Biết vận dụng để chứng minh trường hợp bằng nhau cạnh huyền góc nhọn của hai tam giác vuông.. Biết cách vẽ tam giác biết một cạnh và hai góc kề cạnh đó, biết vận dụng hai trường hợp tr
Trang 1Giáo án Hình học 7
§5 TRƯỜNG HỢP BẰNG NHAU THỨ BA CỦA TAM GIÁC: GÓC-CẠNH-GÓC (G-C-G)
I Mục tiêu:
Nắm được trường hợp bằng nhau góc-cạnh-góc của hai tam giác Biết vận dụng để chứng minh trường hợp bằng nhau cạnh huyền góc nhọn của hai tam giác vuông
Biết cách vẽ tam giác biết một cạnh và hai góc kề cạnh đó, biết vận dụng hai trường hợp trên để chứng minh hai tam giác bằng nhau, từ đó suy ra các cạnh, các góc tương ứng bằng nhau
Tiếp tục rèn luyện kĩ năng vẽ hình, khả năng phân tích tìm cách giải và trình bày bài toán chứng minh hình học
II Phương pháp:
Đặt và giải quyết vấn đề, phát huy tính tư duy của HS
Đàm thoại, hỏi đáp
III: Tiến trình dạy học:
1 Kiểm tra bài cũ:
2 Các hoạt động trên lớp:
Hoạt động của thầy Hoạt động của trò Ghi bảng
Hoạt động 1: Vẽ tam giác biết một cạnh và hai góc kề.
Bài toán: Vẽ ABC biết
BC=4cm, B =600, C =400
-GV gọi từng HS lần lượt lên
bảng vẽ
-Ta vẽ yếu tố nào trước
-> GV giới thiệu lưu ý SGK
I) Vẽ tam giác biết 1 cạnh và 2 góc kề:
Trang 2Hoạt động 2: Trường hợp bằng nhau góc-cạnh-góc và hệ quả.
GV cho HS làm ?1
Sau đó phát biểu định lí trường
hợp bằng nhau góc-cạnh-góc của
hai tam giác
-GV gọi HS nêu giả thiết, k, của
định lí
Cho HS làm ?2
Dựa và hình 96 GV cho HS phát
biểu hệ quả 1; GV phát biểu hệ
quả 2
-GV yêu cầu HS về nhà tự chứng
minh
?2 ABD=DB(g.c.g)
EFO=GHO(g.c.g)
ACB=EFD(g.c.g)
II) Trường hợp bằng nhau góc-cạnh-góc:
Định lí: Nếu 1 cạnh và 2
góc kề của tam giác này bằng 1 cạnh và 2 góc của tam giác kia thì hai tam giác đó bằng nhau
Hệ quả:
Hệ quả 1: (SGK)
Hệ quả 2: (SGK)
Hoạt động 3: Củng cố.
GV gọi HS nhắc lại định lí trường
hợp bằng nhau góc-cạnh-góc và 2
hệ quả
Bài 34 SGK/123:
Bài 34 SGK/123:
ABC và ABD có:
CAB=DAB (g)
CBA=DBA (g) AB: cạnh chung (c)
=>ABC=ABD(g-c-g)
ABD và ACE có:
Trang 3ACE=ABD=1800-B (B
=C ) (g) CE=BD (c)
AEC=ADB (g)
=>AEC=ADB(g-c-g)
3 Hướng dẫn về nhà:
Học bài làm 33, 35 SGK/123
Chuẩn bị bài luyện tập 1
IV Rút kinh nghiệm tiết dạy:
Trang 4ÔN TẬP HỌC KÌ I (Tiết 1)
I Mục tiêu:
HS được củng cố các kiến thức của chương I và các trường hợp bằng nhau của tam giác, tổng ba góc của một tam giác
Biết vận dụng lí thuyết của chương I để áp dụng vào các bài tập của chương II
Rèn luyện khả năng tư duy cho HS
II Phương pháp:
Đặt và giải quyết vấn đề, phát huy tính sáng tạo của HS
Đàm thoại, hỏi đáp, tích hợp
III: Tiến trình dạy học:
1 Các hoạt động trên lớp:
Hoạt động của thầy Hoạt động của trò Ghi bảng Hoạt động 1: Lý thuyết.
1 Hai góc đối đỉnh (định
nghĩa và tính chất)
2 Đường trung trực của
đoạn thẳng?
3 Các phương pháp chứng
minh:
a) Hai tam giác bằng nhau
b) Tia phân giác của góc
c) Hai đường thẳng vuông
góc
d) Đường trung trực của
đoạn thẳng
e) Hai đường thẳng song
song
HS ghi các phương pháp vào tập
Trang 5f) Ba điểm thẳng hành.
Hoạt động 2: Luyện tập.
Bài 1: Cho ABC có
AB=AC Trên cạnh BC lấy
lần lượt 2 điểm E, E sao cho
BD=EC
a) Vẽ phân giác AI của
ABC, cmr: B =C
b) CM: ABD=ACE
GV gọi HS đọc đề, ghi giả
thiết, kết luận của bài toán
GV cho HS suy nghĩ và nêu
cách làm
Bài 2:
Cho ta ABC có 3 góc nhọn
Vẽ đoạn thẳng ADBA
(AD=AB) (D khác phía đối
với AB), vẽ AEAC
(AE=AC) và E khác phía
Bđối với AC Cmr:
a) DE = BE
b) DCBE
GV gọi HS đọc đề, vẽ hình
và ghi giả thiết, kết luận
GV gọi HS nêu cách làm và
GT ABC có AB=AC
BD=EC
AI: phân giác BAC
KL a) B = C
b) ABD=ACE
Bài 2:
GT ABC nhọn
ADAB: AD=AB AEAC:AE=AC
KL a) DC=BE b) DCBE
Giải:
a) CM: B =C
Xét AIB và AEC có: AB=AC (gtt) (c)
AI là cạnh chung (c)
BAI=CAI (AI là tia phân giác BAC) (g)
=> ABI=ACI (c-g-c)
=> B =C (2 góc tương ứng) b) CM: ABD=ACE Xét ABD và ACE có: AB=AC (gt) (c)
BD=CE (gt) (c)
ABD=ACE (cmt) (g)
=> ABD=ACE (c-g-c)
Bài 2:
a) Ta có:
BAE =BAC+ CAE
=BAC+900 (1)
DAC =BAC+BAD
=BAC+900 (2)
Từ (1),(2) => BAE=DAC
Xét DAC và BAE có: AD=AB (gt) (c)
AC=AE (gt) (c)
BAC=BAE (cmt) (g)
Trang 6lên bảng trình bày => DAC=BAE (c-g-c)
=>DC=BE (2 cạnh tương ứng)
b) CM: DCBE:
Gọi I=ACBE
H=DCBE
Ta có: DHE=HIC+ICH
=AIE=IEA
=900
=> DCBE (tại H)
2 Hướng dẫn về nhà:
Ôn lại lí thuyết, xem cách chứng minh các bài đã làm
IV Rút kinh nghiệm tiết dạy:
Trang 7ÔN TẬP HỌC KÌ I (Tiết 2)
I Mục tiêu:
HS tiếp tục được khắc sâu các kiến thức của chương I, II
Biết vận dụng cách chứng minh hai tam giác vuông bằng nhau
II Phương pháp:
Đặt và giải quyết vấn đề, phát huy tính sáng tạo của HS
Đàm thoại, hỏi đáp
III: Tiến trình dạy học:
1 Các hoạt động trên lớp:
Hoạt động của thầy Hoạt động của trò Ghi bảng
Hoạt động 1: Lí thuyết.
GV cho HS nhắc lại các
phương pháp đã ghi ở tiết
trước
HS nhắc lại
Hoạt động 2: Bài tập.
Bài 1: Cho hình vẽ Biết
xy//zt, OAx=300, OBt
=1200 Tính AOB CM:
OAOB
GT xy//zt
OAx=300
OBt=1200
KL AOB=?
OAOB
Giải:
Qua O kẻ x’y’//xy
=> x’y’//zt (xy//zt)
Ta có: xy//x’y’
=> xAO=AOy' (sole trong)
=> AOy'=300
Ta lại có: x’y’//zt
=> 'y OB+OBt=1800 (2 góc trong cùng phía)
=> 'y OB=1800-1200=600
Vì tia Oy’ nằm giữa 2 tia
OA và OB nên:
Trang 8Bài 2: cho ABC vuông
tại A, phân giác B cắt AC
tại D Kẻ DE BD
(EBC)
a) Cm: BA=BE
b) K=BADE Cm:
DC=DK
Bài 3: Bạn Mai vẽ tia phân
giác của góc xOy như sau:
Đánh dấu trên hai cạnh của
góc bốn đoạn thẳng bằng
nhau: OA=AB=OC=CD
GT ABC vuông tại A BD: phân giác ABC
DEBC
DEBA=K
KL a)BA=BE b)DC=DK
CBOD=K
KL OK:phân giác xOy
AOB=AOy'+ 'y OB
=300+600
=> AOB=900
=> OAOB (tại O)
Bài 2:
a) CM: BA=BE Xét ABD vuông tại A và
BED vuông tại E:
BD: cạnh chung (ch)
ABD=EBD (BD: phân giác
B) (gn)
=> ABD= EBD (ch-gn)
=> BA=BE (2 cạnh tương ứng)
b) CM: DK=DC Xét EDC và ADK: DE=DA (ABD=EBD)
EDC=ADK(đđ) (gn)
=> EDC= Adgóc(cgv-gn)
=> DC=DK (2 cạnh tương ứng)
Bài 3:
Xét OAD và OCB: OA=OC (c)
OD=OB (c)
O: góc chung (g)
=> OAD=OCB (c-g-c)
Trang 9(A,BOx, C,DOy) AD
BD=K
CM: OK là tia phân giác
của xOy
GV gọi HS lên vẽ hình, ghi
giả thiết, kết luận và nêu
cách làm
GV hướng dẫn HS chứng
minh:
OAD=OCB Sau đó
chứng minh:
KAB=KCD Tiếp theo
chứng minh:
KOC=KOA
=> ODK =ABK
mà CKD=AKB (đđ)
=>DCK=BAK
=> CDK=ABK (g-c-g)
=> CK=AK
=> OCK=OAK(c-c-c)
=> COK=AOK
=>OK: tia phân giác của
xOy
2 Hướng dẫn về nhà:
Ôn lại lí thuyết, xem lại các bài tập đã làm để chuẩn bị thi học kì I
IV Rút kinh nghiệm tiết dạy:
Trang 10LUYỆN TẬP 1
I Mục tiêu:
HS được củng cố các kiến thức về trường hợp bằng nhau góc-cạnh-góc của hai tam giác
Rèn luyện kĩ năng chứng minh hai tam giác bằng nhau cho HS
II Phương pháp:
Đặt và giải quyết vấn đề, phát huy tính sáng tạo của HS
Đàm thoại, hỏi đáp
III: Tiến trình dạy học:
1 Kiểm tra bài cũ:
Phát biểu trường hợp bằng nhau góc-cạnh-góc của hai tam giác
Hệ quả 2 (Áp dụng vào tam giác vuông)
2 Các hoạt động trên lớp:
Hoạt động 1: Luyện tập.
Bài 36 SGK/123:
Trên hình có OA=OB, OAC=
OBD, Cmr: AC=BD
GV gọi HS ghi giả thiết, kết
luận
Bài 37 SGK/123:
Trên hình có các tam giác nào
bằng nhau? Vì sao?
GT OA=OB
OAC=OBD
KL AC=BD
Bài 36 SGK/123:
Xét OAC và OBD:
OAC=OBD (gt) (g)
O: góc chung (g)
=>OAC =OBD(g-c-g)
=> AC=BD (2 cạnh tương ứng)
Bài 37 SGK/123:
Các tam giác bằng nhau:
ABC và EDF có:
B=D=800 (g)
C=E=400 (g)
Trang 11Bài 38 SGK/123:
Trên hình có:
AB//CD, AC//BD Hãy Cmr:
AB=CD, AC=BD
GT AB//CD AC//BD
KL AB=CD AC=BD
BC=DE=3 (c)
=> ABC=FDE (g-c-g)
NPR và RQN có:
NR: cạnh chung (c)
PNR=NRQ=400 (g)
PRN=RNQ=480 (g)
=>NPR=RQN (g-c-g)
Bài 38 SGK/123:
Xét ABD và DCA có: AD: cạnh chung (c)
BAD=CDA (sole trong) (g)
BDA=CAD (sole trong) (g)
=> ABD=DCA (g-c-g)
=> AB=CD (2 cạnh tương ứng)
BD=AC (2 cạnh tương ứng)
Hoạt động 2: Nâng cao.
Bài 53 SBT/104:
Cho ABC Các tia phân giác
B và C cắt nhau tại O Xét
ODAC và OEAB Cmr:
OD=CE
GV gọi HS vẽ hình ghi giả
thiết, kết luận
Bài 53 SBT/104:
CM: DE=CD
Vì O là giao điểm của 2 tia phân giác B và C nên AO
là phân giác A
=> DAO=EAO
Xét vuông AED (tại E)
và vuông ADO:
AO: cạnh chung (ch)
Trang 12EAO=DAO (cmtrên) (gn)
=> AEO=ADO (ch-gn)
=> EO=DO (2 cạnh tương ứng)
3 Hướng dẫn về nhà:
Xem lại BT, chuẩn bị bài luyện tập 2
IV Rút kinh nghiệm tiết dạy:
Trang 13LUYỆN TẬP 2
I Mục tiêu:
Khắc sâu trường hợp bằng nhau góc-cạnh-góc và đặc biệt là trường hợp bằng nhau của hai tam giác vuông
Rèn luyện kĩ năng chứng minh vẽ hình
II Phương pháp:
Đặt và giải quyết vấn đề, phát huy tính sáng tạo của HS
Đàm thoại, hỏi đáp
III: Tiến trình dạy học:
1 Các hoạt động trên lớp:
Hoạt động của thầy Hoạt động của trò Ghi bảng
Hoạt động 1: Luyện tập.
Bài 40 SGK/124:
Cho ABC (AB≠AC), tia Ax
đi qua trung điểm M của BC
Kẻ BE và CF vuông góc Ax So
sánh BE và CF
Bài 41 SGK/124:
Cho ABC Các tia phân giác
của B và C cắt nhau tại I vẽ
ID AB, IE BC, IF AC
Bài 40 SGK/124:
So sánh BE và CF:
Xét vuông BEM và
vuông CFM:
BE//CF (cùng Ax)
=>EBM =FCM (sole trong) (gn)
BM=CM (M: trung điểm BC)
EBM=FCM (ch-gn)
=>BE=CF (2 cạnh tương ứng)
Bài 41 SGK/124:
CM: IE=IF=ID Xét vuông IFC và vuông IEC:
IC: cạnh chung (ch)
Trang 14CMR: ID=IE=IF
Bài 42 SGK/124:
ABC có A=900, AH BC
AHC và ABC có AC là cạnh
chung, C là góc chung, AHC=
BAC=900, nhưng hai tam giác
đó không bằng nhau Tại sao
không thể áp dụng trường hợp
c-g-c
FCI=ECI (CI: phân giác C ) (gn)
=> IFC=IEC (ch-gn)
=> IE=IF (2 cạnh tương ứng) Xét vuông IBE và vuông IBD:
IB: cạnh chung (ch)
IBE=IBD (IB: phân giác
DBC)
=> IBE=IBD (ch-gn)
=> IE=ID (2 cạnh tương ứng)
Từ (1), (2) => IE=ID=IF
Bài 42 SGK/124:
Ta không áp dụng trường hợp g-c-g vì AC không kề góc
AHC và C Trong khi đó cạnh
AC lại kề BAC và C của
ABC
Hoạt động 2: Củng cố.
Bài 39 SGK/124:
Trên mỗi hình 105, 106, 107,
108 có các tam giác vuông nào
bằng nhau? Vì sao?
Bài 39 SGK/124:
H.105:
AHB=AHC (2 cạnh góc vuông)
H.106:
EDK=FDK (cạnh góc vuông-góc nhọn)
H.107:
Trang 15ABD=ACD (ch-gn)
H.108:
ABD=ACD (ch-gn)
BDE=CDH (cgv-gn)
ADE=ADH (c-g-c)
2 Hướng dẫn về nhà:
Học bài, ôn lại ba trường hợp bằng nhau của hai tam giác, áp dụng cho tam giác vuông, chuẩn bị 43, 44, 45 SGK/125
IV Rút kinh nghiệm tiết dạy:
Trang 16LUYỆN TẬP VỀ BA TRƯỜNG HỢP BẰNG NHAU
CỦA TAM GIÁC
I Mục tiêu:
HS được củng cố ba trường hợp bằng nhau cảu tam giác
Rèn luyện khả năng tư duy, phán đoán của HS
Vận dụng đan xen cả ba trường hợp
II Phương pháp:
Đặt và giải quyết vấn đề, đàm thoại, hỏi đáp
Phát huy tính sáng tạo, khả năng tư duy của HS
III: Tiến trình dạy học:
1 Các hoạt động trên lớp:
Hoạt động của thầy Hoạt động của trò Ghi bảng Hoạt động 1: Lí thuyết.
GV cho HS nhắc lại 3
trường hợp bằng nhau của
hai tam giác
Hoạt động 2: Luyện tập.
Bài 43 SGK/125:
Cho xOy khác góc bẹt Lấy
A, B Ox sao cho
OA<OB Lấy C, D Oy
sao cho OC=OA, OD=OB
Gọi E là giao điểm của AD
và BC Cmr:
a) AD=BC
b) EAB=ECD
c) OE là tia phân giác của
xOy
Bài 43 SGK/125:
GT xOy<1800
ABOx, CDOy OA<OB; OC=OA, OD=OB E=ADBC
KL a) AD=BC b) EAB=ECD
Trang 17c) OE là tia phân giác xOy
a) CM: AD=BC
Xét AOD và COB có:
O: góc chung (g)
OA=OC (gt) (c)
OD=OB (gt) (c)
=>AOD=COB (c-g-c)
=> AD=CB (2 cạnh tương ứng)
b) CM: EAB=ECD
Ta có: OAD+DAB=1800 (2 góc kề bù)
OCB+BCD=1800 (2 góc kề bù)
Mà: OAD=OCB (AOD=COB)
=> DAB=BCD
Xét EAB và ECD có:
AB=CD (AB=OB-OA; CD=OD-OC mà OA=OC; OB=OD) (c)
ADB=DCB (cmt) (g)
OBC=ODA (AOD=COB) (g)
=> CED=AEB (g-c-g)
c) CM: DE là tia phân giác của xOy
Xét OCE và OAE có:
OE: cạnh chung (c)
OC=OA (gtt) (c)
EC=EA (CED=AEB) (c)
=> CED=AEB (c-c-c)
=> COE=AOE (2 góc tương ứng)
Mà tia OE nằm giữa 2 tia Ox, Oy
Trang 18Bài 44 SGK/125:
Cho ABC có B =C Tia
phân giác của A cắt BC tại
D Cmr:
a) ADB=ADC
b) AB=AC
=> Tia OE là tia phân giác của xOy
Bài 44 SGK/125:
a) CM: ADB=ADC
Ta có:
ADB=1800-DAB-B
ADC=1800-DAC-C
mà B=C (gt)
DAB=DAC (AD: phân giác A)
=> ADB=ADC
Xét ADB và ADC có:
AD: cạnh chung
BAD=CAD (cmt)
B=C (cmt)
=> ADB=ADC (g-c-g)
=> AB=AC (2 cạnh tương ứng)
2 Hướng dẫn về nhà:
Làm 45 SGK/125
Chuẩn bị bài tam giác cân
IV Rút kinh nghiệm tiết dạy: