Preface Followingtheestablishmentofthe12 Principles of Green ChemistryAnastasandWarner,1998, istryisarelativelyyoungscienceinitsownrespect�Interestinthisdisciplineisgrowingrapidlyandistr
Trang 1Handbook on Applications of UltrAsoUnd
EditEd by
Sonochemistry for Sustainability
Trang 2
Handbook on Applications of
UltrAsoUnd Sonochemistry for Sustainability
Trang 4CRC Press is an imprint of the
Taylor & Francis Group, an informa business
Boca Raton London New York
Handbook on Applications of UltrAsoUnd
EditEd by
Sonochemistry for Sustainability
Trang 5MATLAB® is a trademark of The MathWorks, Inc and is used with permission The MathWorks does not warrant the accuracy of the text or exercises in this book This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S Government works
Version Date: 20110520
International Standard Book Number-13: 978-1-4398-4207-2 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
uti-For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400 CCC is a not-for-profit organization that provides licenses and registration for a variety of users For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
Trang 6To my lovely parents, wife Wei, and daughters Elena and Elisa
Trang 8Contents
Foreword�������������������������������������������������������������������������������������������������������������������������������������������xiPreface�������������������������������������������������������������������������������������������������������������������������������������������� xiiiAcknowledgments����������������������������������������������������������������������������������������������������������������������������xvEditors��������������������������������������������������������������������������������������������������������������������������������������������xviiContributors������������������������������������������������������������������������������������������������������������������������������������xix
Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova,
and Ubaldo Ortiz-Méndez
Chapter 10 UltrasoundinSyntheticApplicationsandOrganicChemistry�������������������������������� 213
Murlidhar S Shingare and Bapurao B Shingate
Trang 9Reena Amatya Shrestha, Ackmez Mudhoo, Thuy-Duong Pham,
and Mika Sillanpää
Vijayanand S Moholkar, Thirugnanasambandam Sivasankar,
and Venkata Swamy Nalajala
Chapter 21 Ultrasound-AssistedIndustrialSynthesisandProcesses����������������������������������������� 535
Cezar Augusto Bizzi, Edson Irineu Müller, Érico Marlon de Moraes Flores,
Fábio Andrei Duarte, Mauro Korn, Matheus Augusto Gonçalves Nunes,
Paola de Azevedo Mello, and Valderi Luiz Dressler
Trang 10Contents ix Chapter 22 DevelopmentofSonochemicalReactor������������������������������������������������������������������� 581
Keiji Yasuda and Shinobu Koda
Trang 12Foreword
Intheeyesofnature,wecannotachieveasustainablefuturebythelinearextensionofexistingtechnologies�Thisobservationdrivesthequestfornewwaystopracticechemistry�Overthepast20years,anapproachtochemistryandengineeringdefinedbythe12principlesofgreenchemistryandgreenengineeringoffersusaprovenandsystematicwaytoaddresssustainabilityfromafirstdesignbasis�Weknowtherearemorethan85,000chemicalsusedincommercearoundtheworldandthevastmajorityhasneverbeentestedforhumanhealthandenvironmentalimpacts�Weknowtherearetrillionsofdollarsofcapitalinvestedinexistingchemicalmanufacturingplantsthatmustbeconsideredinanytransitionplan�Therearenosilverbulletstoaddressingthesystemsalreadyinplace�However,asteadyandever-expandingapplicationoftheprinciplesofgreenchemistryandengineeringovertimewillallowustomakeprogressinreplacingourdependenceonpetroleum-derivedfuelsandfeedstocks�
Chemiststodaycangototheliteratureandfindtoolstosynthesizejustaboutanycompoundonecanconceivebasedonestablishedtransformations,manyofwhichhavebeenaroundformorethanahundredyears�Yetweknowmandoesnotpracticechemistrythewaynaturedoeschemistryandthereinliesourhopeforthefuture�Wemustcontinuetoinventanddevelopthetoolsofgreenchemistrytoallowatransitiontobio-inspiredchemistry�
Thisbookisonesuchcommitmenttobuildingthenewgreenchemistrytoolbox�Itisfocusedprimarily on transformations aided by the use of sonochemistry (acoustic cavitation)� The abil-itytodeliverrapid,high-densityenergytoasystemfacilitatesnewpossibilities�Whilethecon-ceptsofsonochemistryhavebeenknownformorethan80years,in-depthunderstandingofthisphenomenon continues to evolve� Recently, the technique has begun to see applications rangingfromnanoparticleformationtocarbohydratesynthesistowastedestruction�Thus,sonochemistryappearstobeapplicabletoawidevarietyofchemicaltransformationsandhasthepotentialtoinflu-enceyields,dramaticallyreducereactiontimes,andincreasethroughput�Alltheseelementsareconsistentwiththeprinciplesofgreenchemistryandengineering�
Aswithanynewtechnology,agradualdevelopmentandadoptionprocesssetsin�Initialeffortsfocusonunderstandingandscopingthenewtoolsandwenowseesyntheticsonochemistrytechnol-ogyfindinganever-increasingvarietyofapplications�
Thisbookrepresentsawonderfulefforttobringtogetherthelatestdevelopmentsinthefieldandshouldproveusefultoallpracticingscientistswhohaveaninterestinexploringnewmethodstoinputenergyintoareactionprocess�
Trang 14Preface
Followingtheestablishmentofthe12 Principles of Green Chemistry(AnastasandWarner,1998),
istryisarelativelyyoungscienceinitsownrespect�Interestinthisdisciplineisgrowingrapidlyandistransgressingseveralcascadingresearchareasinscience,engineering,andtechnology(SharmaandMudhoo,2010)�Theunderstandingoftheprinciplesthatbackbonegreenchemistryhasspurredmany outstanding efforts to implement chemical processes and innovative technologies that areincrementallytakingmodernsocietytowardsaferandmoresustainablepracticesandproductsthatembodyandfosterenvironmentalstewardship�
therehasbeenasteadygrowthinourunderstandingofwhatgreenchemistrymeans�Greenchem-tions of ultrasonic waves, i�e�, longitudinal sound waves with frequencies above 20kHz that liebeyond the upper limit of human hearing—although the range of ultrasonic frequencies can beextendedupto100MHz(CravottoandCintas,2006)�Sonochemistryshareswithsustainablechem-istrysuchaimsastheuseoflesshazardouschemicalsandsolvents,areducedenergyconsumption,andanincreasedproductselectivity(CravottoandCintas,2006)�Inthisregard,ultrasonicheat-ing and irradiation are in many instances complementary techniques for driving chemical reac-tionswithahigherefficiencyandeffectiveness�Ultrasound,anefficientandvirtuallyinnocuousmeansofactivationinsyntheticchemistry,hasbeenemployedfordecadeswithvariedsuccesses(CravottoandCintas,2006)�Notonlycanthishigh-energyinputenhancemechanicaleffectsinheterogeneousprocesses,butitisalsoknowntoinducenewreactivitiesleadingtotheformationofunexpectedchemicalspecies�Sonochemistryisuniqueinitsremarkablephenomenonofcavitation,currentlythesubjectofintenseresearch,andhasalreadyproducedinterestingresults�
Sonochemistryisabranchofchemicalresearchdealingwiththechemicaleffectsandapplica-raphyinhealthcare,representperhapsthebest-knownuseofultrasound�Chemicalapplicationsextendtosuchvariedareasasorganicandorganometallicchemistry,materialsscience,aerogels,water and wastewater treatment, food chemistry, and medicinal research (Cravotto and Cintas,2006)�Thewritingofthishandbookhasbeenundertakenbecauseitwasearnestlyfelttobringfor-wardanupdatedpoolofthelatestresearchanddevelopmentfindingsthatreasonablyencompassafairnumberofmostrelevantaspectslinkedtoandlinkinggreenchemistrypracticestoenvironmen-talsustainabilitythroughtheusesandapplicationsofultrasound-mediatedandultrasound-assistedbiological,biochemical,chemical,andphysicalprocesses�Inthishandbook,arichpanoplyofnovelresearchfindingsandapplicationsofultrasonicradiationandsonochemistryhavebeenpresented�Severalchaptershavebeenpresentedinthefollowingareas:medicalapplications,drugandgenedelivery,nanotechnology,foodtechnology,syntheticapplicationsandorganicchemistry,anaero-bicdigestion,pollutantdegradation,polymerchemistry,industrialsynthesesandprocesses,reactordesign,electrochemicalsystems,andcombinedultrasound−microwavetechnologies�
Imagingtechniquesusingecholocation,suchasSONARsystemsfortargetdetectionorechog-We sincerely hope this handbook provides a robust pool of knowledge on the green tionsofsonochemistry�Wealsofeelitprovidesup-to-dateinformationonsomeselectedfieldsofappliedresearchofultrasoundwheretheprinciplesofgreenchemistryarebeingembracedbythescientific,engineering,andtechnologicalcommunitiesforsafeguardingandimprovingthequalityoftheenvironmentandhumanlife,atlarge�WealsowanttosharethatProfessorSanjayK�Sharma
applica-andA�Mudhoohaverecentlyeditedabook,Green Chemistry for Environmental Sustainability
(CRCPress,Taylor&FrancisGroup,2010),whichisanup-to-dateandhumblecontributiontotheliteratureongreenchemistry�
Trang 15xiv PrefaceForMATLAB®andSimulink®productinformation,pleasecontact:
academiatoinnovativeandlarge-scaleapplications�Chemical Society Reviews,35:180–96�
Sharma,S�K�andMudhoo,A�2010�Green Chemistry for Environmental Sustainability�BocaRaton,FL:CRC
Press,Taylor&FrancisGroup�
Dong Chen Sanjay K Sharma Ackmez Mudhoo
Trang 16Acknowledgments
Thisboldundertakinghasprovideduswithauniqueopportunitytorenewsomeoldfriendshipsandhopefullyweavesomenewonesinpursuitofgatheringanddistillingtheexpertiserequiredforedit-ingandcompilingthishandbookontheapplicationsofsonochemistryforsustainabality�Withoutany reservation, we heartily thank our esteemed contributors for the way they have graciouslyrespondedwithcharacteristicgoodhumorandpatiencetoourdeadlines�Wealsoappreciatetheirconstructivecriticismsandsuggestions,whichhaveenhancedthecontentofthiswork�Wehopetheyeffortlesslyfeelthatthefinalresultdoesamplejusticetotheirpainstakingeffortsdeployedinpreparingtheirrespectivechapter(s)�Weareequallyappreciativetowardothercolleaguesandfel-lowresearcherswhovolunteeredtheirhelpinreviewingthescientificcontentsofthemanuscripts�ProfessorSanjayK�Sharmaespeciallyexpresseshisheartfeltgratitudetohisrespectedparents,Dr�M�P�SharmaandSmt�ParmeshwariDevi�HealsoextendshisregardstoProfessorR�K�Bansal,whohasbeenasourceofinspirationtohim,andtoDr�V�K�Agrawal,chairmanoftheInstituteofEngineeringandTechnology,Alwar(India),forhisencouragingwords�
Ackmez Mudhoo expresses his appreciation for the faith his parents, Azad A� Mudhoo andRuxanaB�Mudhoo,hisbrotherAssad,sister-in-lawTeena,andlovelynieceYannahaveplacedinhimthroughoutthewritingandcompilationofthishandbook�HeisalsothankfultoProfessorKonradMorgan(vice-chancellorandchairmanofSenateoftheUniversityofMauritius,Réduit,Mauritius), Professor Romeela Mohee (dean, Faculty of Engineering, University of Mauritius,Réduit,Mauritius),ProfessorPavelPazdera(MasarykUniversity,Brno,CzechRepublic),ProfessorMuthupandian Ashokkumar (Particulate Fluids Processing Centre, University of Melbourne,Australia),ProfessorGiancarloCravotto(UniversitàdiTorino,Torino,Italy)andDr�VinodK�Garg(GuruJambheshwarUniversityofScienceandTechnology,Hisar,Haryana,India)fortheirpres-ence,encouragement,andsupport�
Note: This work was supported by New Faculty Starting Fund from Indiana University−Purdue
UniversityFortWayne�
Trang 18Editors
Dr Dong Chen is an assistant professor at Indiana
University-Purdue University Fort Wayne, Indiana� He has been doingimportantfundamentalresearchinsonochemistry,environmentalchemistry,andwaterandwastewatertreatmenttechnologies�Hehas served as the principal and coprincipal investigator of sev-eralfundedscientificresearchprojectsworthover$1million�Dr�Chen’sworkenjoysahighreputationintheinternationalscientificcommunityandhasbeenwidelycitedbyhispeers�Hisresearchintheareaofultrasoniccontrolofmembranefoulingwasreportedby
manyscientificnewsmedia,includingNature�Hehasmorethan
30journal,book,andconferencepublicationsand2U�S�patents�HehasbeenservingasagrantreviewerfortheU�S�DepartmentofAgricultureandNationalInstituteforWaterResourcesresearchprograms�Inaddition,Dr�Chenisaroutinereviewerfor12scientificjournalsandbooks�HereceivedhisPhDincivil(environmental)engineeringwithaminoringeologicalsciencefromTheOhioStateUniversity,Columbus,Ohio,in2005�Besideshisresearchexperience,Dr�Chenhadbeenworkingasafull-timeengineeringconsultantformorethantwoyears�HeisalicensedprofessionalengineerinthestateofOhio�
Professor (Dr.) Sanjay K Sharmaisawell-knownauthorand
editor of many books, research journals, and hundreds of
arti-cles over the last 20 years� One of his books, Green Chemistry for Environmental Sustainability,hasbeenrecentlypublishedby
CRCTaylor&FrancisGroup,LLC,BocaRaton,Florida�HehasalsobeenappointedasserieseditorbySpringer’sLondonfortheir
prestigiousbookseriesGreen Chemistry for Sustainability�
Dr�Sharmacompletedhispostgraduationin1995andreceivedhis PhD from the University of Rajasthan, Jaipur, in 1999� HisPhDthesiscoveredthefieldofsyntheticorganophosphoruschem-istry and computational chemistry� In 1999, he started workingadditionally in the field of environmental chemistry and greenchemistryandproducedverygoodresearchpapersandbooksduringhis12yearlongstayattheInstituteofEngineeringandTechnology,Alwar,Rajasthan,India�
Hisworkinthefieldofgreencorrosioninhibitorsiswellrecognizedandhasbeenwellreceivedby the international research community� He is also actively involved in raising environmentalawareness,especiallywithregardtorainwaterharvesting�
Presently, Dr� Sharma works as a professor of chemistry at Jaipur Engineering College andResearchCentre,JECRCFoundation,Jaipur,Rajasthan,India—oneofthebestengineeringcol-leges in North India—where he teaches engineering chemistry and environmental engineeringcoursestoBTechstudentsandpursueshisresearchinterests�Hehasdeliveredmanyguestlecturesondifferenttopicsofappliedchemistryinvariousreputedinstitutions�Hisstudentsappreciatehisteachingskillsandholdhiminhighesteem�
Dr�SharmaisamemberoftheAmericanChemicalSociety(UnitedStates),theInternationalSocietyforEnvironmentalInformationSciences(Canada),andGreenChemistryNetwork(RoyalSocietyofChemists,UnitedKingdom)�Heisalsoalifememberofvariousinternationalprofes-sionalsocieties,includingtheInternationalSocietyofAnalyticalScientists,theIndianCouncilof
Trang 19xviii Editors
Chemists, the International Congress of Chemistry and Environment, and the Indian ChemicalSociety�
Dr�Sharmahas9booksonchemistryandover40researchpapersofnationalandinternationalreputetohiscredit,whichissufficientevidenceofhisfairtrackrecordasaresearcher�Healso
worksaseditorinchiefforthreeinternationalresearchjournals,RASAYAN Journal of Chemistry; the International Journal of Chemical, Environmental and Pharmaceutical Research; and the International Journal of Water Treatment and Green Chemistry,andservesasareviewerformany otherinternationaljournals,includingtheprestigiousGreen Chemistry Letters and Reviews�
Ackmez Mudhoo obtained his BEng (Hons) in chemical and
environmental engineering from the University of Mauritius in2004� His research interests encompass the bioremediation ofsolid wastes and wastewaters by composting, anaerobic diges-tion, phytoremediation, and biosorption� Ackmez has 48 inter-national journal publications (original research papers, criticalreviews,andbookchapters)and5conferencepaperstohiscredit,and an additional 7 research and review papers in the pipelinein his early career� Ackmez also serves as peer reviewer for
Waste Management; the International Journal of Environment and Waste Management; the Journal of Hazardous Materials; the Journal of Environmental Informatics; Environmental Engineering Science;RASAYAN Journal of Chemistry;Ecological Engineering;Green Chemistry Letters and Reviews;Chemical Engineering Journal;andWater Research�Heisalsotheeditorin chieffortheInternational Journal of Process Wastes TreatmentandtheInternational Journal of Wastewater Treatment and Green Chemistry,andservesashandlingeditorfortheInternational Journal of Environment and Waste ManagementandtheInternational Journal of Environmental Engineering�Ackmezalsoreckonsprofessionalexperienceasconsultantchemicalprocessengineer
forChinaInternationalWater&ElectricCorp�(CWE,Mauritius)fromFebruary2006toMarch
2008� He is also the coeditor of Green Chemistry for Environmental Sustainability (Publisher:
CRCPress,Taylor&FrancisGroup,LLC,BocaRaton,Florida,454pp,ISBN:978-1-4398-2473-3)�HeispresentlyalecturerintheDepartmentofChemicalandEnvironmentalEngineeringattheUniversityofMauritius�
Trang 20Andrew Cobley
FacultyofHealthandLifeSciencesTheSonochemistryCentre
CoventryUniversityCoventry,UnitedKingdom
Giancarlo Cravotto
DepartmentofScienceandTechnology
of DrugUniversityofTurinTorino,Italy
Siamak Dadras
LaserMaterialsProcessingLaboratoryIranianNationalCentreforLaserScienceand Technology
Tehran,Iran
Aslihan Demirdoven
FacultyofEngineeringandNaturalSciencesDepartmentofFoodEngineering
GaziosmanpaşaUniversityTokat,Turkey
Ravindra Dhumal
CentreforPharmaceutical
Engineering ScienceUniversityofBradfordWestYorkshire,UnitedKingdom
Marie-Laure Doche
NationalCentreforScientificResearchUniversityofFranche-Comte
Besançon,France
Valderi Luiz Dressler
DepartmentofChemistryFederalUniversityofSantaMariaSantaMaria,Brazil
Trang 21Audrey Mandroyan
CentreNationaldelaRechercheScientifiqueUniversitédeFranche-Comté
Besançon,France
Fernando Martínez
DepartmentofChemicalandEnvironmentalTechnology
UniversidadReyJuanCarlosMadrid,Spain
Timothy J Mason
FacultyofHealthandLifeSciencesTheSonochemistryCentre
CoventryUniversityCoventry,UnitedKingdom
Mallavarapu Megharaj
CentreforEnvironmentalRiskAssessmentand Remediation
UniversityofSouthAustraliaAdelaide,SouthAustralia,Australiaand
CooperativeResearchCentrefor
ContaminationAssessmentandRemediationoftheEnvironment
Salisbury,SouthAustralia,Australia
Juan A Melero
DepartmentofChemicalandEnvironmentalTechnology
UniversidadReyJuanCarlosMadrid,Spain
Paola de Azevedo Mello
DepartmentofChemistryFederalUniversityofSantaMariaSantaMaria,Brazil
Amos Mizrach
AgriculturalResearchOrganizationTheVolcaniCenter
TheInstituteofAgriculturalEngineeringBetDagan,Israel
Trang 22Ubaldo Ortiz-Méndez
SchoolofMechanicalandElectrical
EngineeringAutonomousUniversityofNuevoLeonMonterrey,México
Senar Ozcan
EnvironmentalEngineeringDepartmentSelcukUniversity
Konya,Turkey
Larisa Paniwnyk
FacultyofHealthandLifeSciencesTheSonochemistryCentre
CoventryUniversityCoventry,UnitedKingdom
Anant Paradkar
CentreforPharmaceutical
Engineering ScienceUniversityofBradfordWestYorkshire,UnitedKingdom
Pavel Pazdera
FacultyofSciencesDepartmentofChemistryCentreforSynthesesatSustainableConditionsandTheirManagement
MasarykUniversityBrno,CzechRepublic
Thuy-Duong Pham
LaboratoryofAppliedEnvironmental
ChemistryDepartmentofEnvironmentalSciencesUniversityofEasternFinland
Mikkeli,Finland
Bruno G Pollet
PEMFuelCellResearchGroupCentreforHydrogenandFuelCellResearchSchoolofChemicalEngineering
TheUniversityofBirminghamEdgbaston,UnitedKingdom
Trang 23Boon Mian Teo
SchoolofChemistryUniversityofMelbourneParkville,Victoria,Australia
Kandasamy Thangavadivel
CentreforEnvironmentalRiskAssessmentand Remediation
UniversityofSouthAustraliaAdelaide,SouthAustralia,Australiaand
CooperativeResearchCentrefor
ContaminationAssessmentandRemediationoftheEnvironment
Salisbury,SouthAustralia,Australia
Ali Tor
EnvironmentalEngineeringDepartmentSelcukUniversity
Konya,Turkey
Mohammad Javad Torkamany
LaserMaterialsProcessingLaboratoryIranianNationalCentreforLaserScienceand Technology
Tehran,Iran
Keiji Yasuda
DepartmentofChemicalEngineeringGraduateSchoolofEngineeringNagoyaUniversity
Aichi,Japan
Trang 24InancienttimesandintheMiddleAgeswhenalchemyreignedasthepredecessorofpresentchemistry,peopleconnectedalchemyandalchemistactivitieswithevils,ghosts,demons,ghouls,devils,andSataninspiteofallpositivethingsthatitbroughttohumancivilizationsuchasnewpracticalandapplicableknowledge,findingsandobservations,chemicalelements,compounds,andnewmedicalproducts�Ontheotherhand,newpoisonsandtoxicdrugs,causticagents,blackgun-powder,andothernegativitieswereinventedandused(Armitage,2010;Brown,2006)�
Thenineteenthandthetwentiethcenturiesbroughttomankindagreatdealofnewdiscoveriesaswellaspracticalandapplicableknowledge�Also,duringthistimechemistrygavehumankindnewmaterials,medicalproducts,phytoeffectors,newtechnologies,andsyntheticprocedures(phytoef-fectorsmaybedefinedassubstancesortheirmixturesthatenablevegetablestodevelopprosper-ouslyfromgerminationtoharvesttimeandtheycontainnotonlypesticidesbutalsostimulantsforgrowthandimmunity)�
Chemistry helped to boost the quality of human life and its development though it had itsowndisadvantages�Moreover,chemistryanditsproductsmaybemisappropriatedknowinglyor
CONTENTS
Causesofa“ChemistryCurse”����������������������������������������������������������������������������������������������������������1WastesasRealEffectoftheAnthropogenicActivities����������������������������������������������������������������������4AnthropogenicWastesandTheirImpactsonNatureandDevelopmentofHumankind�������������������4ChemicalWastes��������������������������������������������������������������������������������������������������������������������������������7ChemicalWastesandSyntheticChemistryMetrics��������������������������������������������������������������������������9SustainableDevelopment:StartingPointandPreventionofanUlteriorBeingofHuman
Civilization��������������������������������������������������������������������������������������������������������������������������������������� 12SustainableDevelopment,Chemistry,andItsEngineeringandTechnologicalApplication����������� 14PrinciplesandGoalsofGreenChemistry���������������������������������������������������������������������������������������� 16MethodologyandMethodsofGreenChemistry����������������������������������������������������������������������������� 17ReferencesandLiteratureResources����������������������������������������������������������������������������������������������� 19
Trang 252 Handbook on Applications of Ultrasound: Sonochemistry for Sustainability
unpredictably� Several examples of “badly” applied chemistry can be demonstrated� Phosgene
(carbonyl dichloride, dichloromethane) (Merck Index, 11th edition, 7310), yperite (mustard gas,
1,5-dichloro-3-thiapentaneorbis(2-chloroethyl)sulfide)(Cook,1999),newbrilliantexplosives(e�g�,2,4,6-trinitrophenol—TNP, 2,4,6-trinitrotoluene—TNT) (Urbanski, 1964; Ferro and Morrow Jr�,2005),andotherchemicalproductsweredevelopedandusedforkillingsoldiersduringWorldWarI�Phosgeneaswellasdiphosgene(trichloromethylchloroformate)ortriphosgene(bis(trichloromethyl)carbonate),safertohandlethanphosgene(KuritaandIwakura,1979),wasusedforthesynthesisoffunctionalderivativesofcarbonicacid�Forexample,carbamateshavebeenappliedaspesticidesorplastics(polyurethane)�
gencyanide)(Zabecki,1999)ingaschambersofNaziconcentrationcamps�Widespread“biologi-cal”applicationofhydrogencyanidewasinitiallylimitedtothefumigationofvaluabletreecrops,namely,citrusfruit,spreadingin1887fromCaliforniatoSpainandothercountries(Baur,1984)�HydrogencyanideisstillinproductionintheCzechRepublicintheSyntheticFactoryDraslovkaKolínCo�inthecityofKolínunderthetrademarknameUraganD2andissoldforeradicatinginsectsandsmallanimals�Otherfumigantssuchasmethylbromide,cyanogens(dicyan),andcar-bonylsulfidearealsoused(MessengerandBraun,2000)�Since2000BC,thehumanpopulationhasutilizedsubstancesortheirmixtureswithphytoeffectoractiontoprotectandintensifytheircrops�Someofthephytoeffectors,whichwerelatercalledpesticides,wereatfirstappliedasnaturalcompounds,e�g�,sulfurorextractsfromtobacco�Overtime,thepreparationofsyntheticmoleculesandsubstancesbegan�
AtthetimeofWorldWarII,manymen,mainlyJews,werepoisonedwithCyclonB(i�e�,hydro-Two types of pesticides played a key role in the middle of the twentieth century: the veryunfortunate case of DDT (1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane) and the 1:1 mixtureof isooctyl 2,4-dichlorophenoxyacetate and 2,4,5-trichlorophenoxyacetate contaminated by
2,3,7,8-tetrachlordibenzo-p-dioxine (TCDD), well known as Agent Orange� DDT is one of the
world’smostfamoussyntheticpesticideswithalong,unique,andcontroversialhistory�TheSwisschemistPaulHermannMüllerwasawardedtheNobelPrizeinPhysiologyorMedicinein1948
“forhisdiscoveryofthehighefficiencyofDDTasacontactpoisonagainstseveralarthropods”(http: //nobelprize�org/nobel_prizes/medicine/laureates/1948/)�AfterWorldWarII,DDTwasusedasanagriculturalmiraculousinsecticide,andsoonitsproductionandwidespreaduseerupted�ItsdeclineoccurredafterthediscoverythatDDTisapersistentorganicpollutantandisextremelyhydrophobicandstronglyabsorbedbysoil�Further,DDTanditsmetabolitesaretoxictoawiderange of animals in addition to insects, including marine animals such as crayfish, daphnids, seashrimp,andmanyspeciesoffish�Theyarelesstoxictomammalsbutmaybemoderatelytoxictosomeamphibianspecies,especiallyinthelarvalstage�Mostsignificantly,theyareareproductivetoxicantforcertainmarineandcontinentalbirdspecies�ThesearchforfurthernegativeeffectsofDDThasbeenpursuedrelentlesslybytheWorldHealthOrganizationandbyotherinternationalandnationalspecializedagencies�ItisaterriblefactthatsomepoorAfricancountriesusedDDTtilllately(U�S�EnvironmentalProtectionAgency,1975)�
AgentOrangeisthecodenameforoneoftheherbicidesanddefoliantsusedbytheU�S�ArmyinitsherbicidalwarfareprogramduringtheSecondVietnamWar(from1961to1971)(Stellman,2003)�
Dioxin,namely,2,3,7,8-tetrachlordibenzo-p-dioxin,isthesyntheticby-productofthereaction
of two phenoxyl herbicides mentioned earlier: iso-octyl ester of 2,4-dichlorophenoxyacetic acidand2,4,5-trichlorophenoxyaceticacid�AgentOrangeisnotachemicalagentagainstmilitants�Itwasappliedtoaidthesapperagentindestroyingthelandscapeblanketedbyfull-grownplantsandforestswhichservedasanaturalcoverforthenativewarriorsofVietConginVietnam,Laos,andCambodia� However, all negative impacts of Agent Orange were observed both on the warriorsofVietCongandtheU�S�military�Vietnamesescientistshavebeenconductingepidemiologicalresearchontheimpactofdioxinonhumanhealthsincethelate1960s�AccordingtotheVietnam
Trang 26Emerging Ubiquity of Green Chemistry in Engineering and Technology 3
RedCross,asmanyas3millionVietnamesepeoplewereaffectedbyAgentOrangeincludingatleast150,000childrenbornwithcongenitaldefects�ThequestionastowhetherornottheexposuretodioxinaffectedthehealthoftheVietnamesewasdebatedsincethetimeofthewarwhenthe
firstanimalstudieswerereleasedshowingthat2,3,7,8-tetrachlorodibenzo-p-dioxinecausedcan-cerandcongenitaldefectsinrodents�StudiesofU�S�veteranswhoservedinthesouthduringthewarcomparedtothosewhodidnotgosouthfoundincreasedratesofcancerandnerve,digestive,skin,andrespiratorydisordersamongtheformer�Amongthecancers,veteransfromthesouthhadhigher rates of throat cancer, acute/chronic leukemia, Hodgkin’s lymphoma and non-Hodgkin’slymphoma,prostatecancer,lungcancer,softtissuesarcoma,andlivercancer(U�S�EnvironmentalProtectionAgency—DioxinWebsite)�
The second very unfortunate case connected with 2,3,7,8-tetrachlordibenzo-p-dioxine took
place on July 10, 1976, in a small chemical manufacturing plant approximately 15km northofMilanintheLombardyregioninItalyandisknownasSevesoDisaster(DeMarchietal�,1972)� The factory of the company Industrie Chimiche Meda Società Azionaria (ICMESA)produced 2,4,5-trichlorophenol from 1,2,4,5-tetrachlorobenzene as an intermediate productfor 2,4,5-trichlorophenoxyacetic acid� The reaction of 1,2,4,5-tetrachlorobenzene with sodiumhydroxideshouldhaveproceededundercontrolledtemperature�However,excessivepressureputtheoperationoutofcontroland6tonsofreactionmaterialwasdispersedoveranareaof18km2�This material also included about 1kg of 2,3,7,8-tetrachlorodibenzodioxin, which is normallyseenonlyintraceamountsoflessthan1ppm�However,inthehigher-temperatureconditionsassociatedwiththerunawayreaction,theproductionofthementioneddioxinapparentlyreached100ppmormore�IndustrialsafetyregulationscalledtheSevesoDirectivepassedtheEuropeanCommunityin1982imposingmorestringentandharsherindustrialregulations�TheSevesoDirective was updated in 1999, amended again in 2005, and is currently referred to as theSevesoIIDirective(orCOMAHRegulationsintheUnitedKingdom)�Similardirectiveswerealsoestablishedbygovernmentagenciesofothercountries(e�g�,U�S�EnvironmentalProtectionAgency—EPA)�
AnothersimilardisastercausedbyerroneoushandlingoftechnologicalequipmentoccurredduringthenightofDecember2–3,1984,inBhopal,MadhyaPradesh,India�Thisindustrialcatas-tropheisgenerallywellknownastheBhopalDisasterortheBhopalGasTragedy(Broughton,2005)�InapesticideplantofUnionCarbideIndiaLimited(UCIL),atankcontainingabout
40 tonsofmethylisocyanate(MIC)asanintermediateinthemanufacturingthepesticideCarbaryl
(1-naphthylN-methylcarbamate,trademarkSevin)enteredintocontactwithlargeamountsofwater�
Thiscausedveryrapiddecompositioncombinedwithanacuteriseintemperatureandpressure(exothermicreactionundercarbondioxideformation),andleadingtotheworstindustrialdisastertodate�Anexplosionresultedinalargevolumeofmixedtoxicgases,includingMIC,whichcon-taminatedtheregionofBhopal�Theofficialdeathtollwasinitiallyrecordedataround5000�Manysourcesindicatedthat18,000haddiedwithin2weeks,anditisestimatedthataround8000havediedsincethenasvictimsofgas-poisoning-relateddiseasesthatcroppedup(Browning,1993)�Thedecisivefactorsthatcontributedtothedisasterincludethechemicalplant’spoorlychosenlocation,theuseofhazardousingredientchemicalssuchasMICinsteadoflessdangerousones,storageofthesechemicalsinlargetanksinsteadofseveralsmallerstoragetanks,poormaintenanceandcontrolofequipmentatthechemicalplant,failureofseveralsafetysystems,whichwerenotinoperationatthetime(Carbarylisnotatpresentregisteredforpesticideusebecauseitisclassifiedasalikelyhumancarcinogen)�
ogyapplicationsectors�ThetragedyofThalidomide(Mogheetal�,2008)isalsoaverywell-known
Boththesedisastersledtotighterspecificationsofsafetyinthechemicalindustryandtechnol- dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione) was introduced as a sedative drug in the late
chemicaldisasterbecauseofliteraryandcinematographicelaborations�Thalidomide((RS)-2-(2,6-1950sinWestGermanyandconsequentlyintherestoftheworldexcepttheUnitedStates�Inthe
Trang 274 Handbook on Applications of Ultrasound: Sonochemistry for Sustainability
late1950sandearly1960s,morethan10,000childrenin46countrieswerebornwithdeformitiessuchasphocomeliaasaconsequenceofthalidomideuse�
In1962,theU�S�CongressenactedlawsrequiringtestsforsafetyduringpregnancybeforeadrugcouldreceiveapprovalforsaleintheUnitedStates�Othercountriesenactedsimilarlegislation,andthalidomidewasnotprescribedorsoldfordecades�Thelaterexamplesofa“sad”and“bad”appliedchemistry,riskofsomechemicals,chemicaltechnologies,industry,andpollutionoftheenvironmentbydifferentwastescontributetotheexplanationoftheexecrationofchemistry�Ontheotherhand,chemistryanditsproductsareemployedbypeopledaily,and,withoutthem,thenatureandcontemporarycharacteristicsofhumanlifeandqualitywouldbecomegenerallyverydifficult�
WASTES AS REAL EFFECT OF THE ANTHROPOGENIC ACTIVITIES
Often,wehearviewsthatregardchemicalsassomethingbad,intheformofafoodand/oradrink�If we define the term “chemicals” as elements, their compounds, and compound mixtures (Hilletal�,2005),itrevealstheabsurdityoftheseviews,because,bystrictdefinition,drinkingwater,air,bread,hamandeggs,steak,housefly,dog,manyothers,and,evenmancouldbe“chemicals�”Finally,wecandefinelifeasahighlysophisticatedself-organizedsetoftransformationsandpro-cessesofsomechemicalsintootherchemicalswhichtakeplaceinsidealivingorganismfromthetimeoftheirconceptiontothemomentoftheirfatality(Koshland,2002)�Inthecourseoftheirlifecycle, wastes are formed (containing water, inorganic, and organic substances), and products ofaerobicand/oranaerobicrespiration(carbondioxideandoxygen),deadmatteroftabernacles,andotherresiduesareproduced�
ismsconsumeandderivebenefitfromsuchwastesorthesewastesstayintheenvironmentassedi-mentaryrocks(limestone,flintstone,guano,coalbed,andotherrock),onemayfindsomeregionswithhighconcentrationsofthesewastes(Blattetal�,1980)�
Processesofwasteformationandtheircirculationareinevitableforlife�Becauseotherorgan-Allhighlysophisticatedself-organizedtransformationprocessesofwastes,andtheiruseandreuseintheenvironment,includingthebiosphere,proceedthereforeinclosedandwell-balancedcycles(Beckett,1981)�Anyorganismneedschemicalsubstancessuchasfoodandproductsotherthanchemicalsubstancessuchaswastesandalloccurthroughoutthecomplexfoodchainsandfoodwebs�Asimpleexamplewouldbegreenplantsthatarefoodforfauna,astheyyieldoxygenfortheanimalkingdomandplants�Viceversa,animalsproduceexcrementsandexpiredcarbondioxideasafoodforflora(PolisandWinemiller,1996)�
ANTHROPOGENIC WASTES AND THEIR IMPACTS ON NATURE
AND DEVELOPMENT OF HUMANKIND
ferentqualitiesandquantitiesofthewastesthatareproducedattheendofthesecomplexprocesses�Thequantityofwastesincreasesduetoariseinpopulation,andthequalityofwasteismorediversebecause of the ever-increasing industrial activities and their complexity� Both are affected by achangeinlifestyleofhumansandbythegrowthintheirconsumptionpatterns�Overtime,thedevel-opmentofhumankindleadstothereleaseoftoxicchemicalsintotheenvironment�Thesetoxicchemicalsascompoundsofheavymetalsorradioactivechemicalsgetconcentratedintheenvironment�Theconcentrationoftoxicorhazardoussubstanceshasaverynegativeeffectontheenvironmentincludingthebiosphere�Thisisbecausethenaturalenvironmentalcyclescannotassimilateanddegradethesepollutantsanyfurtherinasustainableandeffectivemanner�Processesofwasteaccu-mulationarethereforenon-sustainable�Atthetimeoftheindustrialandpostindustrialsociety,theterm“waste”tookonanewdimension(PongráczandPohjola,2004)�
Trang 28Wastesproducedbythehumansocietyprofoundlyunderliedifferentprocessesbecauseofthedif-Emerging Ubiquity of Green Chemistry in Engineering and Technology 5
Wastemaybedefinedasmass(orenergy)thatisformedduringthemanufacturingprocessofaproductwithautilityvalueandwhichremainswhenthisproductlosesitsutilityvalue�Thiswastecontinuestobeawasteuntilitiseitherreintegratedintoanenvironmentoritischangedintoanewproduct(s)withanewutilityvalue�
AcopyofthenewspaperThe Timescanhelpasanexamplefortheabove-mentioneddefinition� ItisevidentthatduringthepreparationprocessofacopyofThe Timesadifferentbutbroadspec-
trumofwastesisproduced�However,thisisnotaproblemformostnewspaperreaderssincetheylookforwardtolearnaboutcurrentnews�Thenewspaperhasforthemanactualutilityvalueequaltothepriceof£1,whichforamajorityofreadersacquireszero-valueafteraread-throughandturnsintowasteendingupinacontainer�Itisinprinciple“bad”whenthiswasteisterminatedasmunicipalwastebecauseitscurrentutilityvalueisnegative�Ontheotherhand,thiswastepapermaybereusedasfiringmaterial(smallbutstillwithapositiveutilityvalue)orpreferablyrecycledasfreshrawmaterial(anetmorepositiveutilityvalue)�Archivingnewspapersinlibraries,archives,orinrecordofficesisanunusualwayofusingread-throughnewspapers�Theutilityvalueofthis
read-throughcopyofThe Timesispositiveand,overaperiodoftime,itincreases�
In this context, it points toward a product of life-cycle assessment (LCA)� LCA (Cooper andFava,2006)maybedefinedasamethodtoassesstheenvironmentalaspectsandpotentialimpactsassociatedwithaproductbasedoncompilinganinventoryofrelevantenergy,materialinputs,andenvironmentalreleases,onevaluatingthepotentialenvironmentalimpactsassociatedwithidenti-fiedinputsandreleasesincludingpotentialhazards,andoninterpretingtheresultshelptocomeupwithamoreinformeddecision�
tant factor in the development of humankind� These sources can be classified in terms of theiravailabilityaspermanent(e�g�,basematerialssuchaswater,saltyseaandoceanwater,nitrogen,oxygen,andotherairgasesandenergysuchassolarandgeothermalenergyandkineticorpotentialenergyofflowingwaterandagitateair)orasrenewable(e�g�,greenalgaeandplants,charcoal,andnuclearenergy)biomass�Thepermanentandrenewablesourcesarethereforeclassifiedassustain-ablewhereasthenonrenewablesourcesarecategorizedasnon-sustainable(Lancaster,2002)�Inthesequel,anumberofhumanactivitiesconnectedwiththeirdevelopment,namelyinthetimeofindustrialandpostindustrialsociety,havealwaysresultedinhazardousconsequences�Asexamples,clearingofforestandtropicalrainforest(Moran,1993)forobtainingagriculturalfarms,landforcivilconstructions,orforobtainingroundwoodasrawmaterial(Hartman,1992);theuseofcyanideforgoldmining(Ali,2006);ortheuseofsulfuricacidforuraniumminingresultinthepollutionofwaters,productionofgreenhouseandotherhazardousatmosphericgases�Furthermore,theproduc-tionandexploitationofgenerallytoxicandhazardousproductsandtheapplicationofmethodsfortheirproductionleadtoenvironmentalpollution�
Thepossibilityofaccessingthesourcesofbasematerialsandenergyisthesecondmostimpor-Thepossibilityofhazardisthethirdimportantfactorinthedevelopmentofhumankind(EricsonIII,2005)�Bynature,hazardinvolvessomethingthatcouldpotentiallybeharmfultoaperson’slife,health,property,ortheenvironment(MacCollum,2006)�Onekeyconceptinidentifyinganyhaz-ardisthepresenceofstoredenergythat,whenreleased,cancausedamage�Storedenergycanoccurinmanyforms:chemical,mechanical,thermal,radioactive,orelectrical�Anotherclassofhazarddoesnotinvolvethereleaseofstoredenergy�Rather,itinvolvesthepresenceofhazardoussitua-tions�Examplesincludeconfinedorlimitedegress,oxygen-depletedatmospheres,awkwardposi-tions,repetitivemotions,andlow-hangingorprotrudingobjects�Hazardandvulnerabilityinteracttogethertocreaterisk�
Thecauseofthe2008–2009worldwidefinancialandeconomiccrisis,whichhadarisenasa result of derivatives of dangerous financial products or phosgene substitution by dimethylcarbonate—whichisproducedduringahazardoushigh-pressuresynthesisfrommethanolandcarbondioxide—constitutesthepossibilityofhazard�Hazardcannotbecompletelyeliminatedbutcanbeavoidedbyexperthandlingofsafetydevices,andcanthusbeminimized�Itisneces-sarytoeliminatehazardoussituationsorstateswhicharenon-sustainable�Itstandstoreason
Trang 296 Handbook on Applications of Ultrasound: Sonochemistry for Sustainability
thattheLCAforapapercopyoftheThe Timesandfortheabove-mentionedherbicideAgent Orangewillbetotallydifferent�ThepaperversionoftheThe Timesthereforecontinuestobe
issuedwhereasAgentOrangeisforbiddenforuse�
Thequantityofwasteduringamanufacturingprocessofatargetproductcanbedefinedasthemassdifferencebetweentheamountofrawmaterialsandthetargetproduct�Thevalueiscommen-surabletotheefficiencyofrawmaterialexploitation,productioncosts,andthefinalpriceofproducts�Waste is directly linked to human development, both technologically and socially� The com-position of different wastes has varied over time and location, with industrial development andinnovation�Examplesofthisincludeplasticsandnucleartechnology�Anthropogenicwastetypesdefinedbymodernsystemsofwastemanagement(Rhyner,1995)aremunicipalsolidwaste(MSW),constructionanddemolitionwaste(C&DW),institutionalwaste,commercialwaste,andindustrialwaste(IC&I),medicalwaste(alsoknownasclinicalwaste),hazardouswaste,radioactivewaste,andelectronicwaste�
ment,i�e�,onthesurfaceoftheEarthinsoils,inthewaterofrivers,seas,oceansandsubterraneanwaters,andintheatmosphere�Chemicalsubstanceswhicharecontainedinanthropogenicwastesmaybetransformedintheenvironmentbynaturalenvironmentalprocesses,e�g�,duringbiodegra-dationinsoil,water,andairbytheenzymaticactionoflivingorganismssuchasbacteria,yeasts,andgreenplantsunderaerobicand/oranaerobicconditions(Diaz,2008)�
Wastesthatareformedduringanthropogenicactivitiesmaybelocalizedinanintegralenviron-ablederivatives,theyfunctionaspollutantswithallnegativeresults,e�g�,asgeneraltoxicresiduesandagentsdepletingtheozonelayer�Itisgenerallyknownthatchemicalcompoundswithstrongchemicalbondssuchaspolyaromatichydrocarbons(PAHs),chlorinatedand/orfluorinatedhydro-carbons such as chlorofluorocarbons (CFCs, freons), chloromethanes, and the above-mentioneddioxinsaredangerousfortheenvironment(Williamsetal�,2000)�
Solongaswastesarenottransformedintheenvironmentintoenvironment-friendlyandaccept-Wastes can also be classified according to their state of matter such as solid, liquid, and/orgaseousortheirmaterialuniformitysuchashomogeneousorheterogeneous;industrialwastecanbecategorizedbythelocationoftheirgenesis,e�g�,“atsource”or“endofpipe”wastes�Thebestsituationistohavewastesthatarenotgenerated�Preventionofwasteproductionandpreventionofpollutionareprincipalapproachesofwastemanagement(ClarkandMacquarrie,2002)�Disposalof
“endofpipe”wastesincludesallanthropogenicwastetypesandmaybedescribedbythefollowingsequenceofprocedures:
Moreover,somecompaniesmovepollutingmanufacturingprocessesfromdevelopedcountriestothepoorerdevelopingcountries(least-developedcountries),forreasonsthatneednocomment,inanefforttosavecoststhereafter�Thissolutiondoesnotpreventtheconsequences�Ontheotherhand,itcreatesforthesecompaniesproblemswithflexibilityofproductionandtransport�Forthepreventionofhazardousorriskysituations,disasters,andaccidents,themonitoringandanalysisofallhazardousfactors(Mannan,2005)areimportant�Themonitoringandanalysisofthemovement
Trang 30Emerging Ubiquity of Green Chemistry in Engineering and Technology 7
ofchemicalsubstancesincludeallwastetypesintheenvironment,atoxicityanalysisofcurrentandnewchemicals,acapacityassessmentofmaterialandenergysources,otherhazardousfactors,andenvironmentalcosts�Consequently,ariseinthequalityandquantityofwastes,theirlocalandtemporalconcentrations,andtheself-regulatedprocessesintheenvironmentmaybeinhibitedandtheentiresystemmaybedeflectedfrombalance�
Anumberofpersons(environmentalistsandpoliticians)haverealizedthis“fatal”problemofenvironmentalpollution�Andfortheperpetuityofhumancivilization,thesepeoplehaverecentlystartedseekingsolutions�Theapproachestoaddresstheseimpendingenvironmentalhealththreatsarediscussedinthefollowingsection�
CHEMICAL WASTES
cals,andthepharmaceuticalindustry,andwithoutchemicalprocessesasapplicableintheprocess-ingindustryandenergyindustryishardlyconceivable�However,humanactivitiesconnectedwithchemistry,chemicalengineeringprocesses,andthechemicalindustryyieldverynegativeimpactsontheenvironmentandcreateallsortsofhazards�
Asmentionedearlier,theexistenceofcontemporaryhumancivilizationwithoutchemistry,chemi-trile(vinylcyanide)isaresinous,fibrous,orrubberyorganicpolymer(Morgan,2005)�Thesyn-theticretro-projectionofPANmanufacturingisillustratedinScheme1�1�Itisgenerallyknownasamaterialforuseinthetextileindustry,oftenincombinationwithnaturalfiberssuchascottonandwool�PANfibersarealsothechemicalprecursorsofhigh-qualitycarbonfibers�Theyarechemicallymodifiedtomakecarbonfibersfoundinplentyofbothhigh-techandcommondailyapplications such as primary and secondary structures of civil and military aircraft, missiles,solidpropellantrocketmotors,pressurevessels,fishingrods,tennisrackets,badmintonrackets,andhigh-techbicycles�AlmostallPANresinsarecopolymersmadefrommixturesofmonomerswithacrylonitrileasthemaincomponent�Itisacomponentrepeatunitinseveralimportantcopo-lymers,suchasstyrene–acrylonitrile(SAN)andacrylonitrilebutadienestyrene(ABS)plastic�Evidently,PANanditscopolymersareveryimportantfortheexistenceofcontemporaryhumanlife�Ontheotherhand,PANisaverystablematerialwhichishoweverproblematicallyintegratedintotheenvironmentbecauseofitsincompletecombustionthatproduceshydrogencyanideandnitrogenoxides�
Polyacrylonitrile(PAN)preparedbyfree-radicalvinylpolymerizationofmonomeracryloni-Monomeracrylonitrile(Dalinetal�,1971)ismanufacturedbythecatalyticammoxidationofpropyleneorbythecatalyticadditivereactionofhydrogencyanidewithacetylene(Goodrichpro-cess)�HydrogencyanideisproducedmainlybytheAndrussovoxidationprocessinwhichmethaneandammoniareactinthepresenceofoxygenatabout1200°Coveraplatinumcatalyst�Methane,propylene,andacetylenearepetrochemicalproducts,andthereforenonrenewablerawmaterials�However,ammoniacanbecharacterizedasarenewablerawmaterialandoxygenasapermanentone�Allthechemicalsusedforacrylonitrilemanufacturingincludingacrylonitrileitselfarehighly
CN CN
Trang 318 Handbook on Applications of Ultrasound: Sonochemistry for Sustainability
hazardousandexplosiveinamixturewithair,flammable,andgenerallytoxic�Thesetechnologicalprocessesarealsohazardousbecausetheyinvolvehighpressuresandhightemperatures�
Ibuprofen is manufactured currently (procedure of Hoechst company, Presidential [USA]GreenChemistryChallenge:GreenerSyntheticPathwaysAwardin1997)byathree-stepsynthe-sisstartingwiththeFriedel–Craftspara-acetylationofiso-butylbenzenebyacetanhydrideinthepresenceofhydrogenfluorideastheLewisacidcatalyst�Thissyntheticstepproducesaceticacidandhydrogenfluorideaswaste,butaceticacidcanbeusedasarawmaterialforotherchemicalsynthesesandhydrogenfluoridecanbereused�JustusinghydrogenfluorideisveryinnovativebecauseFriedel–CraftsacetylationofaromaticsusingaluminiumchlorideasaLewisacidarecommonlyapplied�
Ontheotherhand,thereisnodoubtthatbothaceticacidandincreasinglyhydrogenfluoridearehazardoussubstances�Inthenextstep,4-acetylatediso-butylbenzeneishydrogenatedonRaneynickelasaheterogeneouscatalystunderpressuretogivethecorrespondingalcohol,whichinathirdstepundergoespalladium-catalyzedcarbonylationbycarbonmonoxide�
Onceagain,alltheabovereagents,intermediateproducts,andcatalystsaresomehowhazardous�Intermsofthesourceinputs,nickelandpalladiumarenon-renewable,andhydrogenandcarbon
O
O O ClCH2COOC2H5
(CH3CO)2O AlCl3
O OH
O
H2, Raney Ni
CO, [Pd]
(CH3CO)2O HF
SCHEME 1.3 Syntheticretro-projectionofibuprofenmanufacturingbyHoechstmethod�
Trang 32Emerging Ubiquity of Green Chemistry in Engineering and Technology 9
monoxidecanbemarkedaspartlyrenewablerawmaterials�Classificationinbothcasesdependsontheusedenergyandcarbonmonoxideoncarbonsource�Asustainablemethodforcarbonmonoxidemanufacturingishencebasedeitheronthereactionofcarbon(i�e�,charcoal)withcarbondioxide,controlledoxidationofcharcoal,orcellulosepyrolysis�
Evaluations of synthetic processes are necessary for an assessment of their environmentalimpacts,theutilizationofmaterialandenergyinputs,wasteproduction,andcostsinvolved�Wethereforeneedtodefinethecontentof“asyntheticprocess”orofachemicalsynthesis�Chemicalsynthesismaybedefinedasaprocessthatstartsfromthetimeoflocationofreagent(s),possiblesolvent(s),catalyst(s),andauxiliariesinareactoruptothepointofendingtheirreaction,separation,andpurificationprocessofreactionproduct(s),finallyculminatingintheadjustmentofproduct(s)�Thefirstandlastpartsofthedefinitionareimportantbecausetheyhelptoexploretherequirementofenergyandworkandtheircostsforallprocesses�Ontheotherhand,theyhelptoobtainarealoutlookonsomesensationalso-calledsolvent-freesyntheses�Thesecasesarereportedveryoften,but, in a further view, they are not solvent-free syntheses� Respective reactions proceed indeedwithoutasolvent,butamixtureofreagentshavebeenmixedinsolvents(fordepositiononsolidsupport)and/orthefinal(solid)producthasbeenpurifiedbyusingasolvent�Theadvantagesofone-pot,multicomponent,anddominoreactionsexcelinthecontextofthesyntheticprocessdefinedearlierbecauseseveralsyntheticorreactionstepsarelocatedinthesamereactorwithoutseparation,purification,transport,andadjustmentoftheintermediaryproduct�
CHEMICAL WASTES AND SYNTHETIC CHEMISTRYMETRICS
Achemicalone-stepsynthesismaybedescribedasinScheme1�4�
AnidealgoalofsyntheticprocessesisthefullconversionofstartingreactantsintoapurefinaltargetproductCwithouttheapplicationofothersubstances(catalyst,solvent,auxiliaries)andwith-outenergyclaims�Inaddition,thisprocessshouldbeconductedwithouttheformationofregio-and/orstereoisomersofthetargetproductC′,C″,by-product(s)D,nonconvertededucts%A,%B,catalyst,solvents,andauxiliaries,whichareabreedinggroundforwasteformationbecausetheyarenotembeddedintheproduct,andadditionalenergyandlaborareneededfortheirseparation�However,idealsyntheticproceduresoccurverysporadically�Hence,trade-offsmustbesoughtandconsidered�Designingsyntheticprocesseshelpsoptimizethesecompromises�
Currentchemistry,engineering,andtechnologyuseanumberofindexes(syntheticchemistrymetrics)toassesstheefficiencyofsyntheticprocesses(LapkinandConstable,2008):
1�ConversionXofreactantAorB(oneoftwoismarkedaskeyorlimitingreactant)isthedegreeofitsutilizationforanyproductformationinagivenmoment�Thisindex(avalueof
0–1or0%–100%,theoreticalmaximumX=1orX=100%)showshowmanykeyreactants
areutilizedforproductformationandsignifieshowmuchofitisleftaswasteforwastemanagement� Conversion may be increased by the arrangement of synthetic procedure
A + B C + C ´ + C ˝ + D + %A + %B
Catalyst, solvent, auxiliaries Energy and work
SCHEME 1.4 Generalschemeofone-stepchemicalsyntheticprocess�(A,B:Startingreactants,educts;
C:targetproduct;C ′,C″:isomers,bothregioandstereo,ofthetargetproduct(undesirable);D:by-product (undesirable);%A,%B:nonconvertededucts;catalyst:acid–base,metalcomplex,homogeneousorhetero- geneoussolventforreactionand/orforpurification;auxiliaries:sorbentforpurification,surfactant,inert gas;energyforheating,cooling,stirring,highpressure,vacuum,transportandworkofstaff�)
Trang 3310 Handbook on Applications of Ultrasound: Sonochemistry for Sustainability
conditions,e�g�,byachangeofsolvent,andapossiblepressure-ortemperature-induceddisplacementofchemical/dynamicequilibrium�
2�YieldofthetargetproductCistheamountofproductobtainedasaresultofachemical reaction�TherelationshipbetweenyieldYandconversionXisgivenbythemultiplication operationY=X×S,whereSisaselectivityofreactionforthetargetproduct,allcalculated
onmolarbasis�Otherwise,arelationshipisfoundbetweenthemassofthetargetproductanditstheoreticalcalculatedvalue,rangingfrom0to1or0%to100%,withatheoretical
maximumforY=1orY(%)=100%�Yieldaswellasconversionandreactionselectivity
maybeincreasedbyachangeofsyntheticprocedureconditions�
3�Effectivemassyieldisdefinedastheratiobetweentheweightofthetargetproductandthemassofallnon-benignmaterialsincidentinthecourseofitssynthesis(i�e�,regio-and/orstereoisomersofthetargetproduct,by-product(s),catalyst,solvents,andauxilia-ries)�Theweaknessofthismetricistherequirementforafurtherdefinitionofabenignsubstance�Itisassumedthatthesehavenoenvironmentalriskassociatedwiththem,e�g�,water,low-concentrationbrine,inertgases,diluteethanol,autoclavedcellmassmaybereferredtoasbenign�Thisdefinitionisverysubjectivebecauseenvironmentaldatamaybeincomplete�
4�Environmentalfactor(E-factor):RogerSheldon’sE-factor(Sheldon,1992,1994,1997a,b,
2000,2007,2008)canbeviewedascomplexandthoroughandontheotherhandassimplewhenrequired�Assumptionsonsolventandotherfactorscanbemadeoratotalanalysis
canbeperformed�TheE-factorcalculationisdefinedbytheratioofthemassofwasteper unitofproduct�Thisvalueisverysimpletounderstandandtouse�E-factorignoresrecy-
clablefactorssuchasrecycledsolventsandreusedcatalysts,whichobviouslyincreasethe
accuracybutignoretheenergyinvolvedintherecovery�ThemaindifficultywithE-factors
istheneedtodefinesystemboundariesbeforereliableandmeaningfulcalculationscanbeperformedandthesedifferfromassessortoassessor�Thislimitationisthemaindraw-backofallmetricswiththeexceptionoftheextremelycomplexLCAofaproduct�By
incorporatingyield,stoichiometry,andsolventusage,theE-factorisanexcellentmetric� Crucially,E-factorscanbecombinedtoassessmultistepreactionsstepbysteporinone
calculation�Sheldondemonstratedinhisdocumentsthatthechemicalindustrysectorwith
abulkytonnageofannualproductionachievingrelativelysmallvaluesofE-factor,e�g�, petrochemicalindustryandindustry,producedbulkchemicalshavinganE-factorof0�1–5
atanannualproductionof104–108ingfinechemicalsandpharmaceuticalshadfortheirannualproductionof104–10tonsan
tons�Ontheotherhand,chemicalcompaniesproduc-E-factorincomparablyhigherat5–100�Thesedatahencedemonstratethatoilcompanies
producealotlesswastethanpharmaceuticalsasapercentageofmaterialprocessed�Thisreflectsthefactthattheprofitmarginsintheoilindustryrequirethemtominimizewasteandfindalternativeusesforproductswhichwould“normally”bediscardedaswaste,oritmaybetransformedbycatalyticprocessestoreusablefundamentalproducts(methane,ethane,ethylene,andhydro-craftingof“heavy”naturalresinparaffines)�Bycontrast,thepharmaceuticalsectorismorefocusedonmoleculemanufacturingandquality�Theactuallyhighprofitmarginswithinthepharmaceuticalsectormeanthatthereislessconcernaboutthecomparativelylargeamountsofwastethatareproduced(especiallyconsideringthe
volumesused)althoughithastobenotedthat,despitethepercentageofwasteandE-factor
beinghigh,thepharmaceuticalsectorproducesmuchlowertonnageofwasteperproductunit than any other sector� As mentioned earlier, by obtaining the relevant data for the
calculationofaconversion,yield,effectivemassyield,andE-factor,asyntheticorprocess
experiment may be performed� Synthetic or process experiments are not necessary forthecalculationofafurther4–6chemistrymetricsbecauseofthechemicalsynthesisandsyntheticprocessmodelingdiscussedbelow�
Trang 34Emerging Ubiquity of Green Chemistry in Engineering and Technology 11
5�Atomeconomy(atomefficiency—AE)isdesignedinadifferentwayfromalltheabovemetrics�Itcanbedesignedasamethodbywhichorganicchemistswouldplanon“cleaner”syntheticprocessesverysimply�Theessentialdefinitionofatomeconomyisbasedonhowmuchofthereactantremainsinthefinalproduct�Forasingle-stepprocedureoftheabovesynthesis,atomeconomymaybecalculatedas
foratheoreticalmaximumY=1orY(%)=100%achievableforisomerizationreactions,
rearrangement, additive reactions including Diels–Alder and similar cyclo-additions iftheseproceedwithoutmoreisomerformation�Inthesereactiontypes,onlyoneproductisformed�Ontheotherhand,intheWittigreactionorMitsunobureaction,averypoorAEisobtainedbecauseheavytriphenylphosphineoxideisformed�OtherexamplesofpoorAEmaybethenucleophilicsubstitutionreactionsofhalogensonsaturatedcarbonatomunder
SN2reactionconditions�Alkyliodidesareveryreactiveatthesealkylatingreactions�
ciencyofcarbonatomsinvolvedinthesyntheticprocess�ThemathematicalrepresentationisaccordingtoAE,butinlieuofmassofallatomsthemassofcarbonatomsisconsidered�Thismetricisagoodsimplificationforuseinthepharmaceuticalindustry(andinsus-tainablepetrochemistrytoo)asittakesintoaccountthestoichiometryofreactantsandproducts� Furthermore, this metric is of interest to the pharmaceutical industry wherethedevelopmentofcarbonskeletonsisimportantforthework�Thegoalistoconserveallcarbonatomsinthematrixofthecompound�AvalueofCElessthan1isconnectedwithcrackinganddecarboxylationreactions�Bulkydecarboxylationreactionsobservedinpetrochemistrymightbethesourceofmassivevolumesofgreenhousecarbondioxide�Hence,thisindexshowsthatthepotentialtransformationofplantoilsintohighalkanesor alkenes as renewable products will not be based on hydrolysis and decarboxylationreactions,butonreductionthroughthecatalytichydrogenationoffunctionalizedcarboxylgroupsinplantoils�
6�Carbonefficiency(CE)isanothermetricderivedfromAE,butisusedonlyfortheeffi- 7�ReactionmassefficiencyisalsoanothermetricderivedfromAE,butinthecalculation,themassofproductandeductsisusedinlieuofmolecularweight�ThedifferencebetweenAEandreactionmassefficiencyvaluesmayariseifeductsreactnotinarealreactionbutonastoichiometricbasis(excessofnon-keyreactant)�Inthiscase,avalueforreactionmassefficiencylessthantheatomeconomyisobtained�
8�TheEcoScale(VanAkenetal�,2006)isarecentlydevelopedmetrictoolfortheevaluationoftheeffectivenessofasyntheticreaction�Itischaracterizedbysimplicityandgeneral
Trang 3512 Handbook on Applications of Ultrasound: Sonochemistry for Sustainability
applicability�Liketheyield-basedscale,theEcoScalegivesascorefrom0to100,butalsotakesintoaccountcost,safety,technicalsetup,energy,source,andpurificationaspects�Itisobtainedbyassigningavalueof100toanidealreaction�Theproposedapproachisbasedonassigningarangeofpenaltypointstotheseparameters:
This semiquantitative analysis can easily be modified by other synthetic chemists whomayfeelthatdifferentrelativepenaltypointsshouldbeassignedtosomeparameters�It isapowerfultooltocompareseveralpreparationsofthesameproductbasedonsafety,economical,source,andenvironmentalfeatures�
SUSTAINABLE DEVELOPMENT: STARTING POINT AND PREVENTION
OF AN ULTERIOR BEING OF HUMAN CIVILIZATION
Since the late 1960s and early 1970s some people from academia, civil society, diplomacy, andindustryhavebeguntobeawarethatthecurrentlifestyleanddevelopmentofhumankindisnotfur-thersustainable�Amassivepollutionoftheenvironmentinconsequenceofindustrialactivitiesandmanufacturing,andoverexploitationofnaturalrawmaterialandenergysourceshavetakenplace�Hence,inApril1968,TheClubofRome(KingandSchneider,1993)wasfoundedasaglobalthinktankthatwoulddealwithavarietyofinternationalpoliticalissues�Ithasraisedconsiderable
publicattentionin1972withitsreportbookThe Limits to Growth(Donellaetal�,1972),whichused
theWorld3modeltosimulatetheconsequencesofinteractionsbetweentheEarth’ssystemsandhumansystems�Theclubstatedthatitsmissionis“toactasaglobalcatalystforchangethroughtheidentificationandanalysisofthecrucialproblemsfacinghumanityandthecommunicationofsuchproblemstothemostimportantpublicandprivatedecisionmakersaswellastothegeneralpublic�”OnJuly9,1970,citingrisingconcernsoverenvironmentalprotectionandconservation,U�S�presi-dentRichardNixontransmittedReorganizationPlanNo�3totheUnitedStatesCongressbyexecutiveorder,creatingtheEPAasasingle,independentagencyfromanumberofsmallerarmsofdifferentfederalagencies�PriortotheestablishmentoftheEPA,thefederalU�S�governmentwasnotstructuredtocomprehensivelyregulateenvironmentalpollutants�TheUnitedNations(UN)ConferenceontheHumanEnvironment(alsoknownastheStockholmConference)wasaninternationalconferencecon-venedundertheUNauspicesheldinStockholm,Sweden,fromJune5to16,1972�
ItwastheUN’sfirstmajorconferenceoninternationalenvironmentalissues,andmarkedaturningpointinthedevelopmentofinternationalenvironmentalpolitics�Themeetingagreeduponadeclara-tioncontaining26principlesconcerningtheenvironmentanddevelopment,anActionPlanwith109recommendations,andaResolution�In1973theEuropeanUnion(EU)createdtheEnvironmentalandConsumerProtectionDirectorate,andcomposedthefirstEnvironmentalActionProgram�In1987,“OurCommonFuture”(OurCommonFuture(1987),Oxford:OxfordUniversityPress),also known as the Brundtland Report, from the UN World Commission on Environment andDevelopment(WCED)waspublished�Thepublicationof“OurCommonFuture”andtheworkoftheWCEDlaidthegroundworkfortheconveningofthe1992EarthSummitandtheadoptionofAgenda21,theRioDeclaration,andtheestablishmentoftheCommissiononSustainableDevelopment�Anoft-quoteddefinitionofsustainabledevelopment(SD)isdefinedinthereport:“Developmentthatmeetstheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerationstomeettheirownneeds�”
ognitionthatthemanycrisesfacingtheplanetareinterlockingcrisesthatareelementsofasinglecrisisofthewholeandofthevitalneedfortheactiveparticipationofallsectorsofsocietyincon-sultationanddecisionsrelatingtoSD�
Trang 36Inaddition,keycontributionsof“OurCommonFuture”totheconceptofSDincludetherec-Emerging Ubiquity of Green Chemistry in Engineering and Technology 13
Agenda21(http://www�un�org/esa/dsd/agenda21/)isaprogramrunbytheUNrelatedtoSDandwastheplanet’sfirstsummittodiscussglobalwarming–relatedissues�Agenda21clearlyidenti-fiedinformation,integration,andparticipationaskeybuildingblockstohelpcountriestoachievedevelopmentthatrecognizestheseinterdependentpillars�ItemphasizesthatinSDeveryoneisauserandproviderofinformation�Itstressestheneedtochangefromoldsector-centeredwaysofdoingbusinesstonewapproachesthatinvolvecross-sectoralcoordinationandtheintegrationofenviron-mentalandsocialconcernsintoalldevelopmentprocesses�Furthermore,Agenda21emphasizesthatbroadpublicparticipationindecisionmakingisafundamentalprerequisiteforachievingSD�Itisacomprehensiveblueprintofactiontobetakenglobally,nationally,andlocallybyorganizationsoftheUN,governments,andmajorgroupsineveryareainwhichhumansdirectlyaffecttheenvironment�Suchincreasedinterestandresearchcollaborationarguablypavedthewayforfurtherunder-standingofglobalwarming,whichhasledtosuchagreementsastheKyotoProtocol�ThisisaprotocoltotheUnitedNationsFrameworkConventiononClimateChange(UNFCCCorFCCC),aimedatfightingglobalwarming�TheUNFCCCisaninternationalenvironmentaltreatywiththegoalofachieving“stabilizationofgreenhousegasconcentrationsintheatmosphereatalevelthatwouldpreventdangerousanthropogenicinterferencewiththeclimatesystem�”TheProtocolwasinitiallyadoptedonDecember11,1997inKyoto,Japan,andenteredintoforceonFebruary16,2005�AsofNovember2009,187stateshavesignedandratifiedtheprotocol,butwithouttheUnitedStatesandothercountries�
tersoftheUnitedNations,theGeneralAssemblyadoptedtheMillenniumDeclaration�Afollow-upoutcomeoftheresolutionpassedtheGeneralAssemblyonDecember14,2000toguideitsimple-mentation�ProgressonimplementationoftheDeclarationwasreviewedatthe2005WorldSummitofleaders�
OnSeptember8,2000,followinga3-dayMillenniumSummitofworldleadersattheheadquar-TheWorldSummitonSustainableDevelopment(WSSD)orEarthSummit2002tookplaceinJohannesburg,SouthAfrica,fromAugust26toSeptember4,2002�ItwasconvenedtodiscussSDbytheUN�WSSDgatheredanumberofleadersfrombusinessandnongovernmentalorgani-zations,10yearsafterthefirstEarthSummitinRiodeJaneiro�(Itwasthereforealsoinformallynicknamed“Rio+10”�)
The2009UNClimateChangeConference,commonlyknownastheCopenhagenSummit,washeldinCopenhagen,Denmark,betweenDecember7and18�
Theconferenceincludedthe15thConferenceoftheParties(COP15)intheUNFCCCandthe5thMeetingoftheParties(COP/MOP5)intheKyotoProtocol�AccordingtotheBaliRoadMap,aframeworkforclimatechangemitigationbeyond2012wastobeagreedthere�Theconferencewaspreceded by the Climate Change: Global Risks, Challenges, and Decisions scientific conference,whichtookplaceinMarch2009andwasalsoheldattheBellaCentre�ThenegotiationsbegantotakeanewformatwheninMay2009UNSecretaryGeneralBanKi-moonattendedtheWorldBusinessSummitonClimateChangeinCopenhagen,organizedbytheCopenhagenClimateCouncil(COC),whereherequestedCOCcouncilorstoattendNewYork’sClimateWeekattheSummitonClimateChangeonSeptember22andengagewithheadsofgovernmentonthetopicoftheclimateproblem�WhatresultsfromSDmightbeastartingpoint,solution,andpreventionofanulteriorbeingof human civilization� It might optimize close relations between production, economy, humansociety, the biosphere, and the environment� Hence, SD is built on three pillars: environment,economy,andsociety�
SDisanoptimalintersectionofsetsofallentitiesintheenvironment,economy(includingproduction), and human society� SD could be viable (for production, economy, and the environ-ment),sociallyandeconomicallyequitable,andsociallyandenvironmentallybearableinallandfor all� Most countries have no problem in accepting these environmental pillars� However, theacceptanceoftheseeconomicalandsocialpillarsmaygeneratescrupleorevenasilentoppositioninpoorerdevelopingcountriesorleast-developedcountriesontheonehand,butalsoindevelopedcountriesontheother,namely,thosewithaneoliberalgovernmentonprincipleasa“ThirdWay�”
Trang 3714 Handbook on Applications of Ultrasound: Sonochemistry for Sustainability
SDalsohassomeshortfallsatitsstart�Theproportionbetweenthesizeofthepopulationandnonrenewableresourcesisincommensurableandthistrendwillgrowevenfurther(Cohen,1995)�Theproportionbetweenthestandardoflifeofthepeopleindevelopedcountriesandthatinleast-developedcountriesisincommensurableandthisdifferencewillnotceaseduringthelifetimeofonehumangeneration�Everyoneofthreerichestmenintheworldisinpossessionofmorepropertythanthewealthof48mostneedycountriesintheworld,whiletherichestwomaninFrancehasanannualincomethatequalsthatof15,700ofherfellowcitizenswhodrawminimalwages(Keller,2010)�
Theseproportionsshowthattheinequalitybetweensomepeopleandsomecountriesproducesadifferencethatwillprobablyrisefurther�Moreover,iftheeconomyindevelopedcountriesdoesnotshowcharacteristicsofgrowthinhumanconsumption,theglobaleconomywillsufferproblems�
AlbertBartlett,inhiscontribution“TheLawsofSustainability”intheanthologyThe Future of Sustainability(Keiner,2006),isveryskepticalabouttheword“sustainability”inconnectionwith
the term “development” and in the context of an exponentially growing human population� Heassertsinhisfirstof21“LawsofSustainability”thattheterm“SustainableGrowth”isanoxymo-ron�Inthenextlaws,hedeclaresthat“Onecannotsustainaworldinwhichsomeregionshavehighstandardsoflivingwhileothershavelowstandardsofliving”(5thLaw),“Thebenefitsofpopula-tiongrowthandofgrowthintheratesofconsumptionofresourcesaccruetoafew;thecostsofpopulationgrowthandgrowthintheratesofconsumptionofresourcesarebornebyallofsociety”(9thLaw),“Humanswillalwaysbedependentonagriculture”(16thLaw),“If,forwhateverreason,humansfailtostoppopulationgrowthandgrowthintheratesofconsumptionofresources,Naturewillstopthesegrowths”(18thLaw),“Starvingpeopledon’tcareaboutsustainability”(19thLaw),
“Theadditionoftheword‘sustainable’toourvocabulary,toourreports,programs,andpapers,tothenamesofouracademicinstitutesandresearchprograms,andtoourcommunityinitiatives,isnotsufficienttoensurethatoursocietybecomessustainable”(20thLaw),andhefinisheswith
“Extinctionisforever�”
AlltheserealitiesdonotleaveusfeelingoptimisticaboutthefurtherSDofhumankind�Hence,the activities of current political and economic elites, establishments, scientists, engineers, andtechnologistsarefocusedontheenvironmentalandeconomicalpillarsofSDasitsprofitableparts�Ontheotherhand,amutualrelationshipbetweentheenvironment,economy,andproductionactivi-tiesisevident�
ableendeavorsaimingatthebettermentandsurvivalofhumankindfollowingtherationaldevelop-mentandresponsivegrowththatthisconceptentails�
Consequently,theconceptof“sustainabledevelopment”maybeunderstoodasasetofsustain-SUSTAINABLE DEVELOPMENT, CHEMISTRY, AND ITS ENGINEERING
AND TECHNOLOGICAL APPLICATION
Chemical production and its engineering and technological application are economically andsociallyverybeneficialtohumanitybutareverydisadvantageousfornaturalsourcesandfortherestoftheenvironment�Withthegoalofharmonizingthisdisproportionatebalance,thefollowingremedialsolutionshavecomeintodemand�
In1990,thePollutionPreventionActpassedintheUnitedStates�Thisacthelpedtocreateamodusoperandifordealingwithpollutioninanoriginalandinnovativeway�Itaimedatavoidingproblemsbeforetheyactuallyhappened�ShortlyafterthepassageofthePollutionPreventionActof1990,theEPA’sOfficeofPollutionPreventionandToxics(OPPT)begantoexploretheideaofdevelopingneworimprovingexistingchemicalproductsandprocessestomakethemlesshazard-oustohumanhealthandtheenvironment�
In1991,theOPPTlaunchedthemodelresearchgrantsprogram“AlternativeSyntheticPathwaysforPollutionPrevention�”Thisprogramprovided,forthefirsttime,grantsforresearchprojectsthatincludedpollutionpreventioninthesynthesisofchemicals�SincethattimetheGreenChemistry
Trang 38Emerging Ubiquity of Green Chemistry in Engineering and Technology 15
Programhasbuiltcollaborationswithmanypartnerstopromotepollutionpreventionthroughgreenchemistry�Partneringorganizationsrepresentacademia,industry,othergovernmentagencies,andnongovernmentalorganizations�
triesexceptContinentalEurope�IntheEUanalogousactivitiesmaybepresentundertheindicesofsustainablechemistry�
Inthenameofgreenchemistry,correspondingactivitieshavestartedforthefirsttimeinall coun-TheEuropeanEnvironmentAgency(EEA),anagencydevotedtoestablishinganetworkforthemonitoringoftheEuropeanenvironment,wasfoundedbytheEURegulation(EuropeanEconomicCommittee(EEC)Regulation)1210/1990,asamendedbyEECRegulation933/1999�Workstartedin earnest in 1994� The regulation also established the European environment information andobservationnetwork(Eionet)�
Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) is an EURegulationofDecember2006�REACHaddressestheproductionanduseofchemicalsubstancesandtheirpotentialimpactsonbothhumanhealthandtheenvironment�
REACHhasbeendescribedasthemostcomplexlegislationintheEU’shistoryandthemostimportantin20years�Itisthestrictestlawtodateregulatingchemicalsubstancesandwillaffectindustriesthroughouttheworld�REACHenteredintoforceinJune2007,withaphasedimplemen-tationoverthenextdecade�WhenREACHisfullyenforced,itwillrequireallcompaniesmanu-facturingorimportingchemicalsubstancesintotheEUinquantitiesof1tonormoreperyeartoregisterthesesubstanceswithanewEuropeanChemicalsAgency(ECHA)inHelsinki,Finland�BecauseREACHappliestosomesubstancesthatarecontainedinobjects(“articles”inREACHterminology),anycompanyimportinggoodsintoEuropecouldbeaffected�
About143,000chemicalsubstancesmarketedintheEUwerepreregisteredbytheDecember1,2008deadline�Althoughpreregisteringisnotmandatory,itallowspotentialregistrantsmuchmoretimebeforetheyhavetofullyregister�
SupplyofsubstancestotheEuropeanmarketwhichhavenotbeenpreregisteredorregisteredisillegal(knowninREACHas“nodata,nomarket”)�REACHlegislationcanthereforehelptopre-ventariskconnectedwiththeuseofhazardouschemicals�
IncontrasttotheEPA,theEEAdoesnotorganizeprogramssuchastheEPAGreenChemistryProgram�TheEuropeanTechnologyPlatformforSustainableChemistry(SusChem)isaEuropeanTechnologyPlatform(ETP)initiativetoimprovethecompetitivepositionoftheEUinthefieldofchemistryinthreedomains:industrialbiotechnology,materialstechnology,andreactionandpro-cessdesign�
resenting the European communities and the industry� The main objective of the program is toproduceandimplementaStrategicResearchAgenda(SRA)�
Theprogramisajointinitiative(public–privatepartnership)oftheEuropeanCommission,rep-Sustainablechemistry,itsengineeringandtechnologicalapplicationsarealsofocusedoncleanerchemicalprocessesandtheirdesigningusingthe“bestavailabletechnologies”(BAT)�Theterm
“bestavailabletechnology”isappliedunderregulationsonlimitingpollutantdischargeswithregardtotheabatementstrategy�Similartermsare“bestavailabletechniques,”“bestpracticablemeans,”and “best practicable environmental option�” The term constitutes moving targets on practices,sincedevelopingsocietalvaluesandadvancingtechniquesmaychangewhatiscurrentlyregardedas“reasonablyachievable,”“bestpracticable,”and“bestavailable�”
Aliteralunderstandingwillconnectitwitha“sparenoexpense”doctrinewhichprescribestheacquisitionofthebeststate-of-the-arttechnologyavailable,withoutregardfortraditionalcost–benefitanalysis�Inpracticalusage,thecostaspectisalsotakenintoaccount�
In principle, sustainable chemistry and technology platforms for sustainable chemistry (allEuropeanandnational)andgreenchemistryincludegreenengineering,technology,andproduc-tion,andallhavethesamegoalsandprinciplesanduseanalogousmethodologiesandmethods�FundamentalconnectionsbetweenSDandsustainableandgreenchemistryareexplainedanddescribedbyEissenetal�(2002),Metzger(2004),andinthecontextofindustriesbyPoliakoffand
Trang 3916 Handbook on Applications of Ultrasound: Sonochemistry for Sustainability
License(2007)�Twoexclusivejournals,Green Chemistry(RSC)since1999andChemSusChem
(WileyInterscience)since2008,publishthemostup-to-dateresultsandsolutionsofsustainableandgreenchemistry�
PRINCIPLES AND GOALS OF GREEN CHEMISTRY
mizingwasteandpollution,efficientexploitationofmaterialandenergysources,minimizinghazard,andminimizingcostsasaresultofthepreviousthree�Thekeytermforthesetofgreenchemistrygoalsis“minimizing”butinthecontextoftermslike“efficiently,”“rationally,”“really,”and“preferably�”Thisisbecausethedeclaredgoalsmaynotbeachievedpromptlyandabsolutely�Forexample,itisgenerally
Thegoalsofgreenchemistryarefocusedonfourofthecurrentdemandsofhumankindwhicharemini-knownthatfreons(CFCs)usedaspropellantsforspraycanswerereplacedbyn-butane(hazardousbut
lessthanCFCs)�Similarly,environmentallyhazardouschlorinatedhydrocarbonsastetrachloromethane,trichloroethylene,andtheotherchlorohydrocarbonswerealternatedbysupercriticalcarbondioxideaswashingmedia�Principlesfortheachievementofthesetgoalsmaybegroupedinthefollowingway:
A�Minimizing waste and pollution
1� Preventionofwasteformationispreferredbeforewastedisposal�Itisbettertohandle
waste“atsource”thanat“endofpipe�”
B�Efficient exploitation of material and energy sources
2� Syntheses, synthetic processes, must be designed with highest atom economy, i�e�,
1� Prevention:Itisbettertopreventwastethantotreatorcleanupwasteafterithasbeencreated�
2�Atom economy:Syntheticmethodsshouldbedesignedtomaximizetheincorporationof
allmaterialsusedintheprocessintothefinalproduct�
Trang 40Emerging Ubiquity of Green Chemistry in Engineering and Technology 17
3�Less hazardous chemical syntheses:Whereverpracticable,syntheticmethodsshouldbe
designedtouseandgeneratesubstancesthatpossesslittleornotoxicitytohumanhealthandtheenvironment�
4�Designing safer chemicals:Chemicalproductsshouldbedesignedtoaffecttheirdesired
7�Use of renewable feedstocks:Arawmaterialorfeedstockshouldberenewableratherthan
depletingwhenevertechnicallyandeconomicallypracticable�
8�Reduce
derivatives:Unnecessaryderivatization(useofblockinggroups,protection/depro-tection,temporarymodificationofphysical/chemicalprocesses)shouldbeminimizedoravoidedifpossible,becausesuchstepsrequireadditionalreagentsandcangeneratewaste�
12�Inherently safer chemistry for accident prevention:Substancesandtheformofasubstance
dents,includingreleases,explosions,andfires�
usedinachemicalprocessshouldbechosentominimizethepotentialforchemicalacci-METHODOLOGY AND METHODS OF GREEN CHEMISTRY
ticated methodology and broad scale of methods to current green chemistry� A sophisticatedapproachtosolveenvironmentalproblems,greenchemistry,maybeessentiallycharacterizedasa“trivialsolution”toanontrivialandcomplicatedproblem�Sophisticatedapproachessuchasthefieldofgreenchemistrymethodologyareoftenveryeffectivewithminimalenergyandtechnologydemandsandcosts�Themanufacturingof2,4-dichlorobenzylcyanide,animportantfinechemi-calandintermediateforphytoeffectorproduction,from2,4-dichlorobenzylchlorideandsodium
Scienceandadvancesinengineering,technology,andtechnicalproductionhavegivenasophis-cyanidewitharelativelylowlevelofE-factorandminimumwasteformation(CzechPatent301063
(2009),LucˇebnízávodyDraslovkaCo�Kolín)canserveasanexampleofacompletesophisticatedsolution�Thisprocesswasindustriallyrealizedwithhighyieldandpurityinmethanolassolventandinthecatalyticpresenceofsodiumiodide(Scheme1�5)�
Cl +
SCHEME 1.5 Preparationof2,4-dichlorobenzylcyanideor2,3-bis(2,4-dichlorophenyl)propanenitrilefrom
2,4-dichlorobenzylchlorideandsodiumcyanide�