12 Tìm m để phương trình có nghiệm dựa vào đồ thị có sẵn của hàm trùng phương x 13 Tìm max, min của hàm vận tốc dựa vào bài toán quãng đường x 29 Tìm tham số để hàm phân thức chứa căn
Trang 112 Tìm m để phương trình có nghiệm dựa
vào đồ thị có sẵn của hàm trùng phương
x
13 Tìm max, min của hàm vận tốc dựa vào
bài toán quãng đường
x
29 Tìm tham số để hàm phân thức chứa căn
có 2 tiệm cận đứng
x
30 Bài toán chứa tham số về tính đơn điệu
của hàm lượng giác.
Trang 2Lôgarit
8 15 Giải bất phương trình logarit x
16 Hỏi mệnh đề đúng sai về hàm logarit x
31 Biểu diễn logarit theo logarit khác x
32 Phương trình mũ chứa tham số giải bằng
đặt nhân tử chung
x
44 Tìm tham số m liên quan max, min của
hàm logarit chứa 2 ẩn thỏa mãn điều kiện cho trước
6 6 Hỏi nguyên hàm hàm lũy thừa x
17 Tính nguyên hàm hàm lũy thừa thỏa mãn
điều kiện cho trước
34 Tính tích phân bằng phương pháp đổi
biến số kết hợp với tích phân hàm phân thức hữu tỉ
x
45 Ứng dụng diện tích hình phẳng vào việc
đọc thông tin trên đồ thị của đạo hàm
20 Biểu diễn hình học số phức dựa vào điều
kiện cho trước
x
Trang 335 Tính diện tích hình biểu diễn cho số phức
thỏa mãn điều kiện cho trước
x
46 Tính max của mô đun số phức thỏa mãn
điều kiện cho trước.
21 Tính thể tích khối chóp tam giác nằm
trong hình hộp chữ nhật
x
22 Diện tích toàn phần của hình nón. x
36 Tính bán kính mặt cầu ngoại tiếp chóp có
1 mặt bên vuông góc với mặt đáy và chóp nằm trong lăng trụ
x
37 Tính khoảng cách từ 1 điểm đến 1 mặt
phẳng dựa vào thể tích của hình chóp tam giác biết độ dài 3 cạnh và độ lớn 3 góc tại 1 đỉnh
x
38 Khoảng cách giữa hai đường thẳng chéo
nhau trong chóp tam giác đều
8 Rút gọn hệ thức véc tơ tìm tọa độ điểm X
10 Viết phương trình mặt cầu biết tâm và bán x Hình học
Trang 424 Xác định tham số để đường thẳng nằm
trong mặt phẳng
x
39 Viết phương trình đường thẳng liên quan
mặt phẳng và điều kiện tích vô hướng của hai véc tơ
x
49 Viết phương trình đường thẳng liên quan
mặt cầu dựa vào hình vẽ
25 Bài toán xác suất liên hệ thực tế x
42 Tìm số hạng nguyên trong khai triển
Trang 550 50
PHẦN 1 CÂU HỎI NHẬN BIẾT.
Câu 1: Cho hàm số f x có bảng biến thiên dưới đây Mệnh đề nào sau đây là sai?
A. Hàm số nghịch biến trên khoảng ; 1 B. Hàm số nghịch biến trên khoảng0;1
C. Hàm số đồng biến trên khoảng 0; D. Hàm số đồng biến trên khoảng 1;
Câu 2: Đường cong trong hình bên là đồ thị của hàm số nào
x
Trang 63
3
43ln x
Câu 10: Trong không gian với hệ tọa độOxyz, cho mặt cầu S có tâm I nằm trên tia Ox
bán kính bằng 3 và tiếp xúc với mặt phẳngOyz Viết phương trình mặt cầu S
A. x2y2z 32 9 B. x2y2z32 9
C. x 32y2z2 3 D. x 32y2z2 9
CÂU HỎI NHẬN BIẾT.
Câu 11: Trên đoạn ; 4
y x x có đồ thị như hình bên dưới Với
giá trị nào của tham số m thì phương trình x4 2x2 3 2 m 4có hai
nghiệm phân biệt
A. 1
2
012
m m
Trang 7S t t với t s là khoảng thời gian tính
từ khi vật bắt đầu chuyển động và S m là quảng đường vật duy chuyển được trong khoảng
thời gian đó Hỏi trong khoảng 9 giây, kể từ khi bắt đầu chuyển động, vận tốc lớn nhất củavật đạt được bằng bao nhiêu?
A. 36m s / B. 243m s / C. 24m s / D. 39m s /
Câu 14: Ông Tuấn dự định gửi vào ngân hàng một số tiền với lãi suất 6,5% một năm Biếtrằng cứ sau mỗi năm số tiền lãi sẽ gộp vào vốn ban đầu để tính lãi cho năm tiếp theo Hỏi số
tiền x (triệu đồng) mà ông Tuấn sẽ phải gửi vào ngân hàng gần nhất với số tiền nào sau đây
để sau 3 năm số tiền lãi vừa đủ mua một chiếc xe máy trị giá 60 triệu đồng?
A. 300 triệu đồng B. 280 triệu đồng C. 289 triệu đồng D. 308 triệu đồng
Câu 15: Giải bất phương trình 1 3 1000
(2) Đồ thị hàm số yloga x có tiệm cận ngang
(3) Hàm số ylog , 0a x a1 và hàm sốylog ,a x a1 đơn điệu trên tập xác định của
Trang 8Câu 18: Cho hàm số f x có nguyên hàm là F x trên đoạn 1;2 , biết F 2 1và
A. Các điểm trên trục hoành với 1 x 1 B. Các điểm trên trục tung với 1 y1
C. Các điểm trên trục tung với 1 y 1 D. Các điểm trên trục tung với 1
1
y y
Câu 21: Cho hình hộp chữ nhật ABCD A B C D có AB a BC , 2 ,a AAa Lấy điểmI
trên cạnh ADsao cho AI 3ID Tính thể tích của khối chóp B IAC
Câu 22: Cho hình tròn tâm S , bán kínhR 2 Cắt đi 1
4hình tròn rồi dán lại để tạo ra mặtxung quanh của hình nón Tính diện tích toàn phần của hình nón đó
Trang 9Câu 24: Trong không gian với hệ tọa độOxyz, cho mặt phẳngP: 2x y z 3 0 và đường
Câu 25: Trong tuần lễ cao cấp Apec diễn ra từ ngày 06 đến ngày 11 tháng 11 năm 2017 tại
Đà Nẵng, có 21 nền kinh tế thành viên tham dự trong đó có 12 nền kinh tế sáng lập Apec Tạimột cuộc họp báo, mỗi nền kinh tế thành viên cử một đại diện tham gia Một phóng viên đãchọn ngẫu nhiên 5 đại diện để phỏng vấn Tính xác suất để trong 5 đại diện đó có cả đại diệncủa nền kinh tế thành viên sáng lập Apec và nền kinh tế thành viên không sáng lập Apec
A. N chạy trên dlà ảnh của d qua phép quay QO;60 0 .
B. N chạy trên dlà ảnh của d qua phép quay QO; 60 0
1
1 16
x y
Trang 10A. m 0 B. m 4 C. 0
4
m m
Câu 33: Trong mặt phẳng tọa độ, cho hình chữ nhật H có một cạnh nằm trên trục hoành,
và có hai đỉnh trên một đường chéo là A 1;0vàC m m , với ; m Biết rằng đồ thị hàm0
sốy x chia hình H thành hai phần có diện tích bằng nhau, tìm m
Câu 36: Cho lăng trụ tam giác đều ABC A B C có độ dài cạnh đáy bằng 3a và chiều cao
bằng 8a Tính bán kính R của mặt cầu ngoại tiếp tứ diện AB C C
Trang 11Câu 38: Cho hình chóp tam giác đều S ABC có cạnh đáy bằng a Góc hợp bởi cạnh bên và
mặt phẳng đáy bằng 600 Khi đó khoảng cách giữa hai đường thẳng SA và BC bằng
Viết phương trình đường thẳng d song
song với mặt phẳng P : 2x3y4z 6 0 , cắt đường thẳng d và 1 d lần lượt tại 2 M và N
Câu 40: Một cơ sở khoan giếng đưa ra định mức giá như sau Giá từ mét khoan đầu tiên là
100000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 30000 đồng so vớigiá của mét khoan ngay trước đó Một người muốn kí hợp đồng với cơ sở khoan giếng này đểkhoan một giếng sâu 20 mét lấy nước dùng cho sinh hoạt của gia đình Hỏi sau khi hoànthành việc khoan giếng, gia đình đó phải thanh toán cho cơ sở khoan giếng số tiền bằng baonhiêu?
A. 7700000 đồng B. 15400000 đồng C. 8000000 đồng D. 7400000 đồng
Câu 41: Trong khai triển biểu thức F 3329thành tổng của 10 số hạng, hỏi số hạng là
số nguyên có giá trị lớn nhất trong các số hạng là số nguyên của khai triển này
Câu 42: Cho hàm số h x sin4x cos x 4 2 sin cosm x x Có bao nhiêu giá trị nguyên của
tham số m để hàm số xác định với mọi x R
Trang 12VẬN DỤNG CAO Câu 43: Cho hàm số yf x có đạo hàm trên R Đường cong trong hình vẽ bên là đồ thịcủa hàm sốyf x , (yf x liên tục trênR) Xét hàm sốg x f x 2 2 Mệnh đề
nào dưới đây sai?
đề sau có bao nhiêu mệnh đề đúng?
(I) Số điểm cực tiểu của hàm số g x là 2
Trang 13(II) Hàm số g x đồng biến trên khoảng 1;2
(III) Giá trị nhỏ nhất của hàm số là g 1
(IV) Cực đại của hàm số g x là 0
Câu 47: Cho hình chóp S ABC có đáy là tam giác ABC đều cạnh a , tam giác SBA vuông tại
B , tam giác SAC vuông tại C Biết góc giữa hai mặt phẳng SAB và ABC bằng 600
Tính khoảng cách từ điểm C đến mặt phẳng SAB
Câu 48: Khi cắt mặt cầuS O R bởi một mặt kính đi qua tâm O , ta được hai nửa mặt cầu ;
giống nhau Giao tuyến của mặt kính đó với mặt cầu gọi là mặt đáy của mỗi nửa mặt cầu.Một hình trụ gọi là nội tiếp nửa mặt cầu S O R nếu một đáy của hình trụ nằm trong ;
đáy của nửa mặt cầu, còn đường tròn đáy kia là giao tuyến của hình trụ với nửa mặtcầu Biết R 1, tính bán kính đáyr và chiều cao h của hình trụ nội tiếp nửa mặt cầu
P1 , P cùng chứa đường thẳng 2 AB và hai mặt phẳng này lần lượt tiếp xúc với mặt cầu
S tại các điểm H H Điểm 1, 2 K nào trong số các điểm sau đây nằm trên đường thẳng
1 2
H H
A. K1;4;2 . B. K 1;3;2 . C. K1;5;3. D. K 1;3 2
Trang 1422017
Từ bảng biên thiên ta thấy trên khoảng 0; , hàm số nghịch biến trên khoảng 0;1 và
đồng biến trên khoảng 1; Vậy kết luận hàm số đã cho đồng biến trên khoảng 0; là
Trang 17
1 3
1 3
2
2
2 3log 2 1 1 2 1 3
3
x
x x
(2) Sai vì hàm số yloga x có tiệm cận đứngx 0
(3) Đúng theo định nghĩa sách giáo khoa
(4) Sai vì đạo hàm của hàm số yln 1 cos x là sinx
+ Giả sử điểm M N, lần lượt là điểm biểu diễn của z z1, 2
+ Ta có M N, đối xứng nhau qua trục Ox nên MN2MK(K trung điểm MN , Kthuộc
Trang 19Câu 25: Chọn đáp án B
Ta làm bằng cách dùng phần bù
P (trong 5 đại diện đó có cả đại diện của nền kinh tế thành viên sáng lập Apec và nền kinh tếthành viên không sáng lập Apec) 1 P(5 đại diện đó là chỉ của nền kinh tế thành viên sánglập Apec hoặc chỉ của nền kinh tế thành viên không sáng lập Apec)
Vì vậy khi M chạy trên d thì N chạy trên d là ảnh của d qua QO;60 0 và N
chạy trên dlà ảnh của d qua QO; 60 0.
Câu 29: Chọn đáp án C
Với m , hàm số đã cho có tập xác định là 0 R nên đồ thị không có tiệm cận đứng
Trang 21Viết lại phương trình (1) dưới dạng
x x
x
u
u v v
2
5 6 1
x
x u
m m
8 256
m
Câu 33: Chọn đáp án D
+ Gọi ABCD là hình chữ nhật với AC nằm trên trục Ox , A 1;0 và C m m ;
Nhận thấy đồ thị hàm số y x cắt trục hoành tại điểm có hoành độ bằng 0 và đi qua
Trang 22+ Tính diện tích 2
0
2dx
lượt là a3,b1 nên diện tích E là S E ab3
Hình H giới hạn bởi hình E phía trên trục Ox y nên 0
Trang 23- Vì BB C C là hình chữ nhật nên mặt cầu ngoại tiếp tứ diện AB C C cũng chính là mặt cầu
ngoại tiếp hình chóp A BB C C
- Gọi H là trung điểm BC ; G là trọng tâm tam giác ABC K; BCB C
- Trục của đường tròn ngoại tiếp tam giác ABC và trục đường tròn ngoại tiếp hình chữ nhật
HEBCvì HE là trung tuyến trong tam giác cân HBC
Suy ra HE là đoạn vuông góc chung của SA và BC
Trang 24Gọi u là giá của mét khoan thứ n , trong đó 1 n n 20
Theo giả thiết, ta có u 1 100000và u n1 u n 30000với 1 n 19
Ta có u là cấp số cộng có số hạng đầu n u 1 100000và công sai d 30000.
Tổng số tiền gia đình thanh toán cho cơ sở khoan giếng chính là tổng các số hạng của cấp sốcộng u Suy ra số tiền mà gia đình phải thanh toán cho cơ sở khoan giếng là n
Trang 26 và hàm số g t liên tục trên đoạn 0;2
Nếu 2m 2 0 m1 thì g t 1, t 0; 2 max g t0;2 1nênm thoả mãn (1)1Nếu 2m 2 0 m 1thì hàm sốg t đồng biến trên khoảng 0; 2 , suy ra
0;2 2 1
2
m max g t g
2
m max g t m (không thỏa mãn)(2)
Nếu 2m 2 0 m 1 thì hàm số g t nghịch biến trên khoảng 0;2 , suy ra
Trang 27Ta có g x f x x 0 f x x x1; x 0; x 2
Lập bảng biến thiên ta thấy
+ Mệnh đề (I) đúng vì hàm số có 2 điểm cực tiểu là x và 0 x 2
y f x
y x H
x x
y x
y f x H
x x
Trang 28DoSH AB BH, AB nên suy ra góc giữaSAB và ABC là góc SBH Vậy SBH 600.
Do ABH ACH BAH 300
Trong tam giác vuôngABH , ta có .tan 300
Hình trụ nội tiếp nửa mặt cầu, nên theo giả thiết đường tròn đáy trên có
tâm O là hình chiếu của O xuống mặt đáy O Suy ra hình trụ và
nửa mặt cầu cùng chung trục đối xứng và tâm của đáy dưới hình trụ
trùng với tâm O của nửa mặt cầu Ta có
Trang 29IH H đi qua 1 2 I và vuông góc với AB nên có phương trình x y 3 0
GọiH là giao điểm của ABvàIH H Khi đó 1 2 H 1; 2;4
Gọi M là giao điểm của H H và1 2 IH Khi đóH M1 IH
C là hệ số của x 2k trong khai triến x 12019
Vì vậy xét P x x12019theo công thức khai triển nhị thức Newton ta có