Mục tiêu: - HS hiểu thỊ nào là một phương trình tích và biết cách giải phương trình tích dạng: AxBxCx = 0.. - Biết biến đổi một phương trình thành phương trình tích để giải, tiếp tục củ
Trang 1GIÁO ÁN TOÁN LỚP 8 – ĐẠI SỐ.
Ti t 45ết 45
Phương trình tích
I Mục tiêu:
- HS hiểu thỊ nào là một phương trình tích và biết cách giải phương trình tích
dạng: A(x)B(x)C(x) = 0
- Biết biến đổi một phương trình thành phương trình tích để giải, tiếp tục củng cố
phần phân tích một đa thức thành nhân tư
II Chuẩn bị:
- HS: chuẩn bị tốt bài tập ở nhà
- GV: chuẩn bị các ví dụ ở bảng phụ để tiết kiệm thời gian
III Nội dung
Hoạt động 1: Kiểm tra bài cũ
P/tích các đt sau thành nhân tư:
a/ x2 + 5x
b/ 2x(x2- 1) - (x2-1)
- 2 HS lên bảng giải
Hoạt động 2: Giới thiệu dạng phương trình tích và cách giải
- GV: "Hãy nhận dạng các phương trình sau:
a/ x (5 + x) = 0
b/ (2x - 1)(x +3)(x+9) =0
1 Phương trình tích và cách giải:
Ví dụ 1
- HS trao đổi nhóm và trả lời x(5 + x) =0
(2x - 1)(x +3) (x +9) =0
- GV: yêu cầu mỗi HS cho 1 ví dụ về phương trình
tích
Ví dụ 2: Giải phương trình
- HS trao đổi nhóm về hướng giải, sau đó làm việc cá nhân
x (x + 5) = 0
Trang 2Ta có: x (x +5) = 0
x = 0 hoặc x +5 =0 a/ x =0
b/ x + 5 =0 x =- 5
- HS trao đổi nhóm, đại diện nhóm trình bày Tập nghiệm của phương trình S = 0 , 5
- GV: giải pt có dạng A(x).B(x) =0 ta làm như thế
nào?
Hoạt động 3: áp dụng
Giải các phương trình
a/ 2x (x - 3) + 5 (x - 3) = 0
b/ (x +1) (2 + 4) = (2 - x)(2 + x)
- GV, HS nhận xét và GV kết luận chọn phương án
2 áp dụng:
- HS nêu hướng giải mỗi phương trình, các HS khác nhận xét.Ví dụ:Giải phương trình
2x(x - 3) +5(x - 3) =0
(x - 3)(2x +5) = 0
x - 3 = 0 hoặc 2x + 5 = 0
- GV: cho HS thực hiện ?3
- Cho HS tự đọc ví dụ 3 sau đó thực hiện ?4 (có thể
thay bởi bài x3 +2x2 +x = 0)
- Trước khi giải, GV cho HS nhận dạng phương
trình, nêu hướng giải
GV nên chú ý trường hợp HS chia 2 vỊ của phương
trình cho x
- HS làm việc cá nhân, rồi trao đổi ở nhóm a/ x - 3 =0 x = 3
b/ 2x +5 = 0 x = - 25
S =
2
5
; 3
Ví dụ:Giải phương trình:
x3 + 2x2 +x =0
… x(x + 1)2 = 0
x =0 hoặc x +1 = 0 a/ x =0
b/ x + 1 =0 x =- 1
S = {0; -1}
Hoạt động 4: Củng cố
Trang 3HS làm bài tập 21c, 22b, 22c
GV: Lưu ý sửa chữa những thiếu sót của HS
* BT trắc nghiệm :
Giá trị nào sau đây thoả mãn pt : (x-3)(x+2)=0 :
A x=3,x=2 ; B x=3 ; C x=3,x=-2 ; D x=-2
- HS làm việc cá nhân, sau đó trao đổi kết quả
ở nhóm
Ba HS lần lượt lên bảng giải
Bài tập 21c (4x +2)(x2 +1) =0
4x +2 = 0 hoặc x2 +1 =0
Hoạt động 5: Hướng dẫn về nhà
- Xem lại cách giải pt tích và các ví dụ
- Làm BT 21b, 21d, 23, 24, 25/tr17
* HD bài 24d/17:
Giải pt x2-5x+6=0 Tách hạng tư -5x = -2x-3x , ta có x2-2x-3x+6=0
<=> (x2-2x)-(3x-6)=0
<=> x(x-2)-3(x-2)=0 <=>(x-2)(x-3)=0 Giải pt tích này ta được kết quả
Tiết 46
luyện tập
I Mục tiêu:
-Thông qua hệ thống bài tập, tiếp tục rèn luyện kĩ năng giải phương trình tích,
-RÌn luyện cho HS biết nhận dạng bài toán và phân tích đa thức thành nhân tư
II Chuẩn bị:
GV: Bảng phụ
HS: chuẩn bị tốt bài tập ở nhà
III Nội dung
Hoạt động 1: Kiểm tra bài cũ
Trang 41) Giải các phương trình sau:
a 2x(x-3) + 5(x-3) = 0
b (x - 4) + (x - 2)(3- 2x) =0
2) Bài tập trắc nghiệm:
Tập nghiệm của pt (x 5)(x 1) 0
A 5
6
; B 1
2
; C 5; 1
6 2
; D 5 1;
6 2
* Hoạt động 2: Giải bài tập
Bài 22/tr17: Giải các phương trình sau:
e/ (2x-5)2 - (x +2)2 =0
f/ x2 - x- (3x - 3) =0
Bài 23/tr17: Giải các phương trình:
a/ 3x - 15 = 2x (x -5)
b/ (x2 -2x + 1) - 4 = 0
GV kiểm tra bài của 4 HS
2 HS lên bảng giải bài
HS chọn đáp án và giải thích
HS làm việc cá nhân e) 3x - 15 = 2x (x - 5)
3(x - 5) - 2x (x - 5) =0
(x - 5) (3 - 2x) = 0
x - 5 = 0 hoặc 3 - 2x = 0
b/ (x - 2x + 1) - 4 = 0
(x -1)2 - 22 = 0
(x - 1 - 2)(x - 1 + 2) = 0
(x - 3)(x + 1) =0
x - 3 = 0 hoặc x + 1 = 0
GV yêu cầu HS giải bài tập sau bằng nhiều cách
Trang 52/ Giải các phương trình
7
1
1
7
3
x
b/ x2- x = -2x + 2
GV: yêu cầu HS nêu hướng giải
3/ Giải các phương trình
a/ 4x2 + 4x +1 = x2
b/ x2 - 5x +6 = 0
GV: khuyến khích HS giải bằng nhiều cách giải
khác nhau
HS giải bài bằng các cách khác nhau
7
1 1 7
3
x
… ( 3 7 )( 1 ) 0 7
1
x
b/ Cách1: x2 - x =-2x +2
… (x -1)(x +2) =0 Cách 2: x2- x =-2x +2 (x +2) (x -1) = 0
3 Cách 1: 4x2 +4x + 1 = x2 (2x + 1)2 - x2 =0
Cách 2: 4x2 + 4x +1 = x2 (x + 1)(3x + 1) = 0…
HS lên bảng chữa bài tập và nhận xét
Hoạt động 3:
Tổ chức trò chơi như sách giáo khoa
Hoạt động 4 : Hướng dẫn về nhà
- Xem lại các ví dụ đã chữa
- Bài tập 25/sgk
- Bài tập 30, 31, 33 sách bài tập
* HD bài 25:
Giải pt 2x3+6x2=x2+3x <=> 2x2(x+3)-x(x+3)=0
<=> (x+3)(2x2-x)=0
<=> (x+3)x(2x-1)=0
<=> x(x+3)(2x-1)=0