TnT that is the newestisoform of TnT, is demonstrated by the
A duplication event later resulted in the emergence of a cardiac TnT-like gene that was further duplicated to give rise to the present-day cardiac TnT and slow TnT genes.
Trang 16human slow TnT Glu180 nonsense mutation (Jin et al., 2003) that causessevere nemaline myopathy with infantiledeath (Johnston etal.,2000) andconfirmedbyknockingdownoftheexpressionofslowTnTgeneexpression
indiaphragm muscletoproduceatrophy,slow-to-fatfibertypeswitch,andreducedresistancetofatigueinmousemuscles(Fengetal.,2009b)
WereportedthattheheartofadulttoadsBufoexpressesexclusivelyslowskeletal muscle TnT instead of cardiac TnTwhile all other myofilamentproteinsremain to be the cardiac isoforms including normal cardiac TnIandcardiacmyosin(Fengetal.,2012).Thisuniquebiochemicalcontentoftoad cardiacmuscle is correlated to a striking physiologic feature of toadheart,thatis,itishighlytoleranttolargechangesinthevolumeofbodyfluidandbloodbetweenrainyanddryseasons(BoralandDeb,1970)andmuchmoreresistanttothelossofbloodvolumethanthatofthecloselyrelatedfrogheartunderexperimental conditions(Debet al.,1974) Theaortic bloodflowrateoftoaddidnotdropuntilabloodlossofmorethan5%ofthebodyweight, whereasblood loss of 2%of thebodyweight caused a decline ofaorticbloodflowrateinfrog(HillmanandWithers,1988).Wedemonstratedthattoadheartshadfastercontractileandrelaxationvelocitiesandasignif-icantly higher tolerance to afterload (Feng et al., 2012) These findingsindicatethattheuniqueutilizationofslowskeletal muscleTnTto replacecardiac TnTin toad cardiacmuscle was an evolutionary adaptionwith asignificant fitness value during natural selection, further supporting thedifferentiatedfunctionalitiesofTnTisoforms
Asdiscussed earlier,themaindifferencesamongthethreemuscle-typeTnTisoformsisintheN-terminalvariableregion(Jinetal.,2008;WeiandJin,2011;ShengandJin,2014)thatfinetunesthemolecularconformationandfunctionofTnT,thusrepresentsamajordrivingforceoftheevolution-arydiversityofTnTisoforms
AlternativeRNAsplicinggeneratesmultipleproteinspliceformsfromthetranscriptsofeachofthethreemuscletype-specificTnTgenes(Jinetal.,2008;Wei and Jin,2011).The mammalian cardiac TnT gene contains 14constitutivelyexpressedexonsand3alternativelysplicedexons,twoofwhichencodesegments in the N-terminalvariable region (Farza et al., 1998;Jin
et al., 1992, 1996) Exon5 of cardiac TnT gene, which encodes 9 or 10aminoacidsintheN-terminalvariableregion,isincludedinembryonicbut
Trang 17notadult cardiacTnT(JinandLin, 1989) Exon 4ofcardiac TnT geneisalternatively splicedindependent of developmentalstages (Jinetal., 1996).TheaviancardiacTnTgenecontains16constitutivelysplicedexonsandonly
1 alternative exon (the embryonic exon 5) (Cooper and Ordahl, 1985).Correspondingly, four mammalianand twoavian cardiacTnTN-terminalalternativesplicingvariantshavebeenfoundinnormalcardiacmuscle.MammalianfastskeletalmuscleTnTgenecontains19exons,ofwhichexons4, 5,6, 7,8,anda fetalexonencodingsegments intheN-terminalvariableregionarealternativelyspliced(BreitbartandNadal-Ginard,1986;BriggsandSchachat,1993;WangandJin,1997).Thesealternativeexonsarenotincludedorexcluded randomlyand notallpossible splicingcombina-tionsareatasignificantleveldetectablebycDNAcloning.Accordingly,only
13mousefastTnTmRNA variantsand11chickenfastTnTmRNA variantsdiffering intheN-terminalvariableregionhave beenactuallyfound withsequenceinformationtorepresentthesplicingpathwaysforsignificantlevels
ofproteinproductsandphysiologicfunctions(OgutandJin,1998;Smillieetal.,1988;WangandJin,1997)
Inadditiontoexons4–8,several uniqueN-terminalalternativecodingexons are found in avian fast skeletal muscle TnT genes Seven P exonslocated between exons 5 and 6 encode a unique Tx segment (Jin andSamanez, 2001; Miyazaki et al., 1999; Smillie et al., 1988) consisting ofseventandemrepeatsofpentapeptides(AHH[A/E]E)arefoundinchickenfastTnTgene.Awexonandayexonarefoundbetweenexons4–5and7–8,respectively,furtherincreasingthediversityofavianfastTnT(Schachatetal.,
1995).Asdiscussedearlier,theTxsegmentencodedbythePexonsinthefastTnTgeneofbirds inavianordersof GalliformesandCraciformescontains acluster of high-affinity transitionmetal ion binding sites (Jin and Smillie,
1994) Nohomologouscounterpart wasfound inmammalian TnTgenesandthebiologicsignificanceoftheTxelementremainstobeinvestigated.OneofitsspecificphysiologicfunctionsistoserveasaCa2+reservoir(Zhang
etal.,2004),whichmayconfercertainfunctionsrequiredfortheavianflightmuscles
TheslowskeletalmuscleTnTgenehasasimplerstructurethanthatofthefastskeletalmuscleandcardiacTnTgenes.Thereareonly14exonsintheslowTnTgeneandoneof whichis alternativelyspliced.Withanexon–-intronorganizationsameasthatofthemammalianslowTnTgenes(∼9kb),chicken slow TnT gene is significantly smaller (3kb) by having shorterintron sequences (Hirao et al., 2004; Huang et al., 1999b) Alternativesplicing of exon 5 in the N-terminal region generates 2 variants of slow
Trang 18TnT(Gahlmannetal.,1987;Huangetal.,1999b;Jinetal.,1998).Splicingattwoalternativeacceptorsites inintron5ofmouseslow TnTgenefurthergenerates a single amino acid variation in the exon 6-encoded segment(Huangetal.,1999b) Thesamepatternwas foundfor theintron4–exon
5splicingofchickenslowTnTgenetranscript(Hiraoetal.,2004).The molecular mechanism that regulates the alternative splicing ofTnTmRNAisnotfullyunderstood.Bothcisandtransregulatory factorshavebeenimplicatedtoaffectthealternativesplicingofcardiacTnT(Laddand Cooper, 2002) Alternative splicing of fast TnTwas found duringmyogenesis Muscle-specific trans regulatory factors were required forappropriate splicing and incorporation of constitutive and alternativeexons of fast TnT during myotube differentiation in culture (BreitbartandNadal-Ginard,1987)
The N-terminal alternatively spliced TnT variants have been shownwithfunctional impacts Skinned fibers of adult chicken pectoral musclecontaining alternatively spliced fast TnTwith more negatively chargedresidues intheN-terminal variableregion exhibited higher myofilamentcalcium sensitivity than control muscle fibers containing alternativelyspliced TnTwith less N-terminal negative charges (Ogut et al., 1999;Reiseretal.,1992,1996).Whenreconstitutedintoskinnedcardiacmusclestrips,embryoniccardiacTnT withmorenegativeN-terminalchargesalsoincreased Ca2+ sensitivity of myosin ATPase and force development incomparison to that of the less negatively charged adult cardiac TnT(Gomes et al., 2002) Similarly, studies using reconstituted myofilamentsshowedthattheembryoniccardiacTnTproducedhigherCa2+sensitivityascomparedwiththatofadultcardiacTnT(Gomesetal.,2004).Embryonicandneonatalcardiac musclecontainingembryoniccardiacTnTexhibitedhighertolerancetoacidosis(Solaroetal.,1988).Incontrast,overexpression
offast skeletal muscleTnT that hasa less negativelycharged N-terminalsegment than that of cardiac TnT decreased thetolerance to acidosis intransgenicmousecardiacmuscle(Noseketal.,2004)
No pathogenic point mutation has been identified in the N-terminalvariableregionofTnT,whereasmultiplesuchmutationshave beenfoundimmediatelyoutsidetheN-terminalvariableregion(for exampleI79Nofadult cardiac TnT that causes familial hypertrophic cardiomyopathy(Knollmannetal.,2001)).ThisobservationmayindicatethehighlyplasticnatureoftheN-terminalvariableregionofTnT
Nonetheless, larger structural variations such as aberrant splicing inthe N-terminal variable region of cardiac TnT have been reported in
Trang 19cardiomyopathies.Inturkeyhearts,abnormalskippingofexon8incardiacTnTwas found ininherited dilated cardiomyopathy (Biesiadeckiand Jin,
2002).Counterpartofthisexon(exon7)inmammaliancardiacTnTwasalsospliced out indog heartswith dilated cardiomyopathy(Biesiadecki etal.,
2002).ThisexonencodesanormallyconstitutivesegmentincardiacTnT(Jinetal.,2008; Weiand Jin,2011) Itsaberrantsplice-out indilatedcar-diomyopathy turkey and dog hearts indicates a causal relationship to thepathogenesis.Supportingthisnotion,transgenicmousestudiesshowedthatoverexpression of exon 7-deleted cardiac TnT in adult cardiac muscledecreased systolic function of theheart (Wei etal., 2010) In addition tothesplice-outofexon7,thedilatedcardiomyopathydogheartsalsohadanabnormal inclusionof theembryonicexon 5 incardiac TnTintheadultcardiacmuscle(Biesiadeckietal.,2002).Thepathophysiologicsignificance
ofembryoniccardiacTnTinadultcardiacmusclewillbediscussedlater.Alternativesplicingof exon4thatencodes4–5 aminoacidsintheN-terminalvariableregionofcardiacTnTisalsorelatedtodiseaseconditions.SignificantexpressionoflowmolecularweightcardiacTnTexcludingexon
4 was found in failing human hearts (Anderson et al., 1995; Rouilleretal.,1997),diabeticrathearts(Akellaetal.,1995),andhypertro-phic rat hearts(McConnell et al., 1998) (it is worth mentioning that theabnormallyincreasedexclusionofexon4incardiacTnTwasmisinterpretedandquotedinsomecardiologytextbooks asre-expression offetalcardiacTnTinfailinghumanhearts)
Mesnard-Thealternativesplicing-generateddecreasesinsizeandnegativechargeoftheN-terminalvariableregionofcardiacTnTimplyafunctionaladaptation
tothesepathologicconditions.Supportingthishypothesis,thelowmolecularweightslowTnTwith the exon5-encodedsegmentspliced outwasupre-gulatedinthe musclesoftype1(demyelination)but nottype2(axonloss)Charcot–Marie–Toothdisease,suggestingafunctionalsignificanceinskeletalmuscleadaptationtoneuromusculardisorders (Larssonetal.,2008).TheaberrantsplicingoftheN-terminalvariableregionofcardiacTnTdoesnotabolishthecorefunctionofTnTandadultskeletalmusclesnormallycontain multipleN-terminal alternativelysplicedvariants of fastand slowTnT(Jinetal.,2008;WeiandJin,2011).Therefore,themechanismfortheaberrantlysplicedcardiacTnTtocontributetothepathogenesisofdilatedcardiomyopathy in turkeys and dogs raised a key question regarding thestructure–function relationship of TnT in cardiac muscle An importantfeature of vertebrate hearts is the synchronized and uniform ventricularcontraction activated as an electrical syncytium Accordingly, uniform
Trang 20TnTfunctionis beneficialfor therhythmpumpingfunctionoftheheart.Thisisdifferentfromthefunctionofskeletalmuscle,inwhichmultipleTnTisoformsarepresenttofittheneedofbroadertwitchesforfusionintotetaniccontractions Based on this observation, we tested a hypothesis that theabnormalityofaberrantN-terminalsplicingofcardiacTnTisnotasimplelossoffunctionbutthechronicpresenceofmorethanoneclassofTnTinthethinfilamentsofadultcardiacmuscle(FengandJin,2010).
Inthishypothesis,desynchronizedactivationofventricularmuscleatthemyofilamentlevelduetothecoexistenceofTnTvariantsthatproducesplit
Ca2+sensitivitywoulddecreasetheefficiencyofcardiacpumping.Toonstratethismechanism,wefirstcreatedtransgenicmouseheartsthatcoex-pressawild-typefastskeletalmuscleTnTandtheendogenouscardiacTnT.ThecoexistenceoftwononmutantTnT’sinadultcardiacmusclealteredtheoverall cooperativity of Ca2+-activated force production (Huang et al.,1999a),decreasedcardiacfunction,andproducedmyocardialdegeneration(Huangetal.,2008).WethentestedintransgenicmouseheartstheeffectsofexpressingoneortwoofthecardiacTnTsplicingvariantsfoundinturkeyand canine-dilated cardiomyopathy together with endogenous wild-typeadultcardiacTnToncardiacefficiency.Theresultsshowedthatthecoex-istence of more than one forms of cardiac TnT in adult cardiac musclesignificantly decreased cardiac pumping efficiency proportional to thedegreeofTnTheterogeneity(FengandJin,2010)thatsplitsthinfilamentcalciumsensitivity(BiesiadeckiandJin,2002)
dem-Itisworth notingthatabnormalinclusionoftheembryonicexon5inadultcardiacTnTwasalsofoundincatandGuineapighearts(Biesiadecki
etal.,2002).Inaddition,theGuineapigheartsexpresscardiacTnT withanexclusionofalargersegmentintheN-terminalregionencodedbyexon6(Biesiadeckiet al.,2002) Catsand Guineapigs arebothreported to havehigh incidence of inherited cardiomyopathy and heart failure(Hasenfuss,1998;Tilleyetal.,1977).Therefore,impropersplicingofN-terminalexons
ofcardiacTnTmightbeacommonpathogenicmechanism
ThealternativelysplicedN-terminalcoding exonsoffast, cardiac,andslowTnTgenesaresummarizedinFigure3andTable1.Thelargenumber
ofalternativelysplicedTnTvariantsdifferingintheN-terminalregionmayprovideacapacityofmodifyingmusclecontractilitywhereasretainingthecorefunctionsofTnT
AveryinterestingobservationisapointmutationofturkeycardiacTnI(R111C) in the TnI–TnT interface (Biesiadecki et al., 2004), whichbluntedthefunctionaleffectofproteinkinaseAphosphorylationofcardiac
Trang 21TnI(Weietal.,2010)had mutuallyrescuingeffectswhenitcoexistswiththeexon7-deletedcardiacTnT(Biesiadeckietal.,2004;Weietal.,2010)
in the hearts of double transgenic mice (Wei et al., 2010) This findingsuggests thatthe TnI–TnTinterface isa pivotal site intransmittingCa2+signals during striated muscle contraction and relaxation as well as inmediatingthefunctionaleffectsoriginatingfrom theN-terminal variableregion ofTnT(Jinetal.,2008;WeiandJin, 2011;Sheng andJin, 2014)
TheexpressionofTnTisoformgenesinembryonicstriatedmuscleswasnotasrestrictedtofibertypesasthatintheadultanimal.CardiacTnTisexpressed at significant levels in embryonic and neonatalskeletal muscles
Fast
Cardiac
Slow
N-terminal variable region Conserved regions
Tropomyosin-binding site 1 Tropomyosin-binding site 2
Exons 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16/17 18
Chymotrypsin
An additional exon in chicken
Alternative acceptor sites in intron 5
y X(P) 7
Figure 3 Alternatively spliced exons of mammalian and avian fast, cardiac, and slow TnT genes The linear maps of fast, cardiac, and slow TnT illustrate the segments encoded by each exon The alternatively spliced exons are indicated by the filled boxes, among which the developmentally regulated exons are in solid black The w, x (P), and y exons illustrated in the fast TnT structure are only found in avian species The alternative acceptor site involved in the splicing of exon 6 in slow TnT gene is indicated with an arrowhead The C-terminal and middle regions of TnT are well conserved among the three muscle-type-specific isoforms and across species whereas the N-terminal region is highly variable The calpain I cleavage site for the selective removal of the N-terminal variable region of cardiac TnT in stress conditions ( Zhang et al., 2006 ) and the chymotrypsin cleavage site dividing the T1 and T2 fragments of fast TnT ( Perry, 1998 ) are indicated with arrowheads.
Trang 22Table 1 Modifications and regulations of the N-terminal variable region of TnT Exons of TnT genes, which are alternatively spliced under physiologic
conditions
Exons 4, 5, 6, 7, and 8 in avian and mammalian fast TnT
A fetal exon in mammalian fast TnT
P exons (up to 7) in avian fast TnT
Exons w and y in avian fast TnT
Exon 5 in avian and mammalian cardiac TnT
Exon 4 in mammalian cardiac TnT
Exon 5 in mammalian slow TnT
Alternative acceptor sites in intron 5 of mouse slow TnT and intron 4 of chicken slow TnT
Developmental regulations that result in isoform switches
Alternative splicing of exon 5 in cardiac TnT
Alternative splicing of exons 4, 6, 7, 8, and fetal in fast TnT
Postnatal inclusion of P exons in avian pectoral muscle fast TnT
Posttranslational modifications
Constitutive phosphorylation of Ser 2 at the N terminus
Selective removal of the N-terminal variable region by restrictive proteolysis in adaptation to stress conditions
Functional significance
Variable N-terminal negative charges determine the overall charge of TnT N-terminal structures modulate the conformation and function of the middle and C-terminal regions of TnT
N-terminal variation in TnT alters thin filament Ca2+-sensitivity and force production
N-terminal acidic residues of TnT provide a potential reservior of Ca2+Deletion of the N-terminal variable region of cardiac TnT moderately decreases systolic velocity of the heart and increases ejection time and stroke volume Deletion of the N-terminal variable region of TnT restores an ancestral conformation
Pathologic alternative splicing
Splice-out of exon 4 in adult cardiac TnT in human heart failure
Splice-out of exon 4 in adult cardiac TnT in diabetic and hypertrophic rat hearts
Splice-out of exon 8 or exon 7 in cardiac TnT in turkey and dog dilated cardiomyopathies
Splice-in of exon 5 in adult cardiac TnT in dog dilated cardiomyopathy Splice-out of exon 6 in cardiac TnT of Guinea pig heart
Splice-out of exon 5 in slow TnT in type 1 Charcot–Marie–Tooth disease The table summarizes the alternative splicing and posttranslational modifications of the N-terminal variable region of vertebrate TnT The relevant developmental regulation, physiologic and pathologic significances are listed.
Trang 231981).InsituhybridizationstudiesfoundthattheexpressionofcardiacTnT
inthedevelopingheartbeginsatday7.5postcoitumandinskeletalmuscles
atday11.75postcoitum(Wangetal.,2001).TheexpressionofcardiacTnTgeneisdownregulatedinskeletalmusclesduringpostnataldevelopmentandceasesintheadult(Jinet al.,2003; Sabryand Dhoot,1991; Sagginetal.,
1990) Thedevelopmental switchingfrom cardiacTnTto skeletal muscleTnT is seen in both avian and mammalian skeletal muscles (Cooper andOrdahl,1984;Jin,1996;SwiderskiandSolursh,1990;ToyotaandShimada,
1981),demonstratingafunctionalexchangeabilitybetweenthemusclespecific TnTisoforms.On theotherhand, thedevelopmentallyregulatedswitchofTnTisoformsindicatesdifferentiatedfunctionoftheTnTisoforms
type-indifferenttypesofadultstriatedmuscles
WhiletheexpressionofcardiacTnTgeneisdownregulated,thesion of slow TnT is upregulated in postnatal slow skeletal muscles Thisprocess is concurrent withtheonset of theAmishnemaline myopathy inwhich the affected infant’s lackof slow TnT in their skeletal muscle areapparentlynormalinskeletalmusclefunctionatbirthbutsoondevelopthediseasephenotypeswhilecardiacTnTceasesexpressioninskeletalmuscles(Jinetal.,2003).ThisobservationsuggeststhatcardiacTnTmayfunctioninplaceofslowTnTinembryonicandgrowingskeletalmuscles,ahypothesisthatisworthtestingforthedevelopmentoftargetedtherapeuticapproaches
expres-ofAmishnemalinemyopathy
Transientexpression ofslow TnT, but notfast TnT, wasfound in theembryonicheart.Atday13.5postcoitum,expressionsofallthreeTnTgenesweredetectedinthedevelopingtongueandthiscoexpressioncontinuedtoday16.5postcoitumwithfastTnTbeingpredominant.CardiacTnTtran-scriptwas alsodetectablebyinsituhybridizationintheembryonicurinarybladder,wherepresumablysmoothmusclewaspresent(Wangetal.,2001).Itremains to be investigated whether this low-level expression of TnT insmoothmusclehasaphysiologicsignificance
Inchicken skeletal muscle, cardiacTnC was coexpressedwith cardiacTnTinearlydevelopmentalstages(ToyotaandShimada,1981).Duringthedevelopmentof avian skeletalmuscle, thedownregulationofcardiac TnTandcardiacTnCandtheupregulationoftheadultformofskeletaltroponinsubunitsweredependent ondiffusible neurohumoralfactorsbut indepen-dentoffunctionalinnervation(ToyotaandShimada,1983)
As discussed earlier, the alternative splicing of cardiac TnT switchespattern during avian and mammalian heart development Embryonic and
Trang 24neonatalheartsexpressembryoniccardiacTnTwiththeinclusionofa9or10amino acid segment encoded by exon 5 in the N-terminal region TheembryoniccardiacTnTislaterreplacedwithadultcardiacTnTbyexcludingthe exon 5-encoded segment (Cooper and Ordahl,1985; Jin etal., 1992,1996; Jin and Lin, 1989) The exon 5-encoded segment is highly acidic(negativelychargedatphysiologicpH)and,therefore,thisalternativesplicingregulationrepresentsalargetosmallandmoreacidictolessacidictransition
ofthephysicalpropertiesofcardiacTnT(JinandLin,1988).Thetimecourse
ofthisdevelopmentalswitchhasbeendescribedforchicken,mouse,andrathearts Cardiac TnT cDNAs with the same embryonic and adult splicingpatternsarealsofoundinhumanhearts(Townsendetal.,1995)andthesameproteinisoformswitchwasseenindevelopinghumanskeletalmuscleswherecardiacTnT istransientlyexpressed(Jinetal.,2003)
Complexalternativesplicingoffast skeletalmuscle TnToccursduringskeletal muscle development involving multiple coding exons for theN-terminal variable region Similar to that of cardiac TnT, a fetal exonlocatedbetweenthealternativeexon8andconstitutiveexon9isfoundinmammalianfast TnT genes(Briggs andSchachat, 1993) Inclusion ofthefetalexon-encodedsegmentintheembryonicfastTnThad aninhibitoryeffectonmyosinATPaseactivityinreconstitutedmyofilaments(Chaudhuri
etal.,2005).InvolvingthefetalexonandmultipleotherN-terminalnative exons (exons 4, 6, 7, and 8) encoding mainly acidic residues, theexpression offast TnTalsoexhibits a developmental switching from highmolecular weightacidic isoformsto low molecular weight basic isoforms(WangandJin,1997)
alter-Whereas,mostoftheN-terminalalternativelysplicedexonsoffastandcardiac TnT genes exhibit decreased inclusion during heart and skeletalmuscledevelopment(Jinetal.,1996; ShengandJin, 2014;Wangand Jin,1997;WeiandJin,2011),auniquecaseinthedevelopmentalregulationoffastTnTgeneistheposthatchinginclusionofsevenPexonsencodingtheTxsegmentintheN-terminalregionofavianpectoralbutnotlegmuscles(JinandSamanez,2001; Ogutand Jin,1998) While thelargenumberofGluresiduesencodedbythePexonsmightserveasacalciumreservoirinavianpectoralmusclethinfilaments(Zhangetal.,2004)andthenegativechargesaddedtotheN-terminalvariableregionofTx-positivefastTnTcorrelated
to an increased tolerance to acidosis (Ogut and Jin, 1998), the biologicsignificanceoftheTxsegmentanditsdevelopmentallyregulatedexpression
inadultavianpectoralmuscles,especiallyits capacityofbindingtransitionmetalions,remainstobeinvestigated
Trang 25ThedevelopmentallyregulatedalternativeN-terminalcodingexonsofthe three muscle fiber type TnT genes are summarized in Table 1 TheN-terminalvariableregionconfersthemostsignificantdifferencebetweentheembryonicandadultisoformsandplaysaroleinmodulatingtheoverallconformationofTnTandtheinteractionswithTnI,TnC,andtropomyosin.Altogether,thedevelopmentalregulationofTnTgeneexpressionandalter-nativesplicingprovidesadaptivemodificationsforthecontractilityofcardiacandskeletalmuscles(Jinetal.,2008;WeiandJin,2011).
Thecellularmechanism(s)thatregulatesTnTalternativesplicingduringdevelopment remains to be established When cardiac TnT is naturallyexpressed in embryonic and neonatal skeletal muscles, itssplicing pattern
issynchronizedwiththedevelopmentalswitching intheheart(Jin,1996).Thisobservationindicatestheroleofasystemicbiologicalclockindepen-dentoftheverydifferentfunctionaladaptationsduringthepostnataldevel-opmentofcardiacandskeletalmuscles
MorerecentstudiesdemonstratedthatmicroRNAsplayaroleinlating striated muscle development and pathophysiologic remodeling(Tatsuguchi etal.,2007; vanRooijetal., 2009;Williams etal., 2009).Inadultmouseheart,thedeletionofmiR-208aincreasedtheexpressionsoffastTnIandfastTnT,whichcouldbecorrectedbyoverexpressionofmiR-499(vanRooijetal.,2009).Inskeletalmuscle,doubledeletionofmiR-208bandmiR-499leadtodecreasednumberofslowfibers(vanRooijetal.,2009)
Posttranslational modification of proteins provides rapid functionalregulations.TheposttranslationalregulationofTnThasbeenmainlyinves-tigatedfortherolesofphosphorylationandrestrictedproteolysis.Incontrast
tothechronicmechanismsofTnTisoformgeneregulationandalternativeRNAsplicing,themodificationofTnTstructurethroughphosphorylationand restrictedproteolysisareacute mechanismsfor themuscle to adapttofunctionaldemandsandstressconditions
VariousinvitroandexvivoexperimentalconditionsproducedtionofcardiacTnTatmultiplesites.Forexample,Thr197,Ser201,Thr206,andThr intheC-terminalregionofcardiacTnTwerereportedtobeprotein
Trang 26phosphoryla-kinaseC(PKC)phosphorylationsites(Jideamaetal.,1996;NolandandKuo,1991; Sumandea et al., 2004) It was also reported that reactive oxygenspeciesexerted negative inotropic effect on rat cardiac myocytes throughphosphorylationofcardiacTnTatThr194andSer198byapoptosissignalingkinase1(Heetal.,2003).However,theseobservationsremaincontroversialandrecentmassspectrometrydatashowedthatadultcardiacTnTinratheartunderbasalin vivoconditionis100%monophosphorylatedatSer2,excludingalloftheother possiblesitesbeyondaminoacid 30(Marstonand Walker,2009;SanchoSolisetal.,2008).Consistently,constitutivephosphorylation
ofSer2attheNH2terminusofTnT wasreportedpreviously(Perry,1998)
Wefurther found that when embryonicmouse cardiacTnTwas pressedinadultheart,Ser25encodedbyexon5wasalsofullyphosphorylated(Zhangetal.,2011).ThehighlyefficientphosphorylationofSer2andSer25
overex-intheN-terminalvariableregionofcardiacTnTisaninterestingtionandfurtherstudiesarerequiredto identifythefunctionalsignificanceand the kinase(s) responsible, as well as the regulatory mechanisms thatsustaintheseN-terminalspecificphosphorylations
Severalover-andunderexpressionexperimentalmodelsdemonstratedthatmyofilamentincorporationdetermines thestoichiometryoftroponinsub-unitsincardiacmyocytesinvivo(Fengetal.,2009a).ItwasdeterminedinadultdogheartsthatTnTandTnIbothhaverapidturnoverratesincardiacmusclewithahalf-lifeofapproximately3.5daysthatwasshorterthanthe5.3dayshalf-lifeofTnC(Martin,1981).TheeffectiveremovalofsurplusTnTand TnIoverexpressed in transgenicmouse hearts under thestrongalphamyosinheavychainpromoterindicatesthatapotentproteolyticclearanceofnonmyofilament-incorporatedTnTandTnIiscriticaltomaintaintheinteg-rityandproteinstoichiometryofthethinfilamentregulatorysystem(Feng
etal.,2009a).Consistently,nosignificantcytoplasmicpoolofment-incorporatedcardiacTnT wasdetected(Martin,1981)
nonmyofila-It was reported that hypoxia in canine diaphragm muscle produced atruncated28-kDaTnTfragment(Simpsonetal.,2000).AcleavageofcardiacTnT by caspase 3 in apoptotic rat cardiomyocytes generated a 25-kDafragment with a deletion of the N-terminal variable region plus a partialdestructionofthemiddleconservedregion.Thisdestructivemodificationofcardiac TnTsignificantly decreased the maximummyosinATPase activityandmyofibrilforcegeneration(Communaletal.,2002)
Trang 27ofcardiacmuscle.Differentfromthe destructivecleavagebycaspase3,thisrestrictive proteolysis selectively removes only the N-terminal variableregion and completely preserves the conserved regions of cardiac TnT(Figures 1and3) Therestrictive N-terminaltruncationof cardiacTnTisfoundinmouse(removingaminoacid1–71),rat,andpigheartsduringacuteischemia–reperfusion(Zhangetal.,2006)andpressureoverload(Fengetal.,
2008).Myofilament-associatedcalpainI(Golletal.,2003)hasbeenindicatedwitharoleintherestrictiveproteolysisofcardiacTnT(Zhangetal.,2006).TheselectiveremovaloftheN-terminalvariableregiondoesnotabolishthe function of TnT but alters the binding affinities for TnI, TnC, andtropomyosin(Biesiadeckietal.,2007).Studiesbyseverallaboratoriesshowedthat selective removal of the N-terminal variable region of TnT slightlydecreasedthemaximummyosinATPaseactivityandmyofibrilforcegener-ationwithout affectingthin filamentcalcium sensitivityand cooperativity(Chandraetal.,1999;Fujitaetal.,1992;Panetal.,1991)
Experiments using exvivoworking heartsfrom transgenic mice expressingN-terminaltruncatedcardiacTnTinthecardiacmuscleshowedmoderatelyreducedvelocityofventricularcontractionwithoutdecreasesinthe maximum left-ventricular pressure (Feng et al., 2008) However, thesmalldecreaseincontractilevelocitysignificantlyprolongedtherapidejec-tionphaseoftheventricularpumpingcycletoincreasestrokevolume.Thisnovel mechanism provides a plausible adaptation to compensate for thedecreaseinsystolicfunction againstworkloadsuch asthatoccursinmyo-cardialischemiaorventricularpressureoverload(Fengetal.,2008)
over-In vitroischemia–reperfusion-liketreatmentoftransgenicmousecardiacmuscle coexpressing fastskeletal muscle TnTand theendogenous cardiacTnT-inducedrestrictiveN-terminaltruncationsof bothcardiacTnT andfastTnTdespitetheirdifferentaminoacidsequencesatthecleavagesites(Zhang
et al., 2006) Therefore, the restrictive calpain I cleavage of cardiac TnTunderstressconditionsislikelyregulatedby thecalpainaccessibilityand/ormolecularconformationandcalpainsensitivityofTnTinthe myofilamentsotherthanbythe levelofcalpainactivationincardiomyocytes
The alternatively spliced exons and posttranslational modifications ofTnTareillustratedinFigure3.Table1summarizestheknownN-terminalvariationsandmodificationsofTnT,includingthetruncationbyrestrictiveproteolysis, along with their regulation and physiologic and pathologicrelevances
Trang 287 CONCLUSIONANDPERSPECTIVES
AcentralplayerinthethinfilamentCa2+regulatorysystemofstriatedmuscles,TnThasevolvedintothreefibertype-specificisoformgenesandmultiplealternativesplicingvariants withdiverged physiologicand patho-physiologicfunctions.Afterover fourdecades ofextensive studies carriedoutbyseveralgenerationsofdedicatedinvestigators,wearenowinposses-sionofagreatdealofknowledgefortheevolution,regulation,andfunction
of TnT However, many important questions concerning the molecularevolution,developmental andadaptiveregulations,andstructure–functionrelationshipsofTnTstillremainunanswered.Amongthekeyquestions,itwouldbeimportanttoknowthemechanismsthatregulatetheexpressionofTnT isoform genes and alternative splicing, the precise position of theN-terminal variable regionof TnT in muscle thin filament, how theN-terminalvariableregionproduceslong-rangeeffectsontheoverallconfor-mationandfunctionofTnT,whetherthephosphorylationintheN-termi-nalvariableregionregulatesthefunctionofcardiacTnT,theprimaryfunc-tionoftheTxelementintheavianpectoralmusclefastTnT,andthecellularmechanism thatregulates the restrictive N-terminal truncation of cardiacTnTinstressadaptations Moreresearchtoseekultimate answerstothesequestionswillenhanceourunderstandingofmusclecontraction
ACKNOWLEDGMENTS
I sincerely thank my current and past lab members and collaborators for their outstanding and continuing contributions to our troponin studies I want to also thank my mentors, especially Prof Jim Lin at the University of Iowa and Prof Larry Smillie at the University of Alberta, for their guidance and support during my scientific career This work was supported in part by grants from the National Institutes of Health (AR048816 and HL098945) to J.-P.J.
REFERENCES
Akella, A.B., Ding, X.L., Cheng, R., Gulati, J., 1995 Diminished Ca2+sensitivity of skinned cardiac muscle contractility coincident with troponin T-band shifts in the diabetic rat Circ Res 76, 600–606.
Akhter, S., Zhang, Z., Jin, J.P., 2012 The heart-specific NH2-terminal extension regulates the molecular conformation and function of cardiac troponin I Am J Physiol Heart Circ Physiol 302, H923–H933.
Anderson, P.A., Greig, A., Mark, T.M., Malouf, N.N., Oakeley, A.E., Ungerleider, R.M., Allen, P.D., Kay, B.K., 1995 Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart Circ Res 76, 681–686.
Biesiadecki, B.J., Chong, S.M., Nosek, T.M., Jin, J.P., 2007 Troponin T core structure and the regulatory NH -terminal variable region Biochemistry 46, 1368–1379.
Trang 29Biesiadecki, B.J., Elder, B.D., Yu, Z.B., Jin, J.P., 2002 Cardiac troponin T variants produced
by aberrant splicing of multiple exons in animals with high instances of dilated opathy J Biol Chem 277, 50275–50285.
cardiomy-Biesiadecki, B.J., Jin, J.P., 2002 Exon skipping in cardiac troponin Tof turkeys with inherited dilated cardiomyopathy J Biol Chem 277, 18459–18468.
Biesiadecki, B.J., Schneider, K.L., Yu, Z.B., Chong, S.M., Jin, J.P., 2004 An R111C morphism in wild turkey cardiac troponin I accompanying the dilated cardiomyopathy- related abnormal splicing variant of cardiac troponin T with potentially compensatory effects J Biol Chem 279, 13825–13832.
poly-Boral, M.C., Deb, C., 1970 Seasonal changes in body fluids and haematology in toad Bufo melanostictus a poikilothermic cold torpor Proc Indian Natl Sci Acad 36, 369–379 Breitbart, R.E., Nadal-Ginard, B., 1986 Complete nucleotide sequence of the fast skeletal troponin T gene Alternatively spliced exons exhibit unusual interspecies divergence J Mol Biol 188, 313–324.
Breitbart, R.E., Nadal-Ginard, B., 1987 Developmentally induced, muscle-specific trans factors control the differential splicing of alternative and constitutive troponin T exons Cell 49, 793–803.
Briggs, M.M., Schachat, F., 1993 Origin of fetal troponin T: developmentally regulated splicing of a new exon in the fast troponin T gene Dev Biol 158, 503–509.
Cabral-Lilly, D., Tobacman, L.S., Mehegan, J.P., Cohen, C., 1997 Molecular polarity in tropomyosin-troponin T co-crystals Biophys J 73, 1763–1770.
Chandra, M., Montgomery, D.E., Kim, J.J., Solaro, R.J., 1999 The N-terminal region of troponin T is essential for the maximal activation of rat cardiac myofilaments J Mol Cell Cardiol 31, 867–880.
Chaudhuri, T., Mukherjea, M., Sachdev, S., Randall, J.D., Sarkar, S., 2005 Role of the fetal and alpha/beta exons in the function of fast skeletal troponin T isoforms: correlation with altered Ca2+regulation associated with development J Mol Biol 352, 58–71 Chong, S.M., Jin, J.P., 2009 To investigate protein evolution by detecting suppressed epitope structures J Mol Evol 68, 448–460.
Collins, J.H., 1991 Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons J Muscle Res Cell Motil 12, 3–25.
Communal, C., Sumandea, M., de Tombe, P., Narula, J., Solaro, R.J., Hajjar, R.J., 2002 Functional consequences of caspase activation in cardiac myocytes Proc Natl Acad Sci USA 99, 6252–6256.
Cooper, T.A., Ordahl, C.P., 1984 A single troponin T gene regulated by different programs
in cardiac and skeletal muscle development Science 226, 979–982.
Cooper, T.A., Ordahl, C.P., 1985 A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing J Biol Chem 260, 11140–11148.
Deb, C., Chatterjee, S., Boral, M.C., 1974 Body fluid and hematological changes in toads following heat exposure Am J Physiol 226, 408–410.
Farza, H., Townsend, P.J., Carrier, L., Barton, P.J., Mesnard, L., Bahrend, E., Forissier, J.F., Fiszman, M., Yacoub, M.H., Schwartz, K., 1998 Genomic organisation, alternative splicing and polymorphisms of the human cardiac troponin T gene J Mol Cell Cardiol 30, 1247–1253.
Feng, H.Z., Biesiadecki, B.J., Yu, Z.B., Hossain, M.M., Jin, J.P., 2008 Restricted N-terminal truncation of cardiac troponin T: a novel mechanism for functional adaptation to energetic crisis J Physiol 586, 3537–3550.
Feng, H.Z., Chen, X., Hossain, M.M., Jin, J.P., 2012 Toad heart utilizes exclusively slow skeletal muscle troponin T: an evolutionary adaptation with potential functional benefits.
J Biol Chem 287, 29753–29764.
Trang 30Feng, H.Z., Hossain, M.M., Huang, X.P., Jin, J.P., 2009a Myofilament incorporation determines the stoichiometry of troponin I in transgenic expression and the rescue of a null mutation Arch Biochem Biophys 487, 36–41.
Feng, H.Z., Jin, J.P., 2010 Coexistence of cardiac troponin T variants reduces heart ciency Am J Physiol Heart Circ Physiol 299, H97–H105.
effi-Feng, H.Z., Wei, B., Jin, J.P., 2009b Deletion of a genomic segment containing the cardiac troponin I gene knocks down expression of the slow troponin T gene and impairs fatigue tolerance of diaphragm muscle J Biol Chem 284, 31798–31806.
Fujita, S., Maeda, K., Maeda, Y., 1992 Expression in Escherichia coli and a functional study
of a beta-troponin T 25 kDa fragment of rabbit skeletal muscle J Biochem 112, 306–308.
Gahlmann, R., Kedes, L., 1990 Cloning, structural analysis, and expression of the human fast twitch skeletal muscle troponin C gene J Biol Chem 265, 12520–12528.
Gahlmann, R., Troutt, A.B., Wade, R.P., Gunning, P., Kedes, L., 1987 Alternative splicing generates variants in important functional domains of human slow skeletal troponin T J Biol Chem 262, 16122–16126.
Galinska-Rakoczy, A., Engel, P., Xu, C., Jung, H., Craig, R., Tobacman, L.S., Lehman, W.,
2008 Structural basis for the regulation of muscle contraction by troponin and osin J Mol Biol 379, 929–935.
tropomy-Goll, D.E., Thompson, V.F., Li, H., Wei, W., Cong, J., 2003 The calpain system Physiol Rev 83, 731–801.
Gomes, A.V., Guzman, G., Zhao, J., Potter, J.D., 2002 Cardiac troponin T isoforms affect the
Ca2+sensitivity and inhibition of force development Insights into the role of troponin T isoforms in the heart J Biol Chem 277, 35341–35349.
Gomes, A.V., Venkatraman, G., Davis, J.P., Tikunova, S.B., Engel, P., Solaro, R.J., Potter, J.D.,
2004 Cardiac troponin T isoforms affect the Ca(2+) sensitivity of force development in the presence of slow skeletal troponin I: insights into the role of troponin T isoforms in the fetal heart J Biol Chem 279, 49579–49587.
Gordon, A.M., Homsher, E., Regnier, M., 2000 Regulation of contraction in striated muscle Physiol Rev 80, 853–924.
Greaser, M.L., Gergely, J., 1971 Reconstitution of troponin activity from three protein components J Biol Chem 246, 4226–4233.
Hasenfuss, G., 1998 Animal models of human cardiovascular disease, heart failure and hypertrophy Cardiovasc Res 39, 60–76.
He, X., Liu, Y., Sharma, V., Dirksen, R.T., Waugh, R., Sheu, S.S., Min, W., 2003 ASK1 associates with troponin T and induces troponin T phosphorylation and contractile dysfunction in cardiomyocytes Am J Pathol 163, 243–251.
Heeley, D.H., Golosinska, K., Smillie, L.B., 1987 The effects of troponin T fragments T1 and T2 on the binding of nonpolymerizable tropomyosin to F-actin in the presence and absence of troponin I and troponin C J Biol Chem 262, 9971–9978.
Hillman, S.S., Withers, P.C., 1988 The hemodynamic consequences of hemorrhage and hypernatremia in two amphibians J Comp Physiol B 157, 807–812.
Hirao, C., Yonemura, I., Miyazaki, J., 2004 Genomic structure of the chicken slow skeletal muscle troponin T gene Gene 338, 243–256.
Huang, Q.Q., Brozovich, F.V., Jin, J.P., 1999a Fast skeletal muscle troponin T increases the cooperativity of transgenic mouse cardiac muscle contraction J Physiol 520 (Pt 1), 231–242.
Huang, Q.Q., Chen, A., Jin, J.P., 1999b Genomic sequence and structural organization of mouse slow skeletal muscle troponin T gene Gene 229, 1–10.
Huang, Q.Q., Feng, H.Z., Liu, J., Du, J., Stull, L.B., Moravec, C.S., Huang, X., Jin, J.P.,
2008 Co-expression of skeletal and cardiac troponin T decreases mouse cardiac function.
Am J Physiol Cell Physiol 294, C213–C222.
Trang 31Jha, P.K., Leavis, P.C., Sarkar, S., 1996 Interaction of deletion mutants of troponins I and T: COOH-terminal truncation of troponin T abolishes troponin I binding and reduces Ca2+sensitivity of the reconstituted regulatory system Biochemistry 35, 16573–16580 Jideama, N.M., Noland Jr., T.A., Raynor, R.L., Blobe, G.C., Fabbro, D., Kazanietz, M.G., Blumberg, P.M., Hannun, Y.A., Kuo, J.F., 1996 Phosphorylation specificities of pro- tein kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties J Biol Chem 271, 23277–23283.
Jin, J.P., 1996 Alternative RNA splicing-generated cardiac troponin T isoform switching: a non-heart-restricted genetic programming synchronized in developing cardiac and skel- etal muscles Biochem Biophys Res Commun 225, 883–889.
Jin, J.P., Brotto, M.A., Hossain, M.M., Huang, Q.Q., Brotto, L.S., Nosek, T.M., Morton, D.H., Crawford, T.O., 2003 Truncation by Glu180 nonsense mutation results in complete loss of slow skeletal muscle troponin T in a lethal nemaline myopathy J Biol Chem 278, 26159–26165.
Jin, J.P., Chen, A., Huang, Q.Q., 1998 Three alternatively spliced mouse slow skeletal muscle troponin T isoforms: conserved primary structure and regulated expression during post- natal development Gene 214, 121–129.
Jin, J.P., Chong, S.M., 2010 Localization of the two tropomyosin-binding sites of troponin T Arch Biochem Biophys 500, 144–150.
Jin, J.P., Huang, Q.Q., Yeh, H.I., Lin, J.J., 1992 Complete nucleotide sequence and structural organization of rat cardiac troponin T gene A single gene generates embryonic and adult isoforms via developmentally regulated alternative splicing J Mol Biol 227, 1269–1276 Jin, J.P., Lin, J.J., 1988 Rapid purification of mammalian cardiac troponin T and its isoform switching in rat hearts during development J Biol Chem 263, 7309–7315.
Jin, J.P., Lin, J.J., 1989 Isolation and characterization of cDNA clones encoding embryonic and adult isoforms of rat cardiac troponin T J Biol Chem 264, 14471–14477 Jin, J.P., Root, D.D., 2000 Modulation of troponin T molecular conformation and flexibility
by metal ion binding to the NH 2 -terminal variable region Biochemistry 39, 11702–11713.
Jin, J.P., Samanez, R.A., 2001 Evolution of a metal-binding cluster in the NH(2)-terminal variable region of avian fast skeletal muscle troponin T: functional divergence on the basis
of tolerance to structural drifting J Mol Evol 52, 103–116.
Jin, J.P., Smillie, L.B., 1994 An unusual metal-binding cluster found exclusively in the avian breast muscle troponin T of Galliformes and Craciformes FEBS Lett 341, 135–140 Jin, J.P., Wang, J., Zhang, J., 1996 Expression of cDNAs encoding mouse cardiac troponin
T isoforms: characterization of a large sample of independent clones Gene 168, 217–221.
Jin, J.P., Zhang, Z., Bautista, J.A., 2008 Isoform diversity, regulation, and functional tation of troponin and calponin Crit Rev Eukaryot Gene Expr 18, 93–124.
adap-Johnston, J.J., Kelley, R.I., Crawford, T.O., Morton, D.H., Agarwala, R., Koch, T., Schaffer, A.A., Francomano, C.A., Biesecker, L.G., 2000 A novel nemaline myopathy in the Amish caused by a mutation in troponin T1 Am J Hum Genet 67, 814–821.
Knollmann, B.C., Blatt, S.A., Horton, K., de Freitas, F., Miller, T., Bell, M., Housmans, P.R., Weissman, N.J., Morad, M., Potter, J.D., 2001 Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy J Biol Chem 276, 10039–10048.
Ladd, A.N., Cooper, T.A., 2002 Finding signals that regulate alternative splicing in the postgenomic era Genome Biol 3, 0008.
Larsson, L., Wang, X., Yu, F., Hook, P., Borg, K., Chong, S.M., Jin, J.P., 2008 Adaptation by alternative RNA splicing of slow troponin T isoforms in type 1 but not type 2 Charcot- Marie-Tooth disease Am J Physiol Cell Physiol 295, C722–C731.
Trang 32Lehman, W., Galinska-Rakoczy, A., Hatch, V., Tobacman, L.S., Craig, R., 2009 Structural basis for the activation of muscle contraction by troponin and tropomyosin J Mol Biol.
388, 673–681.
Marston, S.B., Walker, J.W., 2009 Back to the future: new techniques show that forgotten phosphorylation sites are present in contractile proteins of the heart whilst intensively studied sites appear to be absent J Muscle Res Cell Motil 30, 93–95.
Martin, A.F., 1981 Turnover of cardiac troponin subunits Kinetic evidence for a precursor pool of troponin-I J Biol Chem 256, 964–968.
McConnell, B.K., Moravec, C.S., Bond, M., 1998 Troponin I phosphorylation and filament calcium sensitivity during decompensated cardiac hypertrophy Am J Physiol.
myo-274, H385–H396.
Mesnard-Rouiller, L., Mercadier, J.J., Butler-Browne, G., Heimburger, M., Logeart, D., Allen, P.D., Samson, F., 1997 Troponin T mRNA and protein isoforms in the human left ventricle: pattern of expression in failing and control hearts J Mol Cell Cardiol 29, 3043–3055.
Miyazaki, J., Jozaki, M., Nakatani, N., Watanabe, T., Saba, R., Nakada, K., Hirabayashi, T., Yonemura, I., 1999 The structure of the avian fast skeletal muscle troponin T gene: seven novel tandem-arranged exons in the exon × region J Muscle Res Cell Motil 20, 655–660.
Nishii, K., Morimoto, S., Minakami, R., Miyano, Y., Hashizume, K., Ohta, M., Zhan, D.Y.,
Lu, Q.W., Shibata, Y., 2008 Targeted disruption of the cardiac troponin T gene causes sarcomere disassembly and defects in heartbeat within the early mouse embryo Dev Biol.
322, 65–73.
Noland Jr., T.A., Kuo, J.F., 1991 Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2(+)-stimulated actomyosin MgATPase activity J Biol Chem.
266, 4974–4978.
Nosek, T.M., Brotto, M.A., Jin, J.P., 2004 Troponin T isoforms alter the tolerance
of transgenic mouse cardiac muscle to acidosis Arch Biochem Biophys 430, 178–184.
Ogut, O., Granzier, H., Jin, J.P., 1999 Acidic and basic troponin T isoforms in mature twitch skeletal muscle and effect on contractility Am J Physiol 276, C1162–C1170 Ogut, O., Jin, J.P., 1996 Expression, zinc-affinity purification, and characterization of a novel metal-binding cluster in troponin T: metal-stabilized alpha-helical structure and effects of the NH2-terminal variable region on the conformation of intact troponin T and its association with tropomyosin Biochemistry 35, 16581–16590.
fast-Ogut, O., Jin, J.P., 1998 Developmentally regulated, alternative RNA splicing-generated pectoral muscle-specific troponin T isoforms and role of the NH2-terminal hypervariable region in the tolerance to acidosis J Biol Chem 273, 27858–27866.
Ohtsuki, I., Masaki, T., Nonomura, Y., Ebashi, S., 1967 Periodic distribution of troponin along the thin filament J Biochem 61, 817–819.
Ohtsuki, I., Shiraishi, F., Suenaga, N., Miyata, T., Tanokura, M., 1984 A 26K fragment of troponin T from rabbit skeletal muscle J Biochem 95, 1337–1342.
Oota, H., Saitou, N., Matsushita, T., Ueda, S., 1999 Molecular genetic analysis of remains of
a 2,000-year-old human population in China-and its relevance for the origin of the modern Japanese population Am J Hum Genet 64, 250–258.
Pan, B.S., Gordon, A.M., Potter, J.D., 1991 Deletion of the first 45 NH 2 -terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin.
Trang 33Pearlstone, J.R., Carpenter, M.R., Johnson, P., Smillie, L.B., 1976 Amino-acid sequence of tropomyosin-binding component of rabbit skeletal muscle troponin Proc Natl Acad Sci USA 73, 1902–1906.
Pearlstone, J.R., Johnson, P., Carpenter, M.R., Smillie, L.B., 1977 Primary structure of rabbit skeletal muscle troponin-T Sequence determination of the NH 2 -terminal fragment CB3 and the complete sequence of troponin-T J Biol Chem 252, 983–989.
Pearlstone, J.R., Smillie, L.B., 1982 Binding of troponin-T fragments to several types of tropomyosin Sensitivity to Ca2+in the presence of troponin-C J Biol Chem 257, 10587–10592.
Perry, S.V., 1998 Troponin T: genetics, properties and function J Muscle Res Cell Motil.
19, 575–602.
Perry, S.V., 1999 Troponin I: inhibitor or facilitator Mol Cell Biochem 190, 9–32 Perry, S.V., 2001 Vertebrate tropomyosin: distribution, properties and function J Muscle Res Cell Motil 22, 5–49.
Reiser, P.J., Greaser, M.L., Moss, R.L., 1992 Developmental changes in troponin T isoform expression and tension production in chicken single skeletal muscle fibres J Physiol 449, 573–588.
Reiser, P.J., Greaser, M.L., Moss, R.L., 1996 Contractile properties and protein isoforms of single fibres from the chicken pectoralis red strip muscle J Physiol 493 (Pt 2), 553–562 Sabry, M.A., Dhoot, G.K., 1991 Identification of and pattern of transitions of cardiac, adult slow and slow skeletal muscle-like embryonic isoforms of troponin T in developing rat and human skeletal muscles J Muscle Res Cell Motil 12, 262–270.
Saggin, L., Gorza, L., Ausoni, S., Schiaffino, S., 1989 Troponin I switching in the developing heart J Biol Chem 264, 16299–16302.
Saggin, L., Gorza, L., Ausoni, S., Schiaffino, S., 1990 Cardiac troponin T in developing, regenerating and denervated rat skeletal muscle Development 110, 547–554.
Sancho Solis, R., Ge, Y., Walker, J.W., 2008 Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top-down tandem mass spectrometry J Muscle Res Cell Motil 29, 203–212.
Schachat, F., Schmidt, J.M., Maready, M., Briggs, M.M., 1995 Chicken perinatal troponin
Ts are generated by a combination of novel and phylogenetically conserved alternative splicing pathways Dev Biol 171, 233–239.
Schaertl, S., Lehrer, S.S., Geeves, M.A., 1995 Separation and characterization of the two functional regions of troponin involved in muscle thin filament regulation Biochemistry
34, 15890–15894.
Sheng, J.J., Jin, J.P., 2014 Gene regulation, alternative splicing, and posttranslational ification of troponin subunits in cardiac development and adaptation: a focused review Front Physiol 5, 165.
mod-Simpson, J.A., van Eyk, J.E., Iscoe, S., 2000 Hypoxemia-induced modification of troponin I and T in canine diaphragm J Appl Physiol 88, 753–760.
Smillie, L.B., Golosinska, K., Reinach, F.C., 1988 Sequences of complete cDNAs encoding four variants of chicken skeletal muscle troponin T J Biol Chem 263, 18816–18820 Solaro, R.J., Lee, J.A., Kentish, J.C., Allen, D.G., 1988 Effects of acidosis on ventricular muscle from adult and neonatal rats Circ Res 63, 779–787.
Solaro, R.J., Rarick, H.M., 1998 Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments Circ Res 83, 471–480.
Sumandea, M.P., Burkart, E.M., Kobayashi, T., De Tombe, P.P., Solaro, R.J., 2004 Molecular and integrated biology of thin filament protein phosphorylation in heart muscle Ann N.Y Acad Sci 1015, 39–52.
Swiderski, R.E., Solursh, M., 1990 Precocious appearance of cardiac troponin T mRNAs during early avian embryonic skeletal muscle development in ovo Dev Biol.
pre-140, 73–82.
Trang 34Takeda, S., Yamashita, A., Maeda, K., Maeda, Y., 2003 Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form Nature 424, 35–41.
Tatsuguchi, M., Seok, H.Y., Callis, T.E., Thomson, J.M., Chen, J.F., Newman, M., Rojas, M., Hammond, S.M., Wang, D.Z., 2007 Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy J Mol Cell Cardiol 42, 1137–1141 Tilley, L.P., Liu, S.K., Gilbertson, S.R., Wagner, B.M., Lord, P.F., 1977 Primary myocardial disease in the cat A model for human cardiomyopathy Am J Pathol 86, 493–522 Tobacman, L.S., 1996 Thin filament-mediated regulation of cardiac contraction Annu Rev Physiol 58, 447–481.
Townsend, P.J., Barton, P.J., Yacoub, M.H., Farza, H., 1995 Molecular cloning of human cardiac troponin T isoforms: expression in developing and failing heart J Mol Cell Cardiol 27, 2223–2236.
Toyota, N., Shimada, Y., 1981 Differentiation of troponin in cardiac and skeletal muscles in chicken embryos as studied by immunofluorescence microscopy J Cell Biol 91, 497–504 Toyota, N., Shimada, Y., 1983 Isoform variants of troponin in skeletal and cardiac muscle cells cultured with and without nerves Cell 33, 297–304.
van Rooij, E., Quiat, D., Johnson, B.A., Sutherland, L.B., Qi, X., Richardson, J.A., Kelm Jr., R.J., Olson, E.N., 2009 A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance Dev Cell 17, 662–673.
Vinogradova, M.V., Stone, D.B., Malanina, G.G., Karatzaferi, C., Cooke, R., Mendelson, R.A., Fletterick, R.J., 2005 Ca(2+)-regulated structural changes in troponin Proc Natl Acad Sci USA 102, 5038–5043.
Wang, J., Jin, J.P., 1997 Primary structure and developmental acidic to basic transition of 13 alternatively spliced mouse fast skeletal muscle troponin T isoforms Gene 193, 105–114 Wang, J., Jin, J.P., 1998 Conformational modulation of troponin T by configuration of the
NH 2 -terminal variable region and functional effects Biochemistry 37, 14519–14528 Wang, Q., Reiter, R.S., Huang, Q.Q., Jin, J.P., Lin, J.J., 2001 Comparative studies on the expression patterns of three troponin T genes during mouse development Anat Rec 263, 72–84.
Wang, X., Huang, Q.Q., Breckenridge, M.T., Chen, A., Crawford, T.O., Morton, D.H., Jin, J.P., 2005 Cellular fate of truncated slow skeletal muscle troponin T produced by Glu180 nonsense mutation in amish nemaline myopathy J Biol Chem 280, 13241–13249 Wei, B., Gao, J.M., Huang, X.P., Jin, J.P., 2010 Mutual rescues between two dominant negative mutations in cardiac troponin I and cardiac troponin T J Biol Chem 285, 27806–27816.
Wei, B., Jin, J.P., 2011 Troponin T isoforms and posttranscriptional modifications: evolution, regulation and function Arch Biochem Biophys 505, 144–154.
Wendt, T., Guenebaut, V., Leonard, K.R., 1997 Structure of the Lethocerus tropomyosin complex as determined by electron microscopy J Struct Biol 118, 1–8 Williams, A.H., Liu, N., van Rooij, E., Olson, E.N., 2009 MicroRNA control of muscle development and disease Curr Opin Cell Biol 21, 461–469.
troponin-Zhang, Z., Biesiadecki, B.J., Jin, J.P., 2006 Selective deletion of the NH 2 -terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated mu-calpain cleavage Biochemistry 45, 11681–11694.
Zhang, Z., Feng, H.Z., Jin, J.P., 2011 Structure of the NH 2 -terminal variable region of cardiac troponin T determines its sensitivity to restrictive cleavage in pathophysiological adaptation Arch Biochem Biophys 515, 37–45.
Zhang, Z., Jin, J.P., Root, D.D., 2004 Binding of calcium ions to an avian flight muscle troponin T Biochemistry 43, 2645–2655.
Trang 35ElizabethCalzada1,OumaOnguka1,StevenM.Claypool*
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
*Corresponding author E-mail: sclaypo1@jhmi.edu.
1 Elizabeth Calzada and Ouma Onguka have contributed equally.
Contents
3.2 Mitochondrial Phosphatidylserine Decarboxylase (Psd) Pathway 38 3.3 PE as Precursor for Other Lipids and Substrate for Posttranslational Modifications 47
International Review of Cell and Molecular Biology, Volume 321
29
Trang 36for important posttranslational modifications, influencing membrane topology, and promoting cell and organelle membrane fusion, oxidative phosphorylation, mitochon- drial biogenesis, and autophagy The importance of PE metabolism in mammalian health has recently emerged following its association with Alzheimer’s disease, Parkinson ’s disease, nonalcoholic liver disease, and the virulence of certain pathogenic organisms.
Phosphatidylethanolamine (PE) is a multifunctional phospholipidrequiredformammaliandevelopmentthatisessentialforavarietyofcellularprocesses.PEisanonbilayerformingphospholipidcontainingasmallpolarhead group diameter in proportionto its fatty-acid chains The intrinsicbiophysical properties of this cone-shaped lipid induces the formation ofhexagonalphaseswithinthemembraneand,insodoing,promotesmem-brane fusion and fission events, proteinintegration into membranes, andconformationalchangesinproteinstructure(DowhanandBogdanov,2009;vandenBrink-vanderLaanetal.,2004).PEisthesecondmostabundantphospholipidinthecell,comprising15–25%oftotalphospholipidsinmam-maliancells(Vance,2015).However,PEisnotsimplyapassivemembraneconstituentbutisfunctionallyassociatedwithproteinbiogenesisandactivity(Beckeretal.,2013;BogdanovandDowhan,1995,1998,1999),oxidativephosphorylation (Bottinger et al., 2012; Tasseva et al., 2013), autophagy(Ichimuraetal.,2000),membranefusion(Verkleijetal.,1984),mitochon-drial stability (Birner et al., 2001; Steenbergen et al., 2005; Storey et al.,
2001),andisanimportantprecursorofotherlipids(BremerandGreenberg,1961;MenonandStevens,1992)
FourbiosyntheticpathwaysproducePEinthecell,andnotably,oneofthesepathwaysresides withinthemitochondrion Theredundancyin PEbiosyntheticpathwaysisnotsufficienttoallowfornormalcellularfunction
intheabsenceof eitherofthetwomajorPE-producingpathways(Birner
etal.,2001; Fullerton etal.,2007; Steenbergen etal.,2005; Storeyet al.,
2001) This suggests that different pools of PE are required for specifiedpurposes in the cell The abundance of PE varies in the membranes ofdifferent tissues and cells in mammals and organelles of both yeast andmammals (Bleijerveld et al., 2007; Colbeau et al., 1971; Nelson, 1967;Van Deenen and De Gier, 1974; Vance, 2015; Zinser et al., 1991) Thisreviewwill focus on thenumerous biological functionsconferred bythe
Trang 37intrinsic properties of PE Recently, disturbances in PE metabolism havebeenimplicated inbothchronicandinfectiousdisease(Chen etal.,2010;Deleault et al., 2012; Nesic et al., 2012; Wang et al., 2014) PhenotypiccharacterizationofthecellbiologyofthesediseasesusingavarietyofmodelorganismscollectivelyrevealsavitalroleforPEinmammalianhealth.
Biologicalmembranesformthebarriersthatdefinecellsandseparatespecifiedcellularfunctionsintodistinctbutinterconnectedcompartments.Beyondtheirabilitytodelineatedifferentcellandorganellemorphologies,cellularmembranesarealsomultifunctionalplatformsinvolvedinsignaling,regulation of solute, metabolite, and protein transport; and are necessarymediumsforproteinsthatrequireahydrophobicenvironmentforenzymaticfunctionandstability.Thewiderangeofbiologicalprocessesmediatedacrossmembranescanbeattributedtothemixtureofproteins,lipids,andcarbo-hydrates thatconcomitantly interactto give riseto specialized membraneenvironments.Greaterthan1000lipidspeciesarepresentinthecellandover30%of anorganism’stranslated genomeisdedicatedto theproductionofalphahelicalmembraneproteins(StevensandArkin,2000;Sudetal.,2007).Withrespecttocarbohydrates,thereareinnumerablestructures,conforma-tions, and combinations of sugars that can be formed in the cell, whichfurtheraddtothediversityofthemembraneenvironment
Themajorclassesoflipidsinthecellincludephospholipids,sterols,andsphingolipids.Therigidity,thickness,hydrophobicity,andfunctionofcel-lularmembranesaredependentuponthepresenceandrelativeabundanceofthesedifferentclassesoflipid.Glycerophospholipids,sterols,andsphingoli-pidscomprise∼75%,12–14%,and8–12%oflipidsinthecell,respectfully(Drin,2014).Phospholipidsareaccountablefortheformationofthemem-brane bilayer;thedifferent classes ofphospholipidin a membrane furthermodulatemembraneidentityandfluidity.Sterols,cholesterolinmammals,andergosterol inyeast,decreasecellpermeability byincreasingmembranethicknessandrigidity.Interestingly,thelevelofcholesterolishighestattheplasmamembrane(20–40%),moderateintheGolgi(8%)andendoplasmicreticulum (ER) (6%), and scarcely detected in mitochondria (4%) Thepresenceofsterolsinconjunction withsphingolipidsontheplasmamem-braneisimportantforcell-to-cellsignalingevents.AsPEisthefocusofthisreview,thebiologicalimportanceofsterolsandsphingolipidsisbeyondour
Trang 38scopebuthasbeendiscussedinextensivedetailinseveralfantasticreviews(Cowartand Obeid,2007; Espenshade and Hughes,2007; Futerman andHannun, 2004; Hannun and Obeid, 2008; Mouritsen and Zuckermann,2004;Ohvo-Rekilaetal.,2002;VanceandVandenBosch,2000).
Phospholipids are the predominant lipid components of most cellularmembranesandaretypicallycharacterizedbyaglycerolbackbonecontain-ingtwoester linkedfattyacid chainsat thesn-1 and sn-2 positionsand aphosphatehead groupat thesn-3 position(Figure1;VanDeenen andDeGier,1974).Theheadgroupattachedatthesn-3positiondistinguishesthedifferentclassesofphospholipidwhilesubspeciesofeachphospholipidclassalsoarisefromdifferencesintheiracylchaincomposition.Themajorgly-cerophospholipidsinthecellincludephosphatidylcholine(PC),PE,phos-phatidylserine(PS),phosphatidylinositol(PI),phosphatidicacid(PA),phos-phatidylglycerol (PG), and cardiolipin (CL) The distribution of eachphospholipidcanvaryondifferentleafletsofthemembranebilayer,betweenorganellar membranes, and by cell type and organism (Bretscher, 1972;
Phosphatidylethanolamine
sn-3 sn-1
sn-2
O O O
O NO O O O OH OH
O OH
OH OH HO
OH
O O O
O
O OO
R R
O O
O O
R
P
Phosphatidylethanolamine Phosphatidic acid Phosphatidylcholine Phosphatidylserine Phosphatidylglycerol Phosphatidylinositol
Cardiolipin
Figure 1 The glycerophospholipids (A) Diagram of phosphatidylethanolamine structure The spheres represent different atoms present in the phospholipid structure tan: carbon, red: oxygen, orange: phosphate, and blue: nitrogen (hydrogen atoms are not represented) (B) General glycerophospholipid structure Fatty acids are linked to the glycerol backbone at the sn-1 and sn-2 positions while the phosphate headgroup is linked at the sn-3 position Different variations of headgroups are shown (for cardiolipin, R indicates additional acyl groups attached at these positions).
Trang 39Colbeauetal.,1971;VanDeenenandDeGier,1974;Zinseretal.,1991).Atypical mammalian cell contains approximately45–55% PC, 15–25% PE,10–15%PI,5–10%PS,2–5%CL,and1–2%PA(Vance,2015).PCisfoundequallydistributedacrosscellularmembraneswhilePSandPEareprimarilyfound on theinner but not theouterleaflet of theplasma membrane.Inaddition,PE and CL areparticularlyabundant intheinner membraneofmitochondria(Vance,2015).Further,CLisabsentinothernonmitochon-drialmembranesofthecell.Enrichmentoflipidsindifferentcornersofthecellcan beattributed tonumerous factorsincludingtheirdifferent sitesofsynthesis, interconversion,acyl chainremodeling, traffickingmechanisms,anddegradation.
TheERistheprimarysiteofsynthesisforthemajorityoflipidsinthecell.ManyessentialcellprocessesaresequesteredintheER,andassuch,thisorganelle has compartmentalized some of these functions into distinctdomains (Vance, 2014) Initial studies on the subcellular localization ofphospholipidsynthesizingenzymeslocalizedthemtomicrosomalfractions,butsomemicrosomalvesiclescontaininghighPSsynthaseactivitywerenotenriched for the known ER-specific marker, NADPH-cytochrome-creductase (Dennis and Kennedy, 1972; van Golde et al., 1974; Zinser
et al., 1991) Subsequently, the mitochondrial-associated membrane(MAM) of the ER was identified as a distinct site of lipid synthesis thatharborsmultiplephospholipidbiosyntheticenzymes,includingPSsynthase,
PIsynthase,andPEmethyltransferase(Cuietal.,1993;Gaiggetal.,1995;Vance,1990).Additionally,theMAMisanimportantdepotforthetransport
ofsubstratesrequired forthebiosynthesisofPE,PA,CDP-DAG,PG,and
CL inmitochondria (transportmechanisms for PS and PEare covered inSections3.2.3and3.2.4)althoughCDP-DAGandPAcanbesynthesizedinboth theER and mitochondria (Chen etal., 2006; Colbeau etal., 1971;Kuchleretal.,1986;Tamuraetal.,2013;vanGoldeetal.,1974;WirtzandZilversmit,1968;Yetetal.,1993)
There are four independent pathwaysby which PEis generated ineukaryoticcells(Figure2).TheCDP-ethanolaminepathway(HjelmstadandBell,1991;Ishidateetal.,1985;Mancinietal.,1999;vanHellemondetal.,1994;WittenbergandKornberg,1953),acylationoflyso-PE(Riekhofetal.,
Trang 40ERMES complex
EMC complex
PE
MICOS complex