HƯỚNG DẪN ÔN TẬP CHƯƠNG II – HÌNH 10 CHUẨNI.. PHƯƠNG TRÌNH ĐƯỜNG THẲNG: A.. Kiến thức cần nhớ: 1.. VTCP vectơ chỉ phương: kí hiệu: ur; VTPT vectơ pháp tuyến: kí hiệu: r n 2.
Trang 1HƯỚNG DẪN ÔN TẬP CHƯƠNG II – HÌNH 10 (CHUẨN)
I PHƯƠNG TRÌNH ĐƯỜNG THẲNG:
A Kiến thức cần nhớ:
1 VTCP (vectơ chỉ phương): kí hiệu: ur; VTPT (vectơ pháp tuyến): kí hiệu: r
n
2 Đt d: ��
�
�
r
Co�VTCP u (a; b)
�i qua�ie�mM (x ; y ) Suy ra: PTTS của đt d là:
�
�
�
0
0
x x at
y y bt (t là tham số)
3 Nếu đt d có VTCP u (a; b)thì hệ số góc của đt d là: r k b
a
4 Đt d: ��
�
�
r
Co�VTPT n (a; b)
�i qua�ie�mM (x ; y ) Suy ra: PTTQ của đt d là: a(x – x0) + b(y – y0) = 0
5 Nếu đt d có PTTS: �
�
�
0
0
x x at
y y bt thì đt d có VTCP là: ru (a; b)và VTPT là n ( b;a)r
6 Nếu đt d có PTTQ: ax + by + c = 0 thì đt có VTPT là: n (a; b)và VTCP là r u ( b;a)r
7 PT đường thẳng theo đoạn chắn:
Nếu đt d đi qua 2 điểm M(a; 0), N(0; b) thì PT đt d có dạng: x y 1
a b
8 Nếu đt d có PTTS là: �
�
�
0
0
x x at
y y bt thì đt d có PTTQ là:
0 0
a b (với a, b đều khác 0)
9 Cho 1:ax by c 0 và 1 1 1 2:a x b y c2 2 2 0
a) Nếu 1 � 1
a b thì 1 cắt 2 hoặc Nếu hệ PT: �
�
�
a x b y c có n0 thì 1 cắt 2
b) Nếu 1 1 � 1
a b c thì 1 // 2 hoặc Nếu hệ PT: �
�
�
a x b y c vô n0 thì 1 // 2
c) Nếu 1 1 1
a b c thì 1 � 2 hoặc Nếu hệ PT: �
�
�
a x b y c vô số n0 thì 1 � 2
10 Cho 1:ax by c 0 có VTPT 1 1 1 uurn (a ;b )1 1 1
và 2:a x b y c2 2 2 0có VTPT uurn2 (a ;b )2 2
Góc giữa 2 đt 1 và 2 là:
uur uur uur uur1 2 1 2 1 2
( , ) cos
n n a b a b
11 * Nếu 1 2� nuur uur1n � a2 1a2 + b1b2 = 0
* Nếu 1:y k x m và 1 1 2:y k x m thì 2 2 1 2� k1.k2 = – 1
12 Cho điềm M0(x0; y0) và đt : ax + by + c = 0
Khoảng cách từ điểm M0 đến đt d là:
d(M , )
B Bài tập mẫu:
Bài tập 1: Lập PTTS của đt d, biết:
a) d đi qua điểm M(2; -3) và có VTCP u ( 5;4)r
b) d đi qua điểm M(-5; 6) và có VTPT n (7; 1)r
Trang 2c) d đi qua điểm C(5; -1) và có hệ số góc k = 3 d) d đi qua 2 điểm A(3; -4) và B(-5; 2)
�
�iqua�ie�mM(2; 3) co�VTCP u ( 5;4) �PTTS của đt d là:
�
�
�
x 2 5t
y 3 4t b) Đt d có VTPT n (7; 1) �đt d có VTCP là: r u (1;7)r
�
�iqua�ie�mM( 5;6)
co�VTCP u (1;7) �PTTS của đt d là:
�
�
�
y 6 7t c) Đt d có hệ số góc k = 3 �đt d có VTCP là: ru (1;3)
�
�iqua�ie�mC(5; 1)
co�VTCP u (1;3) �PTTS của đt d là:
�
�
�
x 5 t
y 1 3t d) Đt d có VTCP r uuuru AB ( 8;6)
�
�iqua�ie�mA(3; 4)
co�VTCP u ( 8;6) �PTTS của đt d là:
�
�
�
x 3 8t
y 4 6t
Ghi nhớ: a) Nếu có hệ số góc k thì có VTCP là: u (1;k)r
b) Nếu có VTPT n (a; b) thì r có VTCP là: u ( b;a)r
Bài tập 2: Lập PTTQ của đt , biết:
a) đi qua điểm A(-7; 2) và có VTPT n ( 8;3) r
b) đi qua điểm B(4; -6) và có VTCP ru (7; 9)
c) đi qua điểm D(2; -3) và có hệ số góc k = -2 d) đi qua 2 điểm M(3; 2) và N(-7; 4)
�
�iqua�ie�mA( 7;2) co�VTPT n ( 8;3)
�PTTQ của đt là: – 8(x + 7) + 3(y – 2) = 0 hay – 8x + 3y – 62 = 0
b) Đt có VTCP u (7; 9) �đt r có VTPT là: n (9;7)r
�
�iqua�ie�mB(4; 6)
co�VTPT n (9;7)
�PTTQ của đt là: 9(x – 4) + 7(y + 6) = 0 hay 9x + 7y + 6 = 0
c) * Cách 1: Đt có hệ số góc k = –2 � có VTCP u (1; 2) �r có VTPT n (2;1)r
�
�iqua�ie�mD(2; 3)
co�VTPT n (2;1)
�PTTQ của đt là: 2(x – 2) + 1(y + 3) = 0 hay 2x + y – 1 = 0
* Cách 2: PT đt có hệ số góc k = –2 �PTTQ của đt có dạng: y = –2x + b
Mà đt đi qua điểm D(2; –3) nên: –3 = –2.2 + b �b = 1
Vậy: PTTQ của đt là: y = –2x + 1 hay 2x + y – 1 = 0
d) Đt có VTCP r uuuuru MN ( 10;2) �đt có VTPT n (2;10)r
Đt : �
�
�iqua�ie�mM(3;2)
co�VTPT n (2;10)
�PTTQ của đt là: 2(x – 3) + 10(y – 2) = 0 hay 2x + 10y – 26 = 0 hay x + 5y – 13 = 0
Bài tập 3: Lập PTTS của đt , biết:
a) đi qua điểm A(3; –2) và song song với đường thẳng d: 2x – 3y – 3 = 0
b) đi qua điểm B(– 4; 5) và vuông góc với đường thẳng d: 3x + y – 7 = 0
Trang 3c) đi qua điểm C(1; – 4) và song song với đt d: x 3 5t
y 7t
�
�
� d) đi qua điểm D(– 6; 7) và vuông góc với đt d: x 2 t
y 3 6t
�
�
�
Giải: a) VTPT của đt d là: n (2; 3)r �VTCP của đt là: u (3;2)r
Đt : �iqua�ie�mA(3; 2)
co�VTCP u (3;2)
�
�
y 2 2t
�
�
� b) VTPT của đt d là: n (3;1)r �VTCP của đt là: u (3;1)r
Đt : �iqua�ie�mB( 4;5)
co�VTCP u (3;1)
�
�
y 5 t
�
�
� c) VTCP của đt d là: u ( 5;7)r �VTCP của đt là: u ( 5;7)r
Đt : �iqua�ie�mC(1; 4)
co�VTCP u ( 5;7)
�
�
y 4 7t
�
�
� d) VTCP của đt d là: u (1;6)r �VTCP của đt là: u (6; 1)r
Đt : �iqua�ie�mD( 6;7)
co�VTCP u (6; 1)
�
�
y 7 t
�
�
�
Bài tập 4: Lập PTTQ của đt , biết:
a) đi qua điểm M(–1; 5) và song song với đường thẳng d: 3x – 4y + 7 = 0
b) đi qua điểm N(7; 9) và vuông góc với đường thẳng d: x + 2y – 12 = 0
c) đi qua điểm E(2; – 4) và song song với đt d: x 1 3t
y 2 5t
�
�
� d) đi qua điểm F(–3; –8) và vuông góc với đt d: x 5 t
y 3 4t
�
�
�
Giải: a) * Cách 1: VTPT của d là: n (3; 4)r �VTPT của đt là: n (3; 4)r
Đt : �iqua�ie�mM( 1;5)
co�VTPT n (3; 4)
�
�
� r �PTTQ của đt là: 3(x + 1) - 4(y - 5) = 0 hay 3x - 4y + 23 = 0
* Cách 2: Đt song song với đt d nên PTTQ của đt có dạng: 3x – 4y + C = 0
Mà: đt đi qua điểm M(–1; 5), nên: 3.( –1) – 4.5 + C = 0 �– 23 + C = 0 �C = 23
Vậy: PTTQ của đt cần tìm là: 3x – 4y + 23 = 0
b) * Cách 1: VTPT của đt d là: n (1;2)r �VTPT của đt là: n (2; 1)r
Đt : �iqua�ie�mN(7;9)
co�VTPT n (2; 1)
�
�
� r �PTTQ của đt là: 2(x – 7) – 1(y – 9) = 0 hay 2x – y – 5 = 0
* Cách 2: Đt vuông góc với đt d nên PTTQ của đt có dạng: 2x – y + C = 0
Mà: đt đi qua điểm N(7; 9), nên: 2.7 – 9 + C = 0 �5 + C = 0 �C = –5
Vậy: PTTQ của đt cần tìm là: 2x – y – 5 = 0
c) VTCP của đt d là: u ( 3;5)r �VTPT của đt là: n (5;3)r
Đt : �iqua�ie�mE(2; 4)
co�VTPT n (5;3)
�
�
� r �PTTQ của đt là: 5(x - 2) + 3(y + 4) = 0 hay 5x + 3y + 2 = 0
Trang 4d) VTCP của đt d là: u (1; 4)r �VTPT của đt là: n (1; 4)r
Đt : �iqua�ie�mF( 3; 8)
co�VTPT n (1; 4)
�
�
� r �PTTQ của đt là: 1(x + 3) - 4(y + 8) = 0 hay x - 4y - 29 = 0
Bài tập 5: Lập PT của đt d, biết:
a) d đi qua 2 điểm A(3; 0) và B(0; –5) b) d đi qua 2 điểm M(– 4; 0) và N(0; 7)
Giải: a) PT đt d là: x y
1
3 5 � 5x – 3y – 15 = 0 b) PT đt d là: x y
1
4 7
� –7x + 4y – 28 = 0
Bài tập 6: Cho ABC có A(– 4; 1), B(2; 4), C(6; –2)
a) Tính cosA, từ đó suy ra số đo góc A của
b) Viết PTTQ của các cạnh AB, BC của
c) Viết PTTQ đường trung tuyến AM và đường cao AH của
d) Viết PTTQ đường trung trực của cạnh BC của
Giải: a) Ta có: ABuuur = (6; 3), ACuuur = (10; –3)
AB.AC 6.10 3.( 3)
AB AC 6 3 10 ( 3)
uuur uuur
b) * Cạnh AB có VTCP u AB (6;3)r uuur �cạnh AB có VTPT là: n (3; 6)r
Suy ra: cạnh AB: �iqua�ie�mA( 4;1)
co�VTPT n (3; 6)
�
�
� PTTQ của cạnh AB là: 3(x + 4) – 6(y – 1) = 0 hay 3x – 6y + 18 = 0
* Cạnh BC có VTCP u BC (4; 6)r uuur �cạnh BC có VTPT là: n (6;4)r
Suy ra: cạnh BC: �iqua�ie�mB(2;4)
co�VTPT n (6;4)
�
�
� PTTQ của cạnh BC là: 6(x – 2) + 4(y – 4) = 0 hay 6x + 4y – 28 = 0 hay 3x + 2y – 14 = 0 c) * M là trung điểm của BC �M(4; 1)
Trung tuyến AM có VTCP u AM (8;0)r uuuur �t tuyến AM có VTPT là: n (0;8)r
Suy ra: trung tuyến AM: �iqua�ie�mA( 4;1)
co�VTPT n (0;8)
�
�
� PTTQ của t tuyến AM là: 0(x + 4) + 8(y – 1) = 0 hay 8y – 8 = 0 hay y – 1 = 0
* Đường cao AH vuông góc với BC nên đ cao AH có VTPT n BC (4; 6)r uuur
Suy ra: đường cao AH: �iqua�ie�mA( 4;1)
co�VTPT n (4; 6)
�
�
� PTTQ của đường cao AH là: 4(x + 4) – 6(y – 1) = 0 hay 4x – 6y + 22 = 0
d) Gọi M là trung điểm của BC �M(4; 1)
Đường trung trực của BC thì vuông góc với BC nên đ.t trực của BC có VTPT là: n (4; 6)r Suy ra: đường trung trực của BC: �iqua�ie�mM(4;1)
co�VTPT n (4; 6)
�
�
� PTTQ của đường t trực của BC là: 4(x – 4) – 6(y – 1) = 0 hay 4x – 6y – 10 = 0
Trang 5Bài tập 7: Xét vị trí tương đối giữa hai đường thẳng sau:
a) d: 4x + 5y – 6 = 0 và x 6 5t
d :
y 2 4t
�
��
� b) : x 1 4t
y 2 2t
�
�
� và � : 2x + 4y – 10 = 0 c) d: x + y – 2 = 0 và d�: 2x + y – 3 = 0
�– 4x – 5y – 14 = 0
Ta thấy: 4 5 6
Vậy: Hai đt d và d� song song với nhau
b) PTTQ của đt là: x 1 y 2
�2x + 4y – 10 = 0
Ta thấy: 2 4 10
Vậy: Hai đt và � trùng nhau c) Ta thấy: 1 1
2 1� Vậy: Hai đt d và d� cắt nhau
Ta có: x y 2
2x y 3
�
�
x 1
y 1
�
�
� Vậy: Tọa độ giao điểm của d và d�là: M(1; 1)
Bài tập 8: Tìm số đo của góc giữa hai đt sau:
a) d1: x – 2y + 5 = 0 và d2: 3x – y = 0
b) : 2x + 3y – 1 = 0 và 1 : 3x – 5y + 2 = 02
Giải: a) VTPT của 2 đt d1 và d2 lần lượt là: n (1; 2)uur1 và nuur2(3; 1)
Gọi là góc giữa hai đt d1 và d2, ta có:
cos = 1 2
2
n n 1 ( 2) 3 ( 1)
uur uur
b) VTPT của 2 đt và 1 lần lượt là: 2 n (2;3)uur1 và nuur2(3; 5)
Gọi là góc giữa hai đt và 1 , ta có: 2
cos = 1 2
n n 2.3 3.( 5)
0,4281
n n 2 3 3 ( 5)
uur uur
Bài tập 9: Tính khoảng cách từ điểm đến đường thẳng được cho tương ứng như sau:
a) d: 4x + 3y + 1 = 0 và A(-3; 5) b) : – 2x + 5y – 1 = 0 và B(1; -2)
Giải: a) Ta có: d(A, d) = 4.( 3) 3.5 1 42 2
5
4 3
b) d(B, ) = 2.1 5.( 2) 12 292 2
29 ( 2) 5
Bài tập 10: Cho PTTS của đường thẳng : x 3t 1
y 1 2t
�
�
a) Tìm điểm M nằm trên và cách điểm A(10; -7) một khoảng bằng 10
b) Tìm điểm N trên sao cho AN ngắn nhất
c) Tìm tọa độ giao điểm của đường thẳng và đường thẳng d: x – 3y + 5 = 0
Giải: a) Ta có: M� �M(3t + 1; -1 + 2t) và AM (3t 9;2t 6)uuuur
Mà: AM = 10 � AM2 = 100 � (3t – 9)2 + (2t + 6)2 = 100
Trang 6� 9t2 – 54t + 81 + 4t2 + 24t + 36 = 100 � 13t2 – 30t + 17 = 0 �
t 1 17 t 13
�
�
�
� Vậy: M1(4; 1), M2(64 21
;
13 13) b) Ta có: N� �N(3t + 1; -1 + 2t) và AN (3t 9;2t 6)uuur ; VTCP của đt là: u (3;2)r
Để AN ngắn nhất � AN uuuurr � AN.u 0uuur r � 3(3t – 9) + 2(2t + 6) = 0
� 9t – 27 + 4t + 12 = 0 � 13t = 15 � t = 15
13 Vậy: N(
58 17
;
13 13) c) PTTQ của đường thẳng là: x 1 y 1
� 2x – 3y – 5 = 0
Ta có: 2x 3y 5 0
x 3y 5 0
�
�
2x 3y 5
�
�
x 10
y 5
�
�
� Vậy: Tọa độ giao điểm của và d là: M(10; 5)
Bài tập 11: Cho 2 đt d1: (m – 2)x + 3y + 1 = 0 và d2: 4x – (2m – 3)y – 5 = 0 Định m để hai đt
d1 và d2 vuông góc với nhau
Giải: Ta có: VTPT của 2 đt d1 và d2 lần lượt là: n (m 2;3)uur1 và nuur2(4; 2m 3)
Đề 2 d1d2 � nuur uur1n2 � n nuur uur1 20� 4(m – 2) + 3(– 2m + 3) = 0 � – 2m = – 1 � m = 1
2
Bài tập 12: Tìm bán kính của đường tròn tâm E(5; -7) tiếp xúc với đường thẳng
: 12x – 5y + 3 = 0
Giải: Bán kính R của đường tròn là:
R = d(E, ) = 12.5 5.( 7)2 2 1395
12 ( 5)
C Bài tập tự luyện:
Bài tập 1: Lập PTTS, PTTQ của đt d, biết:
a) d đi qua M(2; 1) và có vectơ chỉ phương u (3;4)r
b) d đi qua điểm M(-2; 3) và có vectơ pháp tuyến là nr= (4; -2)
c) Đi qua điểm B(-5; -8) và có hệ số góc k = -3
d) d đi qua 2 điểm A(7; 4) và B(3; -2)
Bài tập 2: Lập PTTQ của đt , biết:
a) đi qua điểm A(5; -3) và có VTPT n (12; 7)r
b) đi qua điểm B(-6; 2 ) và có VTCP u ( 1;4)r
c) đi qua điểm D(7; 9) và có hệ số góc k = 1
2
d) đi qua 2 điểm M(-2; -7) và N(11; -3)
Bài tập 3: Lập PTTS và PTTQ của đt , biết:
a) đi qua điểm A(-5; 7) và song song với đường thẳng d: 4x + y – 6 = 0
b) đi qua điểm B(2; -12) và vuông góc với đường thẳng d: -5x + 3y + 2 = 0
c) đi qua điểm C(-5; 3) và song song với đt d: x 2 7t
y 1 t
�
�
�
Trang 7d) đi qua điểm D(4; -1) và vuông góc với đt d: x 7 2t
y 8 5t
�
�
�
Bài tập 4: Lập PTTQ của đt , biết:
a) đi qua điểm M(2; -3) và song song với đường thẳng d: 2x – 5y + 7 = 0
b) đi qua điểm N(-5; -1) và vuông góc với đường thẳng d: -3x + 6y – 7 = 0
c) đi qua điểm E(7; 3) và song song với đt d: x 3 9t
y 1 2t
�
�
� d) đi qua điểm F(–13; 8) và vuông góc với đt d: x 7 2t
y 6 5t
�
�
�
Bài tập 5: Lập PT của đt d, biết:
a) d đi qua 2 điểm A(-5; 0) và B(0; 6)
b) d đi qua 2 điểm M(3; 0) và N(0; -8)
Bài tập 6: Cho ABC có A(6; -2), B(4; -10), C(3; 1)
a) Tính cosB, từ đó suy ra số đo góc B của
b) Viết PTTQ của các cạnh AB, BC, AC của
c) Viết PTTQ đường trung tuyến CM và đường cao BH của
d) Viết PTTQ đường trung trực của cạnh AB của
Bài tập 7: Xét vị trí tương đối giữa hai đường thẳng sau:
a) d: 4x – 10y + 1 = 0 và d�: x + y + 2 = 0
b) : 12x – 6y + 10 = 0 và � : �� �x 5 ty 3 2t
c) d: 8x +10y – 12 = 0 và d�: x 6 5t
y 6 4t
�
�
�
Bài tập 8: Tìm số đo của góc giữa hai đt sau:
a) d1: 4x – 2y + 6 = 0 và d2: x – 3y + 1 = 0
b) : x + 2y + 4 = 0 và 1 : 2x – y + 6 = 02
Bài tập 9: Tính khoảng cách từ điểm đến đường thẳng được cho tương ứng như sau:
a) d: 4x + 3y + 1 = 0 và A(3; 5)
b) : 3x – 4y – 26 = 0 và B(1; -2)
c) m: 3x + 4y – 11 = 0 và C(1; 2)
Bài tập 10: Cho PTTS của đường thẳng : x 2 2t
y 3 t
�
�
a) Tìm điểm M nằm trên và cách điểm A(0; 1) một khoảng bằng 5
b) Tìm điểm N trên sao cho AN ngắn nhất
c) Tìm tọa độ giao điểm của đường thẳng và đường thẳng d: x + y + 1 = 0
Bài tập 11: Cho 2 đt d1: 5x – 2(m + 4)y + 1 = 0 và d2: (3m – 1)x – 6y – 7 = 0 Định m để hai
đt d1 và d2 vuông góc với nhau
Bài tập 12: Tìm bán kính của đường tròn tâm C(-2; -2) tiếp xúc với đường thẳng
: 5x + 12y – 10 = 0