1. Trang chủ
  2. » Trung học cơ sở - phổ thông

03 duong thang vuong goc voi mp p1 BG

8 283 4

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 326,97 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

CHỨNG MINH ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG Một đường thẳng song song với một mặt phẳng khi nó song song với một đường thẳng bất kì thuộc mặt phẳng.. + Hệ quả 4: Nếu đường thẳng d c

Trang 1

VIDEO BÀI GIẢNG và LỜI GIẢI CHI TIẾT CÁC BÀI TẬP chỉ có tại website MOON.VN

DẠNG 1 CHỨNG MINH ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG

Một đường thẳng song song với một mặt phẳng khi nó

song song với một đường thẳng bất kì thuộc mặt phẳng

Viết dạng mệnh đề: //( ) ( )

//

d a

 ⊂

⇔



 Tính chất giao tuyến song song:

Nếu hai mặt phẳng (P) và (Q) chứa hai đường thẳng a, b

song song với nhau, thì giao tuyến nếu có của hai mặt

phẳng phải song song với a và b

Viết dạng mệnh đề:

( ); ( ) ( ) ( );

// //

//

a b

a b

→∆



 Tính chất để dựng thiết diện song song:

Nếu đường thẳng a song song với mặt phẳng (P); một

mặt phẳng (Q) chứa a, cắt (P) theo giao tuyến Δ thì Δ

phải song song với a

Viết dạng mệnh đề:

( ) ( ) ( ) ( )

//

//

∩ = ∆

+ Định nghĩa: Đường thẳng a vuông góc với mặt phẳng

(P) khi nó vuông góc với mọi đường thẳng a nằm trong

(P) Viết dạng mệnh đề: d ( )P a ( )P

∀ ⊂



+ Hệ quả 1: Để chứng minh đường thẳng d vuông góc

với (P) ta chỉ cần chứng minh d vuông góc với hai đường

thẳng cắt nhau nằm trong (P)

vuông góc với (P) thì d 1 // d 2

+ Hệ quả 3: Nếu hai mặt phẳng (P 1 ); (P 2 ) cùng vuông

góc với đường thẳng d thì (P 1 ) // (P 2 )

+ Hệ quả 4: Nếu đường thẳng d cùng vuông góc với một

đường thẳng a và một mặt phẳng (P) thì khi đó đường

thẳng a hoặc song song với (P) hoặc nằm trong (P)

Tài liệu bài giảng (Khóa Toán 11)

ĐƯỜNG THẲNG VUÔNG GÓC VỚI MP (P1)

Thầy Đặng Việt Hùng – www.facebook.com/Lyhung95

Trang 2

Viết dạng mệnh đề:

//



→

+ Hệ quả 5: Nếu đường thẳng d có hình chiếu vuông góc

xuống (P) là d’; đường thẳng a nằm trong (P) vuông góc

với d khi và chỉ khi a vuông góc với d’

Ví dụ 1 [ĐVH]: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy

a) Chứng minh rằng BD (SAC)

b) Gọi M, N là trung điểm của SC, SD Chứng minh MN (SAD)

c) Cho SA=a 3. Tính góc giữa hai đường thẳng SB và CN

Ví dụ 2 [ĐVH]: Cho tứ diện ABCD có DA (ABC), tam giác ABC cân tại A với ; 6

5

AB AC a BC

Gọi M là trung điểm của BC, kẻ AH MD, với H thuộc MD

a) Chứng minh rằng AH (BCD)

b) Cho 4

5

AD Tính góc giữa hai đường thẳng AC và DM

c) Gọi G1 ; G2 là trọng tâm các tam giác ABC và DBC Chứng minh rằng G1G2⊥ (ABC)

Ví dụ 3 [ĐVH]: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy Gọi

B1; C1; D1 là hình chiếu vuông góc của A lên các cạnh SB, SC, SD

a) Chứng minh rằng B1D1 // BD và SC (AB1D1)

b) Chứng minh rằng các điểm A, B1, C1, D1 đồng phẳng và tứ giác AB1C1D1 nội tiếp đường tròn

c) Cho SA=a 2. Tính góc giữa hai đường thẳng SB và AC1

Ví dụ 4 [ĐVH]: Cho tứ diện OABC có OA, OB, OC đôi một vuông góc Kẻ OH (ABC)

a) Chứng minh rằng tam giác ABC có ba góc nhọn

b) Chứng minh OA BC; OB AC; OC AB

c) Chứng minh rằng H là trực tâm của tam giác ABC

d) Chứng minh rằng 1 2 = 12 + 12 + 12

Ví dụ 5 [ĐVH]: Cho hình chóp S.ABC có SB vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại A

a) Chứng minh rằng tam giác SAC vuông

b) Tính SA, SB, SC biết ACB=α;ACS =β;BC=a

BÀI TẬP LUYỆN TẬP:

Bài 1 [ĐVH]: Cho tứ diện S.ABC có SA vuông góc với (ABC) và ΔABC vuông ở B Chứng minh rằng

a) BC (SAB)

b) Gọi AH là đường cao của ΔSAB Chứng minh rằng AH (SBC)

Trang 3

Bài 2 [ĐVH]: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O Gọi I, J lần lượt là trung điểm AB,

BC Biết SA = SC, SB = SD Chứng minh rằng

a) SO (ABCD)

b) IJ (SBD)

Bài 3 [ĐVH]: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và có cạnh SA (ABCD) Gọi H,

I, K lần lượt là hình chiếu vuông góc của điểm A lên SB, SC, SD

a) Chứng minh rằng rằng CD (SAD), BD (SAC)

b) Chứng minh rằng SC (AHK) và điểm I cũng thuộc (AHK)

c) Chứng minh rằng HK (SAC), từ đó suy ra HK AI

Bài 4 [ĐVH]: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và

2

SC=a Gọi H, K lần lượt là trung điểm của các cạnh AB, AD

a) Chứng minh rằng SH (ABCD)

b) Chứng minh rằng AC SK và CK SD

Bài 5 [ĐVH]: Cho hình chóp SABCD, có đáy là hình vuông cạnh a Mặt bên SAB là tam giác đều; SAD là tam giác vuông cân đỉnh S Gọi I, J lần lượt là trung điểm của AB và CD

a) Tính các cạnh của SIJ và chứng minh rằng SI (SCD), SJ (SAB)

b) Gọi H là hình chiếu vuông góc của S trên IJ Chứng minh rằng SH AC

c) Gọi M là một điểm thuộc đường thẳng CD sao cho BM SA Tính AM theo a

Đ/s: a) ; , 3

a a

2

a

Bài 6 [ĐVH]: Cho ∆MAB vuông tại M ở trong mặt phẳng (P) Trên đường thẳng vuông góc với (P) tại A ta

lấy 2 điểm C, D ở hai bên điểm A Gọi C là hình chiếu của C trên MD, H là giao điểm của AM và CC

a) Chứng minh rằng CC′⊥ (MBD)

b) Gọi K là hình chiếu của H trên AB Chứng minh rằng K là trực tâm của BCD.

Bài 7 [ĐVH]: Cho hình chóp S.ABCD, có SA (ABCD) và SA = a, đáy ABCD là hình thang vuông có đường cao AB = a ; AD = 2a và M là trung điểm AD

a) Chứng minh rằng tam giác SCD vuông tại C

b) Kẻ SN vuông CD tại N Chứng minh rằng CD (SAN)

LỜI GIẢI BÀI TẬP LUYỆN TẬP:

Bài 1: Cho tứ diện S.ABC có SA vuông góc với (ABC) và ΔABC vuông ở B Chứng minh rằng

a) BC (SAB)

b) Gọi AH là đường cao của ΔSAB Chứng minh rằng AH (SBC)

Trang 4

a)

Ta có BC AB, (1) (do ΔABC vuông tại B)

Lại có SA (ABC) ⇒ SA BC, (2)

Từ (1) và (2) ta có BC (SAB) ⇒ đpcm

b) Theo câu a, BC (SAB) ⇒ BC AH (do AH (SAB))

Lại có AH SB ⇒ AH (SBC) ⇒ đpcm

Nhận xét:

Trong bài toán trên chúng ta đã sử dụng hai tích chất cơ bản của đường thẳng vuông góc với mặt

phẳng:

 Để chứng minh d (P) ta chứng minh

( ) ,

 ⊥

 d (P) thì với mọi đường a (P) ⇒ d a.

Bài 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O Gọi I, J lần lượt là trung điểm AB, BC Biết

SA = SC, SB = SD Chứng minh rằng

a) SO (ABCD)

b) IJ (SBD)

Lời giải:

Trang 5

a) Do SA = SC nên ΔSAC cân tại S, khi đó SO AC, (1)

Tương tự, SO BD, (2)

Từ (1) và (2) ta có SO (ABCD)

b) ABCD là hình bình hành nên BD AC, (3)

Từ (1) và (3) ta được AC (SBD), (4)

Trong ΔABC có IJ là đường trung bình nên IJ // AC, do đó IJ (SBD)

Nhận xét:

Trong bài toán trên chúng ta đã sử dụng một tích chất của đường thẳng vuông góc với mặt phẳng là

để chứng minh d (P) ta chứng minh

( )

//





d a

Bài 3: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và có cạnh SA (ABCD) Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A lên SB, SC, SD

a) Chứng minh rằng rằng CD (SAD), BD (SAC)

b) Chứng minh rằng SC (AHK) và điểm I cũng thuộc (AHK)

c) Chứng minh rằng HK (SAC), từ đó suy ra HK AI

Lời giải:

a) Ta có CD AD và CD SA (do SA (ABCD) có chứa CD)

⇒ CD (SAD)

Tương tự, BD AC (do ABCD là hình vuông) và BD SA (do SA (ABCD) có chứa BD) ⇒ BD

(SAC)

b) Theo a, CD (SAD) ⇒ CD AK , (1)

Lại có AK SD, (2)

Từ (1) và (2) ta được AK (SCD)

Mà SC (SCD) ⇒ AK SC, (*)

Chứng minh tương tự ta cũng được AK SC, (**)

Từ (*) và (**) ta được SC (AHK) Do ( ) ( )

→

Do A (AHK) nên không thể xảy ra AI // (AHK), khi đó AI (AHK), hay điểm I thuộc (AHK)

c) Ta nhận thấy BD (SAC), nên để chứng minh HK (SAC) ta sẽ tìm cách chứng minh BD // HK

Trang 6

ΔSAH = ΔSAK ⇒ SH = SK →SH =SKHK//BDHK⊥(SAC)

Mà AI (SAC) ⇒ HK AI.

Bài 4: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và

2

SC=a Gọi H, K lần lượt là trung điểm của các cạnh AB, AD

a) Chứng minh rằng SH (ABCD)

b) Chứng minh rằng AC SK và CK SD

Lời giải:

a) ΔABC đều nên SH AB, (1)

2

SB BD a

SC a



=



Mà BC AB ⇒ BC (SAB) ⇒ BC SH, (2)

Từ (1) và (2) ta có SH ⊥ (ABCD)

b) Theo a, SH (ABCD) ⇒ SH AC

Do HK là đường trung bình của ABD nên HK // BD, mà BD AC ⇒ HK AC

Từ đó ta được, AC (SHK), hay AC SK

Bài 5 Cho hình chóp SABCD, có đáy là hình vuông cạnh a Mặt bên SAB là tam giác đều; SCD là tam giác

vuông cân đỉnh S Gọi I, J lần lượt là trung điểm của AB và CD

a) Tính các cạnh của SIJ và chứng minh rằng SI (SCD), SJ (SAB)

b) Gọi H là hình chiếu vuông góc của S trên IJ Chứng minh rằng SH AC

c) Gọi M là một điểm thuộc đường thẳng CD sao cho BM SA Tính AM theo a

Lời giải:

Trang 7

a) Ta có: 3; ; 1

SI = IJ = AD=a SJ = CD=

Do vậy tam giác SIJ vuông tại đỉnh S

Lại có: IJ CD CD ( )SIJ

SI CD

Khi đó: SI CD SI (SCD)

SI SJ

⇒ ⊥

ta cũng có SJ ⊥ (SAB)

b) Dựng SHIJ lại có SHCDSH ⊥(ABCD)

SH AC

SH BM

2 3

;

IJ

Đặt CM =x ta có:  BM AH = ⇔0 (BC+CM) ( AI+IH)=BC IH  +CM AI  =0

2

0

Bài 6 Cho MAB vuông tại M ở trong mặt phẳng (P) Trên đường thẳng vuông góc với (P) tại A ta lấy 2 điểm C, D ở hai bên điểm A Gọi C là hình chiếu của C trên MD, H là giao điểm của AM và CC

a) Chứng minh rằng CC′⊥ (MBD)

b) Gọi K là hình chiếu của H trên AB Chứng minh rằng K là trực tâm của BCD

Lời giải:

Do vậy CC'⊥(BMD)⇒CC'⊥BD

HK CD

Mặt khác CC'⊥BDBDCK

Do vậy K là trực tâm tam giác BCD

Bài 7 Cho hình chóp S.ABCD, có SA (ABCD) và BC= a, đáy ABCD là hình thang vuông có đường cao AB

= a ; AD = 2a và M là trung điểm AD

a) Chứng minh rằng tam giác SCD vuông tại C

Trang 8

Lời giải:

a) Ta có: ABCM là hình vuông cạnh a do vậy

1

2

CM = =a AD⇒∆ACD vuông tại C

Lại có: CD AC CD SC

CD SA

vuông tại C

b) Kẻ SNCDNC ⇒ CD (SAN)

Chương trình lớp 11 trên Moon.vn : http://www.moon.vn/KhoaHoc/Lop11

Ngày đăng: 05/04/2018, 01:56

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w