1. Trang chủ
  2. » Giáo án - Bài giảng

Bộ đề thi có đáp án môn Toán THPT QG 2018 (Đề 16 đến 20)

20 226 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 0,98 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bộ đề luyện thi THPT QG 2018 môn Toán (có đáp án) được soạn theo cấu trúc đề thi mới của Bộ giáo dục và đào tạo. Đề gồm 50 câu trắc nghiệm. Trong đó 40 câu thuộc chương trình Toán 12 và 10 câu thuộc chương trình toán 11.

Trang 1

Luyện thi THPT QG 2018 Nguyễn Noben

ĐỀ SỐ 16 Câu 1: Sự tăng trưởng của một loại vi khuẩn theo cthứcSA e rt trong đó A là số lượng vi khuẩn ban đầu,r

tỉ lệ tăng trưởng (r0),t là thời gian tăng trưởng Biết rằng số lượng vi khuẩn ban đầu là 100 con và sau 5 giờ

có 300 con Sau thgian bao lâu thì số vi khuẩn tăng gấp 10 lần so với số lượng ban đầu

A 3

log 5

t  (giờ) B 3 ln 5

ln10

log 3

t  (giờ) D 5 ln 3

ln10

t  (giờ)

Câu 2: Hàm số 1 3 2 2 3 5

3

yxxx đồng biến trên khoảng

A (;1)(3;) B ( 3; ) C (;1); (3;) D (; 4)

Câu 3: Cho 1

1

x y

x

 và y  2x m Giá trị của m để đồ thị hai hàm số đã cho cắt nhau tại 2 điểm A B, phân biệt, đồng thời điểm trung điểm của đoạn thẳng AB có hoành độ bằng 5

2 là

Câu 4: Cho khối lăng trụ đứngABCD A B C D     có đáy là hình vuông, có thể tích là V Để diện tích toàn phần

của lăng trụ nhỏ nhất thì cạnh đáy của lăng trụ bằng

A 3

2

V

C 3V 2 D V

Câu 5: Điều kiện cần và đủ để ym cắt đồ thị của hàm số 4 2

yxx  tại 6 điểm phân biệt là

A 2  m 3 B 2  m 4 C m  3 D 0  m 3

Câu 6: Hình nón có thiết diện qua trục là tam giác vuông cân có diện tích là S Thể tích của khối nón là

A 6  3

3 S

Câu 7: Trong các phương trình sau phương trình nào vô nghiệm:

(I) cosx = 5 3 (II) sinx = 1– 2 (III) sinx + cosx = 2

Câu 8: Giá trị lớn nhất của hàm số ycosx 2 cos 2x bằng

Câu 9: Phương trình    2 

log x 1 log x 2xm có nghiệm duy nhất khi và chỉ khi

A

5

4

1

m

m

 

B

5 4 1

m m

 

C 5

4

5 4 1

m m

 

Câu 10: Nếu    5

3

F x xx dx thì

( ) 3

x

( ) 3

x

( ) 3

x

( ) 3

x

Câu 11: Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với ABa AD, 2a, SA vuông góc với

mặt đáy, SA3a Thể tích của khối chóp S ABCD là:

Câu 12: Cho hàm số y logx2 4 Tính y(2)

1

ln 2

ln 4

Trang 2

Luyện thi THPT QG 2018 Nguyễn Noben

Câu 13: Hàm số 4  2  2

y mxmx  m có 3 điểm cực trị khi và chỉ khi

1

m

m

  

 

1

m m

  

 

1

m m

 

  

1

m m

 

  

Câu 14: ABC đều cạnh a, đcao AH Thể tích khối nón khi ABC quay xung quanh trục AH là:

A

3

6

12

a

B

3

3 12

a

C

3

2 24

a

D

3

3 24

a

Câu 15: Số đường tiệm cận của đồ thị hàm số

2

1

x x y

x

 

Câu 16: Tập xác định của hàm số 5

log(9 )

x y

x

 là

A [ 5;9] B [ 5;9) \  8 C [ 5;9) \  1 D [ 5;9) \  3

Câu 17: Tập nghiệm của bất phương trình 2log2x 1 log 52   là x 1

A  3;5 B  1;5 C 1;3  D 3;3

Câu 18: Cho a b , 0 và a b , 1, xy là hai số dương Tìm mệnh đề sai trong các mệnh đề sau

A log21 2 4 log2a

a

C loga x20162016 loga x D log log

log

b a

b

x x

a

Câu 19: Giá trị lớn nhất của hàm số y  x3 2x27x1 trên 3;2 là

Câu 20: Trong khai triển (x – 2)100=a0+a1x1+…+a100x100

. Hệ số a97 là:

A -1.293.600 B 1.293.600 C -297 97

100

C D (-2)98 98

100

C

Câu 21: Cho S ABCD đáy HCN, ABa AD, 2a; cạnh bên SA và vuông góc với đáy Khoảng cách từ a

điểm A tới mặt phẳng (SBD) là

3

a

3

a

2

a

Câu 22: Hình vuông có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp để được

một hình vuông nối lại tiếp tục làm như thế đối với hình vuông mới (như hình bên) Tồng

diện tích các hình vuông liên tiếp đó bằng

2

Câu 23: Cho hình chóp S ABCD Gọi A B C D   , , , lần lượt là trung điểm của

, , ,

SA SB SC SD Khi đó tỉ số thể tích của hai khối chóp S A B C D    và S ABCD là

A 1

1

1

1 2

Câu 24: Số điểm cực tiểu của hàm số yx43x21 là:

Câu 25: Nguyên hàm của hàm số f x sin 2x

A cos 2x CB 1cos 2

2 x CD cos 2x C

Câu 26: Cho f x( ) mx 1

 Giá trị lớn nhất của hàm số trên [1; 2] bằng 2 Khi đó giá trị m bằng

A m  3 B m  1 C m  4 D m  2

Trang 3

Luyện thi THPT QG 2018 Nguyễn Noben

Câu 27: Cho log 3m;ln 3n Hãy biểu diễn ln 30 theo mn

A ln 30 n 1

m

n

n

m

Câu 28: Cho hàm số   12

sin

f x

x

 Nếu F x( ) là một nguyên hàm của hàm số và 0

6

F   

  thì F x( ) là

A 3 cot xB 3 cot

Câu 29: Số giao điểm của đồ thị hàm số

2

1

x x y

x

 với đường thẳng y3x6 là

Câu 30: Hàm số nào sau đây đồng biến trên R

A

2

1

x

y

x

B ytanx C  2 2

1

x y x

Câu 31: Chọn từ thích hợp điền vào chỗ chấm để được một mệnh đề đúng: “Mỗi đỉnh của một hình đa diện là

đỉnh chung của ít nhất…….cạnh”

Câu 32: Tập nghiệm của phương trình: 1 3

5x 5x 26 là

Câu 33: Cho hình chóp SABC có đáy là tam giác cân tại A, ABAC , a BAC 120 Mặt bên SAB là tam

giác đều và nằm trong mặt phẳng vuông góc với đáy Tính theo a thể tích khối chóp S ABC

A

3

2

a

3

8

a

D

3

3 24

a

Câu 34: Cho mặt cầu, mp qua tâm mặt cầu cắt nó theo thiết diện có diện tích 4 Bkính của mặt cầu là

Câu 35: Hàm số yx33x2mx đạt cực tiểu tại x  khi 2

A m  0 B m  0 C m  0 D m  0

Câu 36: ABC A B C    có đáy là tam giác đều cạnh a Góc giữa cạnh bên và đáy 30o Hình chiếu vuông góc của A trên mặt ABC trùng với trung điểm của BC Thể tích của khối lăng trụ đã cho là

A

3

3

4

a

B

3

3 8

a

C

3

3 3

a

D

3

3 12

a

Câu 37: ChoA1; 1;1 , B0;1; 2, C1;0;1 Tìm tọa độ D sao cho tứ giác ABCD là hình bình hành

A D2; 2;0 B D2; 2;0  C D   2; 2;0 D D2;0;0

Câu 38: Cho hình hộp với sáu mặt là hình thoi cạnh a, góc nhọn 0

60 Khi đó thể tích của hình hộp là

A

3

3

3

a

B

3

2 2

a

C

3

2 3

a

D

3

3 2

a

Câu 39: Hình trụ có 2đáy hình tròn ( ; )O R và (O R; ), OO R 2 Xét hình nón đỉnh O , đáy hình tròn

( ; )O R Gọi S S1, 2 lần lượt là diện tích xung quanh của hình trụ và hình nón, tỉ số 1

2

S

S

A 2 6

6

6

2 2 3

Câu 40: Cho lăng trụ tam giác đều có các cạnh bằng a Diện tích mặt cầu ngoại tiếp hình lăng trụ là

A 7 a 2 B

2

7 2

a

C

2

7 3

a

D

2

7 6

a

Câu 41: Cho hàm số yf x( ) xác định trên khoảng 0;  và thỏa mãn  lim ( ) 1

x f x

  Với giả thiết đó, hãy chọn mệnh đề đúng trong các mệnh đề sau

Trang 4

Luyện thi THPT QG 2018 Nguyễn Noben

A Đường thẳng y 1 là tiệm cận ngang của đồ thị hàm số yf x( )

B Đường thẳng y 1 là tiệm cận đứng của đồ thị hàm số yf x( )

C Đường thẳng x  là tiệm cận ngang của đồ thị hàm số 1 yf x( )

D Đường thẳng x  là tiệm cận đứng của đồ thị hàm số 1 yf x( )

Câu 42: Cho hình trụ có bán kính đáy R, trục OO 2R và mặt cầu có đường kính OO Kí hiệu V V lần 1, 2 lượt là thể tích của các khối trụ và khối cầu Tính tỉ số 1

2

V V

A 1

2

3

2

V

2

2 3

V

2

3 4

V

2

4 3

V

Câu 43: Nguyên hàm của hàm f x ( ) 22x

A 1

4 4x C

ln 4

x

C

Câu 44: Mặt cầu tâm I(1; 2;3) có bán kính AB với A4; 3;7  và B2;1;3 có phương trình là

A   2  2 2

C   2  2 2

Câu 45: Trong Oxyz cho ABC biết A(5;1;3), (1; 6; 2), (5; 0; 4)B C Tọa độ trọng tâm G của tam giác đó là

A 11;3; 7

3

11 7

; ;3

11 7

; ;3

3 3

11 7

; ;3

2 2

Câu 46: Trong Oxyz cho 3 điểm A(2;1; 4), ( 2; 2; 6), (6; 0; 1)B   C  Tích AB AC bằng

Câu 47: Trong Oxyz cho tam giác ABC biết A1;1;1, B4;3; 2, C5; 2;1 Diện tích tam giác ABC là

A 42

2

Câu 48: Cho CSC(un ) thỏa mãn 2 5

42 66

u u

u u

  

 Tổng của 346 số hạng đầu là:

A 242546 B 242000 C 241000 D 240000

Câu 49: Cho 3 2

1

y mx

 Biết rằng đồ thị hàm số cắt d y: 3x3m tại hai điểm phân biệt A B, và cắt ,

Ox Oy lần lượt tại C D, Giá trị m để diện tích tam giác OAB bằng 2 lần diện tích tam giác OCD là

3

3

3

2

m  

Câu 50: Trong các mệnh đề sau, mệnh đề nào sai ?

A Khối tứ diện là khối đa diện lồi

B Khối hộp là khối đa diện lồi

C Lắp ghép hai khối hộp luôn được một khối đa diện lồi

D Khối lăng trụ tam giác là khối đa diện lồi

Đáp án: 1C 2C 3C 4A 5A 6D 7A 8C 9D 10C 11D 12D 13B 14D 15A 16B 17C 18A 19A 20A 21B 22A 23C 24B 25B 26A 27D 28A 29D 30A 31B 32B 33C 34C 35B 36B 37B 38B 39A 40C 41A 42A 43D 44A 45C 46D 47D 48A 49A 50C

Trang 5

Luyện thi THPT QG 2018 Nguyễn Noben

ĐỀ SỐ 17 Câu 1: Hàm số 3 2

y2x 3x 12x2016

A Đbiến trên (1; +∞) B Ngbiến trên R C Đbiến trên R D Đbiến trên (-5; +∞)

Câu 2: Hàm số 1 m 3 2

3

      đồng biến trên R khi và chỉ khi

A. 1

5

m  B m  1 C m =1 D 2  m 3

Câu 3: Đồ thị hàm số yx4x2 có số điểm cực trị là 1

Câu 4: Khẳng định nào sau đây là đúng về hàm số 4 2

yx 4x 2

A Có cực đại và không có cực tiểu B Đạt cực tiểu tại x = 0

C Có cực đại và cực tiểu D Không có cực trị

Câu 5: Hàm số yx33mx 1 có 2 cực trị khi và chỉ khi

A m 0 B m 0 C m 0 D m 0

Câu 6: Giá trị lớn nhất của hàm số yx33x25 trên đoạn  1;3 bằng

Câu 7: Giá trị lớn nhất của hàm số 4sin3 sin

3

yxx trên đoạn  0; là

Câu 8: Đường thẳng x = 1 là tiệm cận đứ ng của đồ thị hàm số

A

x

x y

2 1

1

2

2 2

x

x

x

x x y

 1

2 2

2

D

2

1

x y

x

Câu 9: 2 2

9

x

y

x

Câu 10: Phương trình x33x   có 3 nghiệm phân biệt với m thỏa mãn 2 m 0

A 0  m  4 B   1 m  4 C m  4 D m  0

Câu 11: Đồ thị hàm số nào sau đây có hình dạng như hình vẽ bên

A yx33x1 B yx33x1 C y  x3 3x1 D y  x3 3x1

Câu 12: Kết quả rút gọn biểu thức

4 0,75

3

A 16 B 24 C 8 D 4

Câu 13: Nghiệm của pt sin2x + 3sinx.cosx = 1 là:

x   kx   k

Câu 14: Hàm số ylog3x có đạo hàm là 1

A ' 1

1

y

x

B y'x 1 ln 31

C

3 ' 1

y x

D y'x 1 ln1 x

Câu 15: Tập xác định của hàm số  2 

yxx là

A  ;1 2; B   ;1 C  ;1 2; D  2;  

Câu 16:

 

3 2 2

lim

2

x

 

bằng A  B

1

8 C

9 8

D 

Câu 17: Nghiệm của  3 3 2 4

0, 05 2 5

x x x

là A x = 0 B x = 1 C x = 2 D x = 3

O y

x

1

Trang 6

Luyện thi THPT QG 2018 Nguyễn Noben

Câu 18: Số nghiệm của phương trình 9x5.3x 4 0 là

A 0 B 1 C 2 D 3

Câu 19: Bất phương trình 1

2x 8 có tập nghiệm là

A x > 2 B x  C x > 3 3 D x > -1

Câu 20: Tập nghiệm của bất phương trình  2 

2

log x 3x2 1 là

A  ;1 B 0; 2 C  0;1  2;3 D 0; 2

Câu 21: Tập nghiệm của bất phương trình 4x3.2x 4 0 là

A 4;1 B 4;1 C 0;  D ;0

Câu 22: Hàm số   2

f xxx có họ các nguyên hàm là

A   3 2

5

F xx  x x C B   2 2

F xxxx

C   3 2

5

F x   x x x D   1 3 2

5 3

Câu 23: Tính 1 

0

I  xdx A I = 0 B.I = 1 C I = 2 D I = 3 Câu 24: Tính

2 2 0

sin

 A I = B I =

2

C I =

4

D I =

6

Câu 25: Tính 2

1

ln

e

I x xdx A I = B I = 1 3 

9 e  C I = 1 3 

9 e  D I =

3

1 9

e 

Câu 26: Diện tích hình phẳng giới hạn bởi các đường y = x2 , y = x + 2 là

A 4,5 B.5,0 C 6,0 D 5,4

Câu 27: Diện tích hình phẳng giới hạn bởi các đường y = 1 , y = ln x là

A e 1 2

e

  B.e + 2 C e 1 2

e

  D 2 - e Câu 28: Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi y 1 x2,y0 là

A 16

15

B 16 C

15

D 15

Câu 29: Cho số phức 3+4i, khi đó A z  B 3 z  4 C z  D 7 z  5

Câu 30: Cho số phức z2 3i i2 4 i, khi đó

A.z   B 28 4i z   C 7 i z   D 28 4i z28 4 i

Câu 31: Cho 4 3 1

2

i

i

  

A.

23 4

5 5

z  i B 23 14

z  i C 23 4

5 5

z  i D 23 4

5 5

Câu 32: Phương trình 2

zz  có các nghiệm là

A 1 2i B  1 2i C 1 2i D 1 2i

Câu 33: Số nghiệm của phương trình x53x44x35x220x20170trong C là

A 0 B 2 C 4 D 5

Câu 34: Tập hợp các điểm biểu diễn số phức z = 2i là đường thẳng có phương trình

A x = 0 B x = 2 C y = 0 D y = 2

Câu 35: Thể tích của khối tứ diện đều cạnh a là

A

3

2 12

a

B

3

3 12

a

C

2

3 12

a

D

3

2 4

a

Câu 36: Cho lăng trụ tam giác đều ABC.A’B’C’ AB = a, AA’ = a Thể tích lăng trụ ABC.A’B’C’ là

A

3

2 12

a

B

3

3 4

a

C

2

3 4

a

D

3

3 12

a

Trang 7

Luyện thi THPT QG 2018 Nguyễn Noben

Câu 37: Người ta sxuất hộp bánh hình hộp chữ nhật có các kích thước 7cm, 25cm, 35cm Khi đó, một thùng gỗ

hình hộp chữ nhật kích thước 42x50x70 (đơn vị cm) sẽ chứa được nhiều nhất số hộp bánh là

A 12 B 16 C 18 D 24

Câu 38: Tìm hệ số của x5 trong khai triển P(x) = (x+1)6 + (x+1)7 + + (x+1)12

Câu 39: Diện tích mặt cầu ngoại tiếp tứ diện đều ABCD cạnh a là

A

2

2

3

a

B 2

6 a C

2

3 2

a

D 6

Câu 40: Một hình nón có bán kính đáy 12cm, đường cao 16cm Diện tích xung quanh của hình nón là

A  2

240 cm B  2

160 cm C  2

400 cm D  2

20 cm

Câu 41: Một hình trụ có bán kính đáy r = 7cm, khoảng cách giữa hai đáy bằng 20cm Thể tích khối trụ là

A  2

980 cm B  3

980 cm C  3

980 cm D  3

890 cm

Câu 42: Cho hình chóp tam giác đều S.ABC có cạnh đáy là a, cạnh bên là 2a Gọi V và V’ lần lượt là thể tích

khối nón đỉnh S, đáy là các đường tròn nội tiếp, ngoại tiếp tam giác ABC Khi đó

A 1

' 4

V

V B 4

'

V

V C 1

' 2

V

V D 2

'

V

Câu 43: (P): 3x -5y +8z -12 =0 có vtpt là A n 3; 5;8  B n 3;5;8 C n 3; 3;8  D n 1; 3; 2 

Câu 44:   :x2y   và 3z 5 0   : 2x my 6z  song song với nhau khi và chỉ khi 11 0

A m = 1 B m = 2 C m = 4 D m = 6

Câu 45: Mặt cầu     2  2 2

S x  y  z  có tâm I, bán kính R là

A I(1;2;3), R=3 B I(1;-2;3), R= 9 C I(1;-2;3), R= 3 D I(1;2;3), R= 9

Câu 46: Đường thẳng d đi qua A(2;1;2) và có véc tơ chỉ phương u 1; 2;3  có phương trình tham số là

A

1

2 2 3

  

  

  

B

1

2 2

3 3

  

  

  

C

2

1 2

3 2

 

   

  

D

2

1 2

2 3

 

  

  

Câu 47: Cho điểm A(1;0;0) và đường thẳng d:

2

1 2

z t

 

  

 

Tọa độ điểm A’ đối xứng với A qua d là

A A’(0;1;1) B A’( 2;0;-1) C A’ (- 2;0;-1) D A’(1;1;0)

Câu 48: Mặt cầu đường kính AB với A(1; -2; 3), B( 1;4;1) có phương trình là

A   2  2 2

x  y  z  B   2  2 2

C   2  2 2

x  y  z  D.  2  2 2

Câu 49: Khoảng cách từ điểm M( 2;1;3) đến mặt phẳng (P): x - 2y + 2z + 4 = 0 là

A 3

10 B 10 C 3 D

10 3

Câu 50: (P) txúc (S): x2y2z210x2y26z1700và // với

5 2

13 2

  

  

   

7 3 '

8

z

  

   

 

có pt

A 4x6y5z51 77 0 B 4x6y5z51 5 77 0

C 4x6y5z51 5 77 0 D 4x6y5z51 5 77 0

Đáp án: 1C 2A 3B 4B 5C 6A 7A 8D 9D 10A 11B 12B 13A 14B 15A 16D 17A 18C 19A 20C 21D 22A 23C 24C 25B 26A 27C 28A 29D 30C 31B 32A 33D 34A 35B 36B 37D 38D 39C 40A 41B 42A 43A 44C 45C 46D 47B 48A 49D 50C

Trang 8

Luyện thi THPT QG 2018 Nguyễn Noben

ĐỀ SỐ 18

Câu 1: Hàm số nào sau đây đồng biến trên tập xác định của nó?

A

2

log

2

log

yx C y log3 x

Câu 2: Cho hàm số  1

4

yx  x Khi đó:

4

1

4

yx  x x   x

1

4

yx  xD 1 2  34 

4

yx  x  

Câu 3: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy SCa 6 Khi tam giác SAC quay quanh cạnh SA thì đường gấp khúc SAC tạo thành một hình nón tròn xoay Thể tích của khối nón tròn xoay đó là:

A

3

4

3

a

B

3

2 6

a

C

3

3 3

a

D

3

3 6

a

Câu 4: Cho S.ABCD có chiều cao SA  , ABCD là hình thang vuông tại A và B AB BC a a   và D 2aA  Gọi E là trung điểm đoạn AD, tính theo a bán kính của khối cầu ngoại tiếp khối chóp S.CDE

A 11

2

a

3

a

Câu 5: Cho hàm số 4  2  2

ymxmx Khẳng định nào sau đây là sai ?

A Với m  thì hàm số có một điểm cực trị 0

B Hàm số luôn có 3 điểm cực trị với với mọi m  0

C Với m    1;  1; hàm số có 3 điểm cực trị 

D Có nhiều hơn 3 giá trị của tham số m để hàm số có 1 điểm cực trị

Câu 6: Đồ thị dưới đây là của hàm số nào?

A ylog2x1 B ylog2x 1 C ylog3x D ylog3x 1

Câu 7: Cho phương trình 2

log x5 log 3.log x 6 0 Tập nghiệm của phương trình là:

A 1 ;1

64

64

Câu 8: Một hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a Gọi O là giao điểm AC và

BD Khi tam giác SOC quay quanh cạnh SO thì đường gấp khúc SOC tạo thành một hình nón tròn xoay Diện tích xung quanh của hình nón tròn xoay đó là:

A a2 2 B 2

a

2

2

a

Câu 9: Nghiệm dương nhỏ nhất của pt 4.sin2x + 3 3sin2x – 2.cos2x = 4 là:

A

6

x

B

4

x

C

3

x

D

2

x

Trang 9

Luyện thi THPT QG 2018 Nguyễn Noben

Câu 10: Cho log 2a Tính log125

4 theo a: A 3 5aB 2a 5 C 4 1 a D 6 7a 

Câu 11: Giá trị của

5

1 loga

C

b

 

  là: A 5logb a B 5loga b C 5loga b D 5logb a

Câu 12: Giao điểm hai đường tiệm cận của đồ thị hàm số 3 2

1

x y x

 có tọa độ là?

A  1;3 B  1; 2 C  3;1 D  3; 2

Câu 13: Cho hàm số f(x) có bảng biến thiên như sau:

x  0 

y' + 0 

y 3

-3 -2

Trong các khẳng định sau khẳng định nào đúng ?

A Đồ thị hàm số có hai tiệm cận ngang là y  3 và y  2

B Đồ thị hàm số có hai tiệm cận ngang là x   và 3 x   2

C Đồ thị hàm số không có tiệm cận ngang

D Đồ thị hàm số có tiệm cận đứng

Câu 14: Tìm giá trị nhỏ nhất của hàm số ysin3x3sinx trên đoạn 0;

3

8

4

Câu 15: Tìm giá trị nhỏ nhất của biểu thức

x y xy P

xy x y

 với x y , 0 và x,y cùng dấu

2 D Không có giá trị nhỏ nhất

Câu 16: Cty muốn thiết kế một loại hộp có dạng hình hộp chữ nhật, đáy là hình vuông và thể tích khối hộp

được tạo thành là 10 m3 Độ dài cạnh đáy của hộp để diện tích toàn phần đạt giá trị nhỏ nhất là ?

Câu 17:Một tổ học sinh có 7 nam và 3 nữ Chọn ngẫu nhiên 2 người Tính xác suất sao cho 2 người được chọn

có đúng một người nữ

A 1

15 B

7

15 C

8

1 5

Câu 18: Trong các tam giác vuông có tổng của một cạnh góc vuông và cạnh huyền của tam giác vuông đó bằng

6 ộ dài cạnh huyền của tam giác vuông có diện tích lớn nhất là:

Câu 19: Cho hàm số 2 1

1

x y x

 có đồ thị (C) Tìm các giá trị của m để đường thẳng d y:   x m 1 cắt đồ thị hàm số (C) tại hai điểm phân biệt A, B sao cho AB 2 3

Câu 20: Cho log 3a và log 5b Biểu diễn log 8 theo a, b ta được kết quả là 30

A 3 1 

1

b

a

 

3 1 1

b a

 

1

b a

 

3 1 1

a b

Câu 21: Cho ABCD.A'B'C'D' có ABCD HCNhật ABa AD, a 3 Hchiếu vuông góc của A' lên (ABCD) trùng với giao điểm AC và BD Tính khoảng cách từ điểm B' đến mặt phẳng (A'BD) theo a là:

A 3

3

a

B 3

4

a

C 3

2

a

D 3

6

a

Trang 10

Luyện thi THPT QG 2018 Nguyễn Noben

Câu 22: Tập hợp các giá trị của x để biểu thức  2

1

logx 3

P  xx có nghĩa là:

A  0;3 B    0;3 / 1 C ;0 D  0;3 \ 1  

Câu 23: Cho log 52 a;log 53 b Tính log 10806 theo a và b ta được:

A ab 1

2a 2b ab

a b

3a 3b ab

2a 2b ab

a b

Câu 24: Cho khối chóp tam giác S.ABC có (SBA) và (SBC) cùng vuông góc với (ABC), đáy ABC là tam giác

đều cạnh a, SC bằng a 7 Đường cao của khối chóp SABC bằng

Câu 25: Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy là tam giác vuông cân tại A cạnh AB bằng a 3, góc giữa A'C và (ABC) bằng 450 Khi đó đường cao của lăng trụ bằng:

Câu 26: Cho phương trình ln2x3lnx 2 0 Tập nghiệm phương trình đã cho là:

A  2

;

Câu 27: Cho  4 

yx  Khi đó y' 1  có giá trị là:

Câu 28: Cho hình chóp S.ABCD có ABCD là hình chữ nhật, AB2 ,a BCa,SAa, SBa 3, (SAB) vuông góc với (ABCD) Khi đó thể tích của khối chóp SABCD bằng

A

3

3

3

a

B

3

3 6

a

C a3 3 D 2a3 3

Câu 29: Biểu thức x.3 x.6 x5 x 0viết dưới dạng luỹ thừa với số mũ hữu tỉ là

A

2

3

5 2

7 3

5 3

x

Câu 30: Giá trị của 4log 2 5  

a

A 8

Câu 31: Điểm cực đại của đồ thị hàm số 1 4 3 2 2

2

yxx  là ?

A 3; 5

2

2

  

Câu 32: Đồ thị hàm số

2

4

x y x

 có bao nhiêu đường tiệm cận ngang ?

Câu 33: Cho ln 1

1

y

x

 Hệ thức liên hệ giữa y và y' không phụ thuộc vào x là:

A y ' 2 y1 B y' ey  0 C yy ' 20 D y ' 4 ey 0

Câu 34: Hnón có thể tích

3

4 3

a

và bkính của đường tròn đáy bằng 2a Khi đó, đường cao của hình nón là:

2

a

D 3a Câu 35: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, SA vuông góc với đáy,

ACa , góc giữa SC và mặt phẳng đáy bằng 0

60 Thể tích khối chóp S.ABC là

A

3

3

a

B

3

3

a

C

3

4 3

a

D

3

3

a

Câu 36: Phương trình log2 x 3log 2x 4có tập nghiệm là:

Ngày đăng: 05/05/2018, 09:31

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w