1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Toán 11 file 2 đáp án và lược giải

47 90 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 47
Dung lượng 0,98 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TRƯỜNG THPT QUANG TRUNGĐáp án và lược giảiTOÁN TRẮC NGHIỆM 11 LƯỢNG GIÁC Bài 1... Vậy thiết diện của hình chóp tạo bởi MNP là tứ giác  MNPQ.E E A S Hình chóp S.ABCD có 5 mặt nên

Trang 1

TRƯỜNG THPT QUANG TRUNG

Đáp án và lược giảiTOÁN TRẮC NGHIỆM 11

LƯỢNG GIÁC Bài 1 Phương trình lượng giác

2sin cos 1sin 2 1

t t

Trang 2

x x

76

26

Trang 3

x k

k x k

Trang 4

212

Trang 5

x x

Trang 6

2

x k x

Trang 8

2 2 2

25

21

m

m m

 

Trang 9

GIẢI TÍCH TỔ HỢP Bài số 1:Quy tắc đếm cơ bản

Gọi abcde là số cần tìm

TH1: e  0 có 1 cách chọn, , ,

a b c d có 4! Cách chọn

TH2: e 0 e có 2 cách chọn0,

Trang 10

9 A (Sửa đề: bỏ món bò nướng lá cách)

5.3 + 5.2 + 3.2 = 31 món

Gọi abcdef là số cần tìmTH1: f  5 a Có 6 1.4.A cách chọn84

Trang 11

4 C

+ a đứng cuối có 1 cách chọn+ b,c,d,e,f có 5! Cách chọnVậy có 1.5! = 120 cách chọn

y x y x

x x

Trang 13

Số hạng chứa x tương ứng với 6 k 3

Vậy hệ số của số hạng chứa x là 6 C 63 13 20

Trang 14

Vậy xác suất để X, Y không trở về tay trắng là:

130

Trang 15

Vậy

 

116

Trang 16

1 2 4

13

2 3 1

23

G

G

x y

Trang 17

17 2

Trang 18

10 C

2 2

3 4 2

33

Trang 20

4 3 2

33

G

G

x y

Trang 21

C' B'

A'

D C

 2

1

8 2 1 12 8 22

Trang 22

N M

B A

2;11; 2

a

b

n n

CÂU ĐÁP

I N

M

D

C B

A

Trang 23

K H

P

N M

S

A

D O

Trong (SAC), gọi E IP SOEMNP  SBD

M

D

C B

A

,

IP ADACD nên IPAD Q

Trang 24

Vậy thiết diện của hình chóp tạo bởi MNP là tứ giác MNPQ.

E E

A

S

Hình chóp S.ABCD có 5 mặt nên thiết diện không thể có sáu cạnh

Trang 25

Bài số 2: Hai đường thẳng chéo nhau

C B

hoặc chéo nhau

Trang 26

C B

Trang 27

3 B D

A

B

C

Có duy nhất một mặt phẳng chứa d và và qua A; B

(6) Nếu mp(P) chứa a thì có thể (P) song song với b

chéo nhau

GIỚI HẠN – CẤP SỐ Bài số 1 Dãy số

Trang 28

u d

Trang 29

v q

u d

Trang 30

21

Trang 31

9 10

11

Trang 32

n n

Trang 33

Bài 1 Định nghĩa và ý nghĩa của đạo hàm

hoành độ tiếp điểm), hệ số của đường thẳng là Ta có

Trang 34

m

m m

Trang 35

x

x x

2 2

Trang 37

Suy ra BC và AD không vuông góc

Suy ra AH và DK chéo nhau

Vậy A, B, D đều sai

song song là phát biểu sai

Cho điểm O và đường thẳng a Khi đó, tồn tại duy nhất một mặt phẳng(P) đi qua O và vuông góc với đường thẳng a Lí luận về tính duy nhấtnày được dựa trên kết quả: “Hai đường thẳng phân biệt cùng đi qua mộtđiểm và vuông góc với một đường thẳng thì cùng nằm trong một mặtphẳng.”

5

Trong không gian, tập hợp các điểm cách đều ba đỉnh của một tam giác làđường thẳng vuông góc với mặt phẳng chứa tam giác tại tâm đường tròn ngoại tiếp của tam giác đó

Trang 38

Bài số 4: Hai mặt phẳng vuông góc

a

a

C D

B A

Trang 39

+ EF=A+

Trang 40

E B

S

C

D A

Trang 41

Suy ra (P) cắt hình chóp theo thiết diện là hình thang IMFE

Hơn nữa MF ∥ SA nên{MF MF ⊥ EF ⊥ ℑ

Vậy thiết diện là hình thang vuông

x

y

N M

x

C B

Trang 42

Bài số 5: Khoảng cách CÂU ĐÁP

13

10 5

3 2

ABCD

7 2

Trang 43

B A

Trang 44

4 B

M S

A

B

C

a 2 2

C

D A

d BB AC  d BB ACC A   d B ACC A  BI

(Với BIAC I, AC)Vậy d BB AC ,  BI 2ab 2

Trang 46

8 D

2a a

3 2

ABCD

7 2

d A BCD  

Trang 47

10 C Khoảng cách giữa hai đường thẳng chéo nhau a và b chính là khoảng

cách ngắn nhất giữa hai đường đấy

Ngày đăng: 02/05/2018, 12:48

🧩 Sản phẩm bạn có thể quan tâm

w