1. Trang chủ
  2. » Giáo án - Bài giảng

Seven geometric inequalites proposed by tran quang hung

7 57 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 70,04 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Some geometric inequalitiesTran Quang Hung Problem 1.. With arbitrary triangle ABC inscribed O, incenter I and an arbitrary point M in small arc BC.. Given are4ABC orthorcenter H, circum

Trang 1

Some geometric inequalities

Tran Quang Hung Problem 1 With arbitrary triangle ABC inscribed (O), incenter I and an arbitrary point M in small arc BC Prove that MA + 2OI ≥ MB + MC ≥ MA − 2OI

Proof By the projection of vectors we have

MA2

= 2−−→

MO.−−→

MA ⇒ MA = 2−−→MO

−−→

MA MA similar

MB = 2−−→MO.−−→MB

MB, MC = 2

−−→

MO

−−→

MC MC From them we have

MB + MC − MA = 2−−→MO.(

−−→

MB

MB +

−−→

MC

MC −

−−→

MA

MA) (1)

By Cauchy-Swart inequality we have

−MO|

−−→

MB

MB +

−−→

MC

MC −

−−→

MA

MA| ≤−−→MO · (

−−→

MB

MB +

−−→

MC

MC −

−−→

MA

MA) ≤ MO|

−−→

MB

MB +

−−→

MC

MC −

−−→

MA

MA| (2)

We have MO = R, we will calculate |

−−→

MB

MB +

−−→

MC

MC −

−−→

MA

MA|

|

−−→

MB

MB +

−−→

MC

MC −

−−→

MA

MA|2

= 3 + 2(

−−→

MB

MB.

−−→

MC

MC −

−−→

MB

MB.

−−→

MA

MA −

−−→

MC

MC.

−−→

MA

MA)

= 3 + 2(cos(−−→MB,−−→

MC) − cos(−−→MB,−−→

MA) − cos(−−→MC,−−→MA))

= 3 − 2(cos A + cos B + cos C) (Because M in small arc BC)

= 3 − 2R + r

R (Here we use the well-know equality: cos A + cos B + cos C =

R + r

R )

= R

2

− 2Rr

R2

= OI

2

R2 (Here we use the Euler’s formula)

From this we have

MO|

−−→

MB

MB +

−−→

MC

MC −

−−→

MA

MA| = OI (3) Thus from (1), (2), (3) we have the inequality MA + 2OI ≥ MB + MC ≥ MA − 2OI and equality when ABC is equaliteral triangle We completed the solution

Trang 2

Problem 2 Given are4ABC orthorcenter H, circumradius R, with any M on plane find minimum value of sum

MA3

+ MB3

+ MC3

−32R · MH2

Proof By AM-GM inequality we have

MA3

R2

+ MA2

3

R + R.MA ≥ 2MA2

⇒ MA

3

R ≥ 32MA2

− R

2

2 Similar we have

MB3

R ≥ 3

2MB

2

− R

2

2 ,

MC3

R ≥ 3

2MC

2

− R

2

2 Thus

MA3

+ MB3

+ MC3

2(MA

2

+ MB2

+ MC2

) −3

2R

2

(1) Called O is circumcenter of ABC

MA2

+ MB2

+ MC2

= (−−→MO +−→OA)2

+ (−−→MO +−−→OB)2

+ (−−→MO +−→OC)2

= 3MO2

+ 2−−→MO(−→OA +−−→OB +−→OC) + 3R2

= 3MO2

+ 2−−→

MO.−−→

OH + 3R2

= 3MO2

− (OM2

+ OH2

− MH2

) + 3R2

= 2MO2

− OH2

+ MH2

+ 3R2

≥ 3R2

− OH2

+ MH2

(2)

(Here we use familiar equal of vector −→OA +−−→OB +−→OC =−−→OH)

Form (1), (2) we have

MA3

+ MB+

MC3

R ≥ 32(3R2

− OH2

+ MH2

) − 32R2

⇒ MA3

+ MB3

+ MC3

− 32R.MH2

≥ 3R3

− 32R.OH2

= const Easily seen equal when M ≡ O

Thus we have MA3

+ MB3

+ MC3

− 32R.MH2

has minimum value iff M ≡ O

Problem 3 Given are 4ABC with sides a, b, c and 4A0B0C0 with sides a0, b0, c0 and area S0 With any M on plane prove that

a02

a MA +

b02

b MB +

c02

c MC ≥ 4S0

Trang 3

Proof We well know the inequality:

Given triangle ABC and ∀x, y, z > 0 then

(x + y + z)2

4 ≥ yz sin2

A + zx sin2

B + xy sin2

C

we can replace yz → x, zx → y, xy → z we will get the inequality:

1

4(

r yz

x +

r zx

y +

r xy

z )

2

≥ x sin2

A + y sin2

B + z sin2

C(∗) Now we let

x = MBMC bc.a02 = MBMC

bc.4R02sin2

A0

y = MCMA ca.b02 = MCMA

ca.4R02sin2

B0

z = MAMB ab.c02 = MAMB

ab.4R02sin2

C0

Thus we will have:

r yz

x =

v u u u u t

MCMA ca.b02 MAMB

ab.c02

x = MBMC bc.a02

= a

0

a.b0c0MA

similar we have

r zx

y =

b0

b.c0a0MB,r xy

z =

c0

c.a0b0MC and using inequality (∗) for triangle A0B0C0 and x, y, z as above we will get

1

4( X

a,b,c

a0

a.b0c0MA)2

a,b,c

MBMC bc.4R02sin2

A0 sin2

A0 = 1 4R02(X

a,b,c

MBMC

bc )

If we use well know inequality

MB.MC

MC.MA

MA.MB

ab ≥ 1 then we get the consequence inequality:

1

4( X

a,b,c

a0

a.b0c0MA)2

≥ 4R102

0

a.b0c0MA + b

0

b.c0a0MB + c

0

c.a0b0MC ≥ R10

⇔ a

02

a MA +

b02

b MB +

c02

c MC ≥ a

0b0c0

R0 = 4S0

Easily seen we have equal when 4A0B0C0 ∼ 4ABC and M ≡ H(Orthocenter of triangle ABC)

Trang 4

Remark This inequality have some nice applycations

• If 4A0B0C0 ≡ 4ABC we get the well know inequality aMA + bMB + cMC ≥ 4S

• If 4A0B0C0 ≡ 4JaJbJc with Ja, Jb, Jc are three excenter of triangle ABC with noitice a0 = 4R cosA

2, b

0 = 4R cosB

2, c

0 = 4R cosC

2 and S

0 = 2SR

r we will get the nice inequality cot A

2MA + cot

B

2MB + cot

C

2MC ≥ a + b + c

• If 4A0B0C0 ≡ 4BCA we will get the non symmetry inequality

b2

aMA +

c2

b MB +

a2

c MA ≥ 4S There are some nice other inequality is a consequence of this inequatlity

Problem 4 Let M be an arbitrary point inside equaliteral triangle ABC.Find min value of

1

MA+

1

MB +

1 MC Proof We can assume ABC is an equaliteral triangle with side 1,let barycentric coordinates of M

is (x, y, z), x + y + z = 1 because M inside triangle ⇒ x, y, z > 0 By distance formula we have

MA2

= y + z

x + y + za

2

− yz + zx + xy(x + y + z)2 a2

= by x + y + z = 1 and a = 1 ⇒ MA = py2+ yz + z2, similarly MB =√

z2 + zx + x2, MC =px2+ xy + y2 therefore we need find min value of

1

py2+ yz + z2 +√ 1

z2 + zx + x2 + 1

px2+ xy + y2

when x, y, z > 0, x + y + z = 1, we will solve it with Lagrange multipliers

WLOG 0 ≤ x ≤ y ≤ z < 1

Case 1: x = 0 we have to prove

f (y, z) = 1

py2+ yz + z2 + 1

y +

1

z ≥ 4 + 2

√ 3 3 indeed

f (y, z) ≥ f(√yz,√

yz) ≥ f(y + z

2 ,

y + z

2 ) = 4 +

2√ 3 3 Case 2: 0 < x ≤ y ≤ z < 1

F (x, y, z, λ) =X 1

px2+ xy + y2 + λ(x + y + z − 1)

Trang 5

∂x = 0 ,

∂F

∂y = 0 ,

∂F

∂z = 0 , then

−12

"

2x + y p(x2+ xy + y2)3 + 2x + z

p(z2+ zx + x2)3

# + λ = 0

−1 2

"

2y + x p(x2+ xy + y2)3 + 2y + z

p(y2+ yz + z2)3

# + λ = 0

−1 2

"

2z + x p(z2+ zx + x2)3 + 2z + y

p(y2+ yz + z2)3

# + λ = 0 Adding

λ = 1 2

"

x + y p(x2+ xy + y2)3 + y + z

p(y2+ yz + z2)3 + z + x

p(z2+ zx + x2)3

#

Inserting λ in first we get

p(x2+ xy + y2)3 = 1

p(y2+ yz + z2)3

Similarly

p(x2+ xy + y2)3 = 1

p(z2+ zx + x2)3

p(x2+ xy + y2)3 = 1

p(x2+ xy + z2)3

Hence

y2

(z2

+ zx + x2

)3

= z2

(x2

+ xy + y2

)3

We put y = ax, z = bx, where 1 ≤ a ≤ b

a2

(b2

+ b + 1)3

= b2

(a2

+ a + 1)3

we get a = b Hence y = z as necessary for critical points in the interior of the region 0 < x, y, z < 1

We have to prove

2

px2+ xy + y2 + 1

y√

3 ≥ 4 + 2

√ 3 3 where x + 2y = 1

p3y2

− 3y + 1 +

1

y√

3 ≥ 4 +2

√ 3 3 where

1

3 ≤ y ≤ 12

Trang 6

since x ≤ y ≤ z By differentiation it is easily checked that the absolute minimum of g(y) on  13,1

2



is 4 + 2

3

3 = g(1/2).

Thus 1

MA +

1

MB +

1

MC get min value ⇔ M(1

2,

1

2, 0)and others permutation ⇔ M concur three midpoint of three side

Problem 5 Suppose a, b, c are sidelengths of a triangle and ma, mb, mc are its medians Prove the inequality

ma

a2 + mb

b2 + mc

c2 ≥

√ 3(a2

+ b2

+ c2

) 2abc Proof This inequality equivalent

(mabc

a +

mbca

b +

mcab

c )

2

≥ 34(a2

+ b2

+ c2

)2

we have

(mabc

a +

mbca

b +

mcab

c )

2

≥ 3(X(mbca).(mbc cab)) = 3(Xa2

mbmc)

we will prove

3(Xa2

mbmc) ≥ 34(a2

+ b2

+ c2

)2

⇔ 4(Xa2

mbmc) ≥ (a2

+ b2

+ c2

)2

Indeed turn into triangle with three side ma, mb, mc we need prove:

X

4m2 a

3

4b

3

4c ≥ (m2

a+ m2

b + m2

c)2

⇔X(2(b2

+ c2

) − a2

)bc ≥ (a2

+ b2

+ c2

)2

by equivalent tranformation we have

⇔X12(a2

− (b − c)2

)(b − c)2

≥ 0 which is true because a > |b − c|, b > |c − a|, c > |a − b| with any triangle ABC

Problem 6 Let triangle ABC and X, Y, Z are arbitrary points on segment BC, CA, AB Prove that

1

SAY Z

SBZX

SCXY ≥ S 3

XY Z

Lemma 6.1 Let a, b, c > 0 be positive real numbers then

1 a(1 + b) +

1 b(1 + c) +

1 c(1 + a) ≥ 1 + abc3 Proof We have

(1 + abc)( 1

a(1 + b) +

1 b(1 + c) +

1 c(1 + a)) + 3 =

X 1 + a a(1 + b)+

Xb(c + 1)

1 + b ≥ √33

abc + 3

3

√ abc ≥ 6

So we are done.In fact the ineq could be better and stronger as

1 a(1 + b)+

1 b(1 + c)+

1 c(1 + a) ≥ √3 3

abc(1 +√3

abc)

Trang 7

Proof We let BX

BC = x,

CY

CA = y,

AZ

AB = z, SABC = S, 0 < x, y, z < 1 we will have

SAY Z

S = z(1 − y),SBZX

S = x(1 − z),SCXY

S = y(1 − x) Thus we have

SXY Z = S −SAY Z−SBZX−SCXY = S −S(z(1−y)+x(1−z)+y(1−x)) = S(xyz−(x−1)(y−1)(x−1)) Thus we need to prove

1

SAY Z

SBZX

SCXY ≥ 3

SXY Z

z(1 − y)+

S x(1 − z) +

S y(1 − x) ≥

3S xyz + (1 − x)(1 − y)(1 − z)

⇔ xy (1 − y)+

yz (1 − z) +

zx (1 − x) ≥

3

1 + (1 − x)(1 − y)(1 − z)

xyz Now let 1 − x

x = a > 0,

1 − y

y = b > 0,

1 − z

z = c > 0 we will get

1 (a + 1)b+

1 (b + 1)c +

1 (c + 1)a ≥ 3

1 + abc now replace a → b, b → c, c → a we will get our above lemma

Problem 7 Given two triangles ABC and A0B0C0 with ares S, S0 resp prove that

aa0+ bb0+ bb0 ≥ 4√3SS0

Proof

(Xaa0)2

≥ 3(Xbb0cc0) = 12SS0(X 1

sin A sin A0) = 24SS0X 1

cos(A − A0) − cos(A + A0) ≥

≥ 24SS0X 1

1 − cos(A + A0) = 12SS

0X 1 sin2 A + A0

2

≥ 48SS0 ⇒ aa0+ bb0+ cc0 ≥ 4√3SS0

In the last inequality we easily seen P A + A0

2 = π thus they are three angle of a triangle therefore apply the inequality P 1

sin2

A ≥ 4 for them,we are done

Ngày đăng: 03/05/2018, 12:17

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w