Some geometric inequalitiesTran Quang Hung Problem 1.. With arbitrary triangle ABC inscribed O, incenter I and an arbitrary point M in small arc BC.. Given are4ABC orthorcenter H, circum
Trang 1Some geometric inequalities
Tran Quang Hung Problem 1 With arbitrary triangle ABC inscribed (O), incenter I and an arbitrary point M in small arc BC Prove that MA + 2OI ≥ MB + MC ≥ MA − 2OI
Proof By the projection of vectors we have
MA2
= 2−−→
MO.−−→
MA ⇒ MA = 2−−→MO
−−→
MA MA similar
MB = 2−−→MO.−−→MB
MB, MC = 2
−−→
MO
−−→
MC MC From them we have
MB + MC − MA = 2−−→MO.(
−−→
MB
MB +
−−→
MC
MC −
−−→
MA
MA) (1)
By Cauchy-Swart inequality we have
−MO|
−−→
MB
MB +
−−→
MC
MC −
−−→
MA
MA| ≤−−→MO · (
−−→
MB
MB +
−−→
MC
MC −
−−→
MA
MA) ≤ MO|
−−→
MB
MB +
−−→
MC
MC −
−−→
MA
MA| (2)
We have MO = R, we will calculate |
−−→
MB
MB +
−−→
MC
MC −
−−→
MA
MA|
|
−−→
MB
MB +
−−→
MC
MC −
−−→
MA
MA|2
= 3 + 2(
−−→
MB
MB.
−−→
MC
MC −
−−→
MB
MB.
−−→
MA
MA −
−−→
MC
MC.
−−→
MA
MA)
= 3 + 2(cos(−−→MB,−−→
MC) − cos(−−→MB,−−→
MA) − cos(−−→MC,−−→MA))
= 3 − 2(cos A + cos B + cos C) (Because M in small arc BC)
= 3 − 2R + r
R (Here we use the well-know equality: cos A + cos B + cos C =
R + r
R )
= R
2
− 2Rr
R2
= OI
2
R2 (Here we use the Euler’s formula)
From this we have
MO|
−−→
MB
MB +
−−→
MC
MC −
−−→
MA
MA| = OI (3) Thus from (1), (2), (3) we have the inequality MA + 2OI ≥ MB + MC ≥ MA − 2OI and equality when ABC is equaliteral triangle We completed the solution
Trang 2Problem 2 Given are4ABC orthorcenter H, circumradius R, with any M on plane find minimum value of sum
MA3
+ MB3
+ MC3
−32R · MH2
Proof By AM-GM inequality we have
MA3
R2
+ MA2
3
R + R.MA ≥ 2MA2
⇒ MA
3
R ≥ 32MA2
− R
2
2 Similar we have
MB3
R ≥ 3
2MB
2
− R
2
2 ,
MC3
R ≥ 3
2MC
2
− R
2
2 Thus
MA3
+ MB3
+ MC3
2(MA
2
+ MB2
+ MC2
) −3
2R
2
(1) Called O is circumcenter of ABC
MA2
+ MB2
+ MC2
= (−−→MO +−→OA)2
+ (−−→MO +−−→OB)2
+ (−−→MO +−→OC)2
= 3MO2
+ 2−−→MO(−→OA +−−→OB +−→OC) + 3R2
= 3MO2
+ 2−−→
MO.−−→
OH + 3R2
= 3MO2
− (OM2
+ OH2
− MH2
) + 3R2
= 2MO2
− OH2
+ MH2
+ 3R2
≥ 3R2
− OH2
+ MH2
(2)
(Here we use familiar equal of vector −→OA +−−→OB +−→OC =−−→OH)
Form (1), (2) we have
MA3
+ MB+
MC3
R ≥ 32(3R2
− OH2
+ MH2
) − 32R2
⇒ MA3
+ MB3
+ MC3
− 32R.MH2
≥ 3R3
− 32R.OH2
= const Easily seen equal when M ≡ O
Thus we have MA3
+ MB3
+ MC3
− 32R.MH2
has minimum value iff M ≡ O
Problem 3 Given are 4ABC with sides a, b, c and 4A0B0C0 with sides a0, b0, c0 and area S0 With any M on plane prove that
a02
a MA +
b02
b MB +
c02
c MC ≥ 4S0
Trang 3Proof We well know the inequality:
Given triangle ABC and ∀x, y, z > 0 then
(x + y + z)2
4 ≥ yz sin2
A + zx sin2
B + xy sin2
C
we can replace yz → x, zx → y, xy → z we will get the inequality:
1
4(
r yz
x +
r zx
y +
r xy
z )
2
≥ x sin2
A + y sin2
B + z sin2
C(∗) Now we let
x = MBMC bc.a02 = MBMC
bc.4R02sin2
A0
y = MCMA ca.b02 = MCMA
ca.4R02sin2
B0
z = MAMB ab.c02 = MAMB
ab.4R02sin2
C0
Thus we will have:
r yz
x =
v u u u u t
MCMA ca.b02 MAMB
ab.c02
x = MBMC bc.a02
= a
0
a.b0c0MA
similar we have
r zx
y =
b0
b.c0a0MB,r xy
z =
c0
c.a0b0MC and using inequality (∗) for triangle A0B0C0 and x, y, z as above we will get
1
4( X
a,b,c
a0
a.b0c0MA)2
a,b,c
MBMC bc.4R02sin2
A0 sin2
A0 = 1 4R02(X
a,b,c
MBMC
bc )
If we use well know inequality
MB.MC
MC.MA
MA.MB
ab ≥ 1 then we get the consequence inequality:
1
4( X
a,b,c
a0
a.b0c0MA)2
≥ 4R102
0
a.b0c0MA + b
0
b.c0a0MB + c
0
c.a0b0MC ≥ R10
⇔ a
02
a MA +
b02
b MB +
c02
c MC ≥ a
0b0c0
R0 = 4S0
Easily seen we have equal when 4A0B0C0 ∼ 4ABC and M ≡ H(Orthocenter of triangle ABC)
Trang 4Remark This inequality have some nice applycations
• If 4A0B0C0 ≡ 4ABC we get the well know inequality aMA + bMB + cMC ≥ 4S
• If 4A0B0C0 ≡ 4JaJbJc with Ja, Jb, Jc are three excenter of triangle ABC with noitice a0 = 4R cosA
2, b
0 = 4R cosB
2, c
0 = 4R cosC
2 and S
0 = 2SR
r we will get the nice inequality cot A
2MA + cot
B
2MB + cot
C
2MC ≥ a + b + c
• If 4A0B0C0 ≡ 4BCA we will get the non symmetry inequality
b2
aMA +
c2
b MB +
a2
c MA ≥ 4S There are some nice other inequality is a consequence of this inequatlity
Problem 4 Let M be an arbitrary point inside equaliteral triangle ABC.Find min value of
1
MA+
1
MB +
1 MC Proof We can assume ABC is an equaliteral triangle with side 1,let barycentric coordinates of M
is (x, y, z), x + y + z = 1 because M inside triangle ⇒ x, y, z > 0 By distance formula we have
MA2
= y + z
x + y + za
2
− yz + zx + xy(x + y + z)2 a2
= by x + y + z = 1 and a = 1 ⇒ MA = py2+ yz + z2, similarly MB =√
z2 + zx + x2, MC =px2+ xy + y2 therefore we need find min value of
1
py2+ yz + z2 +√ 1
z2 + zx + x2 + 1
px2+ xy + y2
when x, y, z > 0, x + y + z = 1, we will solve it with Lagrange multipliers
WLOG 0 ≤ x ≤ y ≤ z < 1
Case 1: x = 0 we have to prove
f (y, z) = 1
py2+ yz + z2 + 1
y +
1
z ≥ 4 + 2
√ 3 3 indeed
f (y, z) ≥ f(√yz,√
yz) ≥ f(y + z
2 ,
y + z
2 ) = 4 +
2√ 3 3 Case 2: 0 < x ≤ y ≤ z < 1
F (x, y, z, λ) =X 1
px2+ xy + y2 + λ(x + y + z − 1)
Trang 5∂x = 0 ,
∂F
∂y = 0 ,
∂F
∂z = 0 , then
−12
"
2x + y p(x2+ xy + y2)3 + 2x + z
p(z2+ zx + x2)3
# + λ = 0
−1 2
"
2y + x p(x2+ xy + y2)3 + 2y + z
p(y2+ yz + z2)3
# + λ = 0
−1 2
"
2z + x p(z2+ zx + x2)3 + 2z + y
p(y2+ yz + z2)3
# + λ = 0 Adding
λ = 1 2
"
x + y p(x2+ xy + y2)3 + y + z
p(y2+ yz + z2)3 + z + x
p(z2+ zx + x2)3
#
Inserting λ in first we get
p(x2+ xy + y2)3 = 1
p(y2+ yz + z2)3
Similarly
p(x2+ xy + y2)3 = 1
p(z2+ zx + x2)3
p(x2+ xy + y2)3 = 1
p(x2+ xy + z2)3
Hence
y2
(z2
+ zx + x2
)3
= z2
(x2
+ xy + y2
)3
We put y = ax, z = bx, where 1 ≤ a ≤ b
a2
(b2
+ b + 1)3
= b2
(a2
+ a + 1)3
we get a = b Hence y = z as necessary for critical points in the interior of the region 0 < x, y, z < 1
We have to prove
2
px2+ xy + y2 + 1
y√
3 ≥ 4 + 2
√ 3 3 where x + 2y = 1
p3y2
− 3y + 1 +
1
y√
3 ≥ 4 +2
√ 3 3 where
1
3 ≤ y ≤ 12
Trang 6since x ≤ y ≤ z By differentiation it is easily checked that the absolute minimum of g(y) on 13,1
2
is 4 + 2
√
3
3 = g(1/2).
Thus 1
MA +
1
MB +
1
MC get min value ⇔ M(1
2,
1
2, 0)and others permutation ⇔ M concur three midpoint of three side
Problem 5 Suppose a, b, c are sidelengths of a triangle and ma, mb, mc are its medians Prove the inequality
ma
a2 + mb
b2 + mc
c2 ≥
√ 3(a2
+ b2
+ c2
) 2abc Proof This inequality equivalent
(mabc
a +
mbca
b +
mcab
c )
2
≥ 34(a2
+ b2
+ c2
)2
we have
(mabc
a +
mbca
b +
mcab
c )
2
≥ 3(X(mbca).(mbc cab)) = 3(Xa2
mbmc)
we will prove
3(Xa2
mbmc) ≥ 34(a2
+ b2
+ c2
)2
⇔ 4(Xa2
mbmc) ≥ (a2
+ b2
+ c2
)2
Indeed turn into triangle with three side ma, mb, mc we need prove:
X
4m2 a
3
4b
3
4c ≥ (m2
a+ m2
b + m2
c)2
⇔X(2(b2
+ c2
) − a2
)bc ≥ (a2
+ b2
+ c2
)2
by equivalent tranformation we have
⇔X12(a2
− (b − c)2
)(b − c)2
≥ 0 which is true because a > |b − c|, b > |c − a|, c > |a − b| with any triangle ABC
Problem 6 Let triangle ABC and X, Y, Z are arbitrary points on segment BC, CA, AB Prove that
1
SAY Z
SBZX
SCXY ≥ S 3
XY Z
Lemma 6.1 Let a, b, c > 0 be positive real numbers then
1 a(1 + b) +
1 b(1 + c) +
1 c(1 + a) ≥ 1 + abc3 Proof We have
(1 + abc)( 1
a(1 + b) +
1 b(1 + c) +
1 c(1 + a)) + 3 =
X 1 + a a(1 + b)+
Xb(c + 1)
1 + b ≥ √33
abc + 3
3
√ abc ≥ 6
So we are done.In fact the ineq could be better and stronger as
1 a(1 + b)+
1 b(1 + c)+
1 c(1 + a) ≥ √3 3
abc(1 +√3
abc)
Trang 7Proof We let BX
BC = x,
CY
CA = y,
AZ
AB = z, SABC = S, 0 < x, y, z < 1 we will have
SAY Z
S = z(1 − y),SBZX
S = x(1 − z),SCXY
S = y(1 − x) Thus we have
SXY Z = S −SAY Z−SBZX−SCXY = S −S(z(1−y)+x(1−z)+y(1−x)) = S(xyz−(x−1)(y−1)(x−1)) Thus we need to prove
1
SAY Z
SBZX
SCXY ≥ 3
SXY Z
z(1 − y)+
S x(1 − z) +
S y(1 − x) ≥
3S xyz + (1 − x)(1 − y)(1 − z)
⇔ xy (1 − y)+
yz (1 − z) +
zx (1 − x) ≥
3
1 + (1 − x)(1 − y)(1 − z)
xyz Now let 1 − x
x = a > 0,
1 − y
y = b > 0,
1 − z
z = c > 0 we will get
1 (a + 1)b+
1 (b + 1)c +
1 (c + 1)a ≥ 3
1 + abc now replace a → b, b → c, c → a we will get our above lemma
Problem 7 Given two triangles ABC and A0B0C0 with ares S, S0 resp prove that
aa0+ bb0+ bb0 ≥ 4√3SS0
Proof
(Xaa0)2
≥ 3(Xbb0cc0) = 12SS0(X 1
sin A sin A0) = 24SS0X 1
cos(A − A0) − cos(A + A0) ≥
≥ 24SS0X 1
1 − cos(A + A0) = 12SS
0X 1 sin2 A + A0
2
≥ 48SS0 ⇒ aa0+ bb0+ cc0 ≥ 4√3SS0
In the last inequality we easily seen P A + A0
2 = π thus they are three angle of a triangle therefore apply the inequality P 1
sin2
A ≥ 4 for them,we are done