Hơn nữa toán học còn là cơ sở của mọi ngành khoa học khác, chính vì vậy toán học có vai trò quan trọng trong trường phổ thông, nó đòi hỏi người thầy phải lao động sáng tạo để tạo ra nhữ
Trang 1MỘT SỐ PHƯƠNG PHÁP GIÚP HỌC SINH LỚP 10 GIẢI TỐT
PHƯƠNG TRÌNH VÔ TỈ
I LỜI NÓI ĐẦU
Toán học có vai trò và vị trí đặc biệt quan trọng trong khoa học và cuộc sống, giúp con người tiếp thu một cách dễ dàng các môn khoa học khác Thông qua việc học toán, học sinh có thể nắm vững được nội dung toán học và phương pháp giải toán, từ đó các em vận dụng vào các môn học khác nhất là các môn khoa học
tự nhiên Hơn nữa toán học còn là cơ sở của mọi ngành khoa học khác, chính vì vậy toán học có vai trò quan trọng trong trường phổ thông, nó đòi hỏi người thầy phải lao động sáng tạo để tạo ra những phương pháp giảng dạy tốt giúp học sinh tiếp thu bài tốt áp dụng vào giải các bài tập một cách linh hoạt
Để giúp các em học tốt hơn môn toán Người thầy giáo, cô giáo ngoài việc giúp các em nắm được những kiến thức lý thuyết toán, thì việc bồi dưỡng cho các
em về mặt phương pháp giải các loại toán là rất quan trọng Nó giúp các em nhận dạng, tìm tòi đường lối giải một cách nhanh chóng, hình thành kỹ năng phát triển tư duy ngày càng sâu sắc hơn và qua đó các em yêu toán hơn, tự tin hơn trong cuộc sống tương lai
Trong toán học: “Giải phương trình có chứa dấu căn ” là một vấn đề phức
tạp, tương đối trìu tượng Thế nhưng nó lại góp phần giải quyết các bài toán phức
tạp sau này Khi gặp các phương trình “vô tỉ” không ít học sinh còn lúng túng,
không biết phải bắt đầu từ đâu, hướng giải quyết thế nào?
Trong nhiều năm tham gia giảng dạy, với những kinh nghiệm được đúc kết
từ thực tiễn, tôi mạnh dạn đưa ra một số phương pháp hướng dẫn học sinh giải phương trình vô tỉ để cùng đồng nghiệp tham khảo và trao đổi, nhằm mục đích khắc phục những tồn tại nói trên, đồng thời nhằm giúp học sinh khối 10 có được một cách nhìn nhận mới về phương pháp giải phương trình vô tỉ trên nền tảng các kiến thức cơ bản đã được trang bị của các cấp học, qua đó giúp các em trau dồi được những phẩm chất về trí tuệ như: tính độc lập, linh hoạt, sáng tạo trong quá
Trang 2trình giải toán, góp phần bồi dưỡng các em trở thành học sinh khá, giỏi bộ môn toán trong trường phổ thông
Đó là những tích lũy kinh nghiệm của tôi trong qúa trình học và dạy toán, với niềm mong ước giúp các em học sinh dễ dàng tìm ra hướng giải các phương
trình có chứa dấu căn hay phương trình vô tỉ cơ bản thường gặp trong chương trình
sách giáo khoa (SGK) toán 10.
II THỰC TRẠNG VẤN ĐỀ
1) Thuận lợi :
- Trường THPT Định An – Gò Quao luôn có được sự quan tâm giúp đỡ của các cấp lãnh đạo Đảng và Nhà nước Sở giáo dục và Ban giám hiệu nhà trường thường xuyên quan tâm tới tất cả các hoạt động của trường
- Bên cạnh đội ngũ giáo viên nhiều kinh nghiệm nhà trường còn có một đội ngũ thầy cô trẻ, khoẻ, nhiệt tình và hăng say công việc
- Đa số các học sinh khá giỏi đều ham thích học bộ môn toán
2) Khó khăn :
+ Về khách quan:
Trường THPT Định An – Gò Quao là điểm trường thuộc vùng sâu, học sinh dân tộc Khơmer chiếm tỷ lệ cao, cuộc sống của các em còn gặp nhiều khó khăn Ngoài giờ lên lớp các em còn phải phụ tiếp gia đình để kiếm sống cho nên các em không thực hiện tốt được việc tự học ở nhà
Trong thời đại thông tin bùng nổ, khoa học kỹ thuật phát triển, nhiều trò vui chơi giải trí như điện tử, bi da, đã làm một số em quên hết việc học tập của mình dẫn tới các em sa sút trong học tập
Bên cạnh những gia đình quan tâm chu đáo cho việc học tập của con em mình còn rất nhiều gia đình bỏ bê việc học tập của các em do còn phải lo cho việc làm ăn kinh tế, lao động kiếm sống hàng ngày Từ sự quản lí không chặt chẽ của gia đình dẫn tới các em quen thói chơi bời, tụ tập và tư tưởng ỷ nại, lười học dần dần xuất hiện
Trang 3+ Về chủ quan:
- Trong chương trình đại số lớp 10 ban cơ bản, việc tìm nghiệm của một phương trình có chứa ẩn trong trong dấu căn ( phương trình vô tỉ ) đối với học sinh còn gặp những khó khăn như chưa trình bày lời giải một phương trình một cách đầy đủ và chính xác, học sinh thường mắc một số sai lầm cơ bản: như chưa tìm tập xác định của phương trình đã thực hiện các phép biến đổi: như bình phương hai vế….Hoặc khi tìm được nghiệm đã kết luận ngay không đối chiếu với tập xác định để chọn nghiệm rồi kết luận Học sinh thường bỏ qua phép biến đổi tương đương một phương trình gắn với một hệ điều kiện và trình bầy rời rạc không theo một qui trình, không khoa học, thiếu thẩm mĩ
- Mức độ kiến thức của dạng toán giải phương trình vô tỉ tương đối trừu tượng
và phức tạp
+ Do những khó khăn nêu trên và chưa sử dụng phương pháp mà học kì I năm học
2007 – 2008 kết quả giảng dạy môn toán của 3 lớp 10 tôi phụ trách như sau:
Bảng thống kê Lớp Chất lượng học sinh khi chưa sử dụng phương pháp
10A1
Giỏi 2.7%; Khá 5.4%;
Trung bình 55.1%, Yếu – Kém 36.8%
10A4
Giỏi 1%; Khá 7%;
Trung bình 53%, Yếu – Kém 39%
10A7
Giỏi 1.5%; Khá 5.7%;
Trung bình 41.1%, Yếu – Kém 51.7%
+ Nguyên nhân chủ yếu của những khó khăn trên là:
- Mức độ nắm kiến thức và kĩ năng vận dụng làm bài của đa số học sinh còn yếu
- Học sinh không nắm được các kiến thức cơ bản khi giải một phương trình vô tỉ.
Trang 4- Học sinh không nhận dạng được các dạng cơ bản của phương trình có chứa
ẩn dưới dấu căn
- Học sinh còn lúng túng trong việc sử dụng định nghĩa căn bậc hai và sử dụng các hằng đẳng thức A2 A
- Học sinh không nắm được khái niệm về hai phương trình tương đương
- Học sinh nhầm lẫn cách biến đổi để được phương trình hệ quả với cách biến đổi để được phương trình tương đương
- Không đặt điều kiện cho các căn thức có nghĩa đã bình phương 2 vế của phương trình
- Khi tìm được nghiệm, bỏ quên bước thử lại đã kết luận nghiệm ngay
- Giáo viên chưa phân biệt cho học sinh thấy rõ được các dạng cơ bản của phương trình vô tỉ
- Giáo viên xem nhẹ việc nhắc lại kiến thức cũ cho học sinh mà tập chung chủ yếu cho nội dung bài học mới
III GIẢI PHÁP
Do khả năng nhận thức và suy luận của học sinh trong mỗi lớp chưa đồng bộ nên việc áp dụng lí thuyết cơ bản của dạng phương trình vô tỉ còn gặp rất nhiều khó khăn Nắm bắt được tình hình trên trong tiết dạy tự chọn tôi đã đưa ra các dạng bài tập khác nhau để phân loại cho phù hợp với khả năng nhận thức của từng đối tượng Các bài tập ở dạng từ thấp đến cao để các em nhận thức chậm có thể làm tốt những bài toán ở mức độ trung bình, đồng thời kích thích sự tìm tòi và sáng tạo của những học sinh khá
Bên cạnh đó tôi thường xuyên hướng dẫn, sửa chữa chỗ sai cho học sinh, lắng nghe ý kiến của các em Cho học sinh ngoài làm việc cá nhân còn phải tham gia trao đổi nhóm khi cần thiết Tôi yêu cầu học sinh phải tự giác, tích cực, chủ động, có trách nhiệm với bản thân và tập thể
Trang 5Để giải tốt phương trình vô tỉ tôi yêu cầu học sinh cần phải nắm được những yêu cầu cơ bản sau :
+ Nắm được phép biến đổi tương đương các phương trình vô tỉ:
- Thực hiện biến đổi hằng đẳng thức ở từng vế của từng phương trình mà không làm thay đổi tập xác định của chúng thì sẽ được một phương trình mới tương đương với phương trình đã cho
+ Nắm được các phép biến đổi có thể dẫn tới hai phương trình không tương
đương:
- Nhân hai vế của một phương trình với cùng một đa thức chứa ẩn ( có thể xuất hiện nghiệm ngoại lai )
- Chia hai vế của một phương trình với cùng một đa thức chứa ẩn số ( có thể làm mất nghiệm của phương trình đầu)
- Cộng vào hai vế của phương trình đã cho với cùng một phân thức
- Nâng hai vế của một phương trình lên cùng một luỹ thừa tự nhiên: n > 1 Nếu n chẵn thì khi nâng hai vế của phương trình f1(x) = f2(x) lên cùng một luỹ thừa chẵn thì phương trình mới nhận thêm nghiệm của phương trình
f1(x)= - f2(x)
+ Nắm vững định nghĩa A x x2 0
và A2 A + Phân biệt được sự khác nhau giữa phép biến đổi tương đương và phép biến đổi để đưa về phương trình hệ quả
Bên cạnh những yêu cầu trên, tôi đã chỉ cho học sinh nhận biết được những dạng cơ bản của phương trình vô tỉ được trình bày trong sách giáo khoa toán 10, đồng thời đưa ra phương pháp giải cụ thể cho từng dạng bài, giúp các em so sánh được cách giải nào sáng tạo, ngắn hơn và hay hơn
1) Một số ví dụ
Dạng 1 : f x a (1) (Trong đó ( ) a R )
Trang 6* Phương pháp giải:
- Nếu a < 0 phương trình (1) vô nghiệm
- Nếu a ≥ 0 phương trình (1) f (x) = a2 (2) Như vậy nghiệm của phương trình (2) chính là nghiệm của phương trình (1) Dựa vào khái niệm căn bậc hai số học mà ta có suy luận trên
Ví dụ 1: Giải các phương trình sau:
a) 3x (Bài tập 1 SGK đại số 10 ban cơ bản, trang 62)5 3
b) x 3 5
Giải:
a) 3x 5 3 3x 5 9
3x – 14 = 0 14
3
x
Kết luận phương trình 3x có 1 nghiệm 5 3 x 143
b) x 3 5
Vì vế trái là căn bậc hai số học do vậy không âm, vế phải bằng (-5) nên phương trình vô nghiệm.x 3 5
Dạng 2 : f x( ) g x( )
* Phương pháp giải:
( ) ( )
f x g x
( ) 0
2 ( ) ( )
g x
Ví dụ 2: Giải các phương trình sau:
a) 5x 6 x 6(Bài tập 7a SGK đại số 10 ban cơ bản, trang 63)
b) 4 2 x x 2 x 2
c) 2x2 5 x 2 (Bài tập 7c SGK đại số 10 ban cơ bản, trang 63)
Trang 7a) 5x 6 x 6
x
x
6 6
15
x x
x
Với x = 2 không thoả mãn điều kiện x 6
Vậy phương trình 5x 6 x 6có một nghiệm x = 15
Cách 2: Biến đổi để có phương trình hệ quả theo cách trình bày của SGK toán 10 Điều kiện : 5x + 6 0 x 56
Bình phương hai vế phương trình của phương trình 5x 6 x 6 ta có:
2
5x 6 (x 6) 5x 6 x212x36
x2 17 30 0 x
15 2
x x
Cả x = 15 và x = 2 đều thoả mãn điều kiện 6
5
x nhưng thử lại chỉ có x = 15 là nghiệm của phương trình 5x 6 x 6
+ Hai cách giải có cùng kết quả nghiệm nhưng học sinh hay nhầm lẫn trong cách 2
là so sánh hai nghiệm thấy thỏa mãn điều kiện là kết luận nghiệm ngay mà bỏ qua bước thử nghiệm
b) 4 2 x x 2 x 2
4 2 x x 2 x 2 2 0 2 2 2 20 20
Trang 8Phương trình 4 2 x x 2 x 2 vô nghiệm.
c) 2x2 5 x 2
2 0 2
x
2
x
x
x
Với x 2 3, x 2 3 đều thoả mãn điều kiệnx 2
Vậy phương trình 2x2 có hai nghiệm: 5 x 2 x 2 3 và x 2 3
Đối với học sinh khá – giỏi tôi đưa thêm dạng 3 và dạng 4
Dạng 3 : f x( ) g x( )
* Phương pháp giải:
( ) 0
( ) ( )
f x
f x g x
Ví dụ 3: Giải các phương trình sau:
a) 3x 1 2 x
b) x26x 9 4x2 4x1
c) x2 6 2x1
Giải:
a) 3x 1 2 x
2
1
3
4
x x
x
Trang 9Phương trình có một nghiệm 1
4
x
b) x26x 9 4x2 4x1
x x x x
2
2 6 9 0
2
2
x
Giải phương trình 23x 10x 8 0 ta tìm được:
4 2 3
x x
c) x -6 = 2x +12
1 2
6 6
2 6 0
2
2 6 2 1
2 6 2 1
x x
x x
x
Giải phương trình 2 6 2 1x x , ta được x1 1 2 2; x2 1 2 2
So với với điều kiện thì phương trình x2 6 2x có một nghiệm 1 x 1 1 2 2
Dạng 4 : f x( ) g x( ) h x( ) (1)
* Phương pháp giải:
- Bước 1: Đặt điều kiện để phương trình (1) có nghĩa:
( ) 0 ( ) 0 ( ) 0
f x
g x
h x
Trang 10- Bước 2: Bình phương hai vế phương trình (1) và rút gọn ta có:
(1) ( ) ( ) 1 2( ) ( ) ( )
2
f x g x h x f x g x
- Bước 3: Đặt điều kiện cho phương trình hai (2) và kết hợp với điều kiện đề bài ta được tập xác định (TXĐ) của phương trình để lấy nghiệm
- Bước 2: Giải phương trình (2) ta đã biết cách giải (thuộc dạng f x( ) g x( ) ) Chọn nghiệm thoả mãn TXĐ rồi kết luận nghiệm
Ví dụ 4: Giải các phương trình sau:
a) 10 x x 3 5
b) 2x 1 x 2 x 1
Giải:
a) 10 x x 3 5
TXĐ của phương trình 10 x x là3 5 :
7
3 7
3
10 x x 3 5
(10 ).( 3) 6
x x
Phương trình trên sau khi biến đổi trở thành phương trình có dạng ( ( )
f x a) Trong đó a < 0 Vậy phương trình đã cho vô nghiệm
b) 2x 1 x 2 x1
TXĐ của phương trình 10 x x 3 5 là:
1
x x
Trang 112x 1 x 2 x1
2
Điều kiện cho phương trình (*) là x 2
Kết hợp với điều kiện đề bài x ≥ 2 suy ra x = 2 là nghiệm phương trình đã cho
+ Ngoài việc phân biệt cho học sinh các dạng toán cơ bản tôi còn đưa ra cho học sinh những bài toán cần vận dụng sự linh hoạt và sáng tạo khi giải:
Ví dụ 5: Giải các phương trình sau:
a) 1 x x x (Bài tập 3b SGK đại số 10 ban cơ bản, trang 70)1 2
b) 2 x 3 x 3 4 x2 x(Bài tập 3d SGK đại số 10 ban cơ bản, trang 70)
Giải a) 1 x x x 1 2
Điều kiện: 1x x1 00 x x 11 x 1
x = 1 không thỏa mãn phương trình 1 x x x 1 2
Vậy phương trình 1 x x x vô nghiệm1 2
b) 2 x 3 x 3 4 x2 x
Điều kiện: 2x 3 0x 0 x x 32
Phương trình 2 x 3 x 3 4 x2 x vô nghiệm
2 Kết quả
Học kì I năm học 2008 – 2009 tôi đã vận dụng phương pháp nêu trên vào 4 lớp 10 mình phụ trách và thu được kết quả tương đối khả quan như sau:
Bảng thống kê Lớp Chất lượng học sinh sau khi sử dụng phương pháp
Trang 12Giỏi 7%; Khá 15%;
Trung bình 55%, Yếu – Kém 23%
10A2
Giỏi 8%; Khá 13%;
Trung bình 49.1%, Yếu – Kém 29.9%
10A3
Giỏi 5%; Khá 12%;
Trung bình 46.5%, Yếu – Kém 36.5%
10A4
Giỏi 4.3%; Khá 10.6%;
Trung bình 48.3%, Yếu – Kém 36.8%
IV KẾT LUẬN
Trên đây là một số phương pháp thường được áp dụng để giải các phương trình vô tỉ Tuy nhiên việc sử dụng các phương pháp nói trên phải được lựa chọn một cách sao cho thích hợp Mỗi một phương pháp nói trên không được quan trọng hoá và đề cao trong quá trình giải phương trình vô tỉ Điều quan trọng nhất là sử dụng phương pháp nào cho phù hợp và đạt kết quả cao, nhanh nhất Vấn
đề này đòi hỏi người thầy có một kinh nghiệm tốt trong giảng dạy, phải biết phối hợp một hay nhiều phương pháp cho thích hợp
Một số phương pháp: “Giải phương trình vô tỉ” mà sau gần 10 năm tham gia giảng dạy tôi tự rút ra được bài học kinh nghiệm quí báu sau:
- Thường xuyên khắc phục những sai lầm sau khi giải một phương trình vô tỉ nói riêng và phương trình đại số nói chung có tác dụng giúp cho học sinh hiểu sâu, nắm vững các kiến thức cơ bản, rèn các kĩ năng giải toán chính xác, lời giải phải ngắn gọn, rõ ràng
- Hệ thống phương pháp giải cho từng dạng phương trình vô tỉ, giúp học sinh
có được công cụ hữu hiệu khi trình bày một cách linh hoạt, hợp lý, tránh máy móc, rập khuôn mất thòi gian Đặc biệt là giúp học sinh lựa chọn được cách giải hay cho một bài toán, hình thành đức tính tư duy linh hoạt, làm việc có khoa học tránh sai lầm nghiêm trọng
1
Trang 13- Rèn cho học sinh khi gặp bất kì một phương trình nào đều định hướng được các thao tác: quan sát, nhận dạng, đưa về phương trình có dạng quen thuộc, lựa chọn một phương pháp hợp lý và kiểm tra kết quả sau khi giải
- Luôn luôn ghi nhớ các kiến thức cơ bản, kĩ năng cần thiết cho mỗi loại phương trình, giúp học sinh có một lời giải sáng tạo
- Áp dụng phương pháp giải phương trình vô tỉ cho các dạng phương trình khác vẫn có hiệu quả tích cực và mang lại kết quả tốt
Sự nghiệp đổi mới giáo dục và đào tạo, đòi hỏi mỗi giáo viên phải năng động, sáng tạo, tìm tòi những biện pháp tốt nhất để đạt được hiệu quả cao Chúng
ta, mỗi thầy giáo, cô giáo hãy làm tròn trọng trách của một “Kĩ sư tâm hồn” với đầy đủ trách nhiệm và lương tâm khi giáo dục thế hệ trẻ
Tuy tôi đã có rất nhiều cố gắng nhưng chắc đề tài của tôi không tránh khỏi những thiếu sót Tôi trân trọng tất cả những ý kiến phê bình, đóng góp của cấp trên
và đồng nghiệp để đề tài của tôi ngày càng hoàn thiện hơn và có thể áp dụng rộng rãi trong ngành
Định An, ngày 12 tháng 04 năm 2009
Người thực hiện
Trần Quang Tú
1