1. Trang chủ
  2. » Giáo Dục - Đào Tạo

các dạng bài phương trình và hệ phương trình nâng cao hay nhất

51 194 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 51
Dung lượng 0,92 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

𝑐á𝑐 𝑏à𝑖 ℎệ phương trình ℎ𝑎𝑦 𝑣à 𝑘ℎó (Nguyễn Trường Phát TP.HCM)

𝑥(√𝑥 + 1) − 3(√𝑥 + 1) − 2𝑦(𝑥 − 3) = 0 (𝑥 − 3)(√𝑥 + 1) − 2𝑦(𝑥 − 3) = 0 𝑣ậ𝑦 𝑥 = 3 ℎ𝑎𝑦 √𝑥 + 1 − 2𝑦 = 0

(∗∗)𝑣ớ𝑖 𝑥 = 3 𝑡ℎế 𝑣à𝑜 (2)𝑡ℎì 𝑡𝑎 𝑡ì𝑚 đượ𝑐 𝑦 = 16 𝑣à 𝑦 = −3

2𝑡ℎế 𝑥 = 3 𝑣à 𝑦 = 16 𝑣à𝑜 (1)𝑡𝑎 𝑡ℎấ𝑦 𝑡ℎõ𝑎

𝑡ℎế 𝑥 = 3 𝑣à 𝑦 = −3

2 𝑣à𝑜 (1)𝑡𝑎 𝑡ℎấ𝑦 𝑐ũ𝑛𝑔 𝑡ℎõ𝑎 (∗)𝑣ớ𝑖 √𝑥 − 2𝑦 + 1 = 0 𝑡ℎế 𝑣à𝑜 (2)

√𝑥 + √𝑥 + 2 + √𝑥 − √𝑥 + 13 = 3(𝑙𝑖ê𝑛 ℎợ𝑝 𝑣ớ𝑖 𝑛𝑔ℎ𝑖ệ𝑚 𝑥 = 1)

𝑡ℎế 𝑣à𝑜 (∗)𝑡𝑎 𝑡ì𝑚 đượ𝑐 𝑦 = 1 𝑣ớ𝑖 𝑥 = 1, 𝑦 = 1 𝑡ℎế 𝑣à𝑜 (1) 𝑐ũ𝑛𝑔 𝑡ℎõ𝑎 𝑣ậ𝑦 ℎ𝑝𝑡 𝑡𝑟ê𝑛 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑛ℎư 𝑠𝑎𝑢: (1,1); (3,16); (3, −3

2)

Trang 2

𝑏à𝑖 2: {2𝑥 + 1 = 𝑦

2+ 4𝑦√𝑥(1)

𝑦 + √𝑥 + 1 = 𝑦√𝑥(2)𝑔𝑖ả𝑖

đ𝑘 để ℎ𝑝𝑡 𝑡𝑟ê𝑛 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à 𝑥 ≥ 0

để ý 𝑝𝑡(2): 𝑦 + 1 = 𝑦√𝑥 − √𝑥 𝑙ấ𝑦(2)𝑡ℎế 𝑣à𝑜 (1) 𝑡𝑎 𝑐ó đượ𝑐: 2𝑥 − 4𝑦√𝑥 = (𝑦 + 1)(𝑦 − 1)

= (𝑦√𝑥 − √𝑥)(𝑦 − 1)

√𝑥 = 0 ℎ𝑎𝑦 2√𝑥 − 4𝑦 = 𝑦2 − 2𝑦 + 1

√𝑥 = 0 ℎ𝑎𝑦 2√𝑥 = 𝑦2+ 2𝑦 + 1 𝑣ớ𝑖 𝑥 = 0 𝑡ℎì 𝑦 = ±1 𝑡ℎế 𝑣à𝑜 (2)𝑡𝑎 𝑛ℎậ𝑛 𝑥 = 0, 𝑦 = −1

𝑏à𝑖 3: {√3𝑥 − 1 + 4(2𝑥 + 1) = √𝑦 − 1 + 3𝑦(1)

(𝑥 + 𝑦)(2𝑥 − 𝑦) + 6𝑥 + 3𝑦 + 4 = 0(2)

Trang 3

𝑔𝑖ả𝑖

đ𝑘 để ℎ𝑝𝑡 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ {𝑥 ≥

13

𝑦 ≥ 1𝑝𝑡(2): 2𝑥2− 𝑥𝑦 + 2𝑥𝑦 − 𝑦2+ 6𝑥 + 3𝑦 + 4 = 0

2𝑥2+ 𝑥𝑦 − 𝑦2+ 6𝑥 + 3𝑦 + 4 = 0 2𝑥2+ 𝑥(𝑦 + 6) − 𝑦2+ 3𝑦 + 4 = 0 𝑑𝑒𝑛𝑡𝑎 = 𝑦2 + 12𝑦 + 36 − 8(−𝑦2 + 3𝑦 + 4) = 9𝑦2− 12𝑦 + 4 = (3𝑦 − 2)2

𝑥4𝑦 + 𝑥4+ 4𝑥2𝑦 + 4𝑥2+ 4𝑦 + 4 = 𝑦2𝑥2+ 𝑦2 + 4𝑦𝑥2+ 4𝑦 + 4𝑥2+ 4

𝑥4𝑦 + 𝑥4 = 𝑥2𝑦2+ 𝑦2

𝑥2𝑦(𝑥2− 𝑦) = (𝑦 − 𝑥2)(𝑦 + 𝑥2)

Trang 4

𝑣ậ𝑦 𝑥2 = 𝑦 ℎ𝑎𝑦 𝑥2𝑦 = −(𝑦 + 𝑥2)

𝑣ớ𝑖 𝑥2 = 𝑦 𝑡ℎế 𝑣à𝑜 (2): −3𝑦2− 5𝑦 + 8 = 0[ 𝑦 = 1

𝑦 = −83𝑣ớ𝑖 𝑥2𝑦 + 𝑦 = −𝑥2 => 𝑦 = − 𝑥

𝑥é𝑡 𝑓(𝑡) = 𝑡2+ 𝑡 + √𝑡 + 1 𝑣ậ𝑦 𝑓′(𝑡) = 2𝑡 + 1 + 1

2√𝑡 + 1 > 0 𝑡ứ𝑐 𝑓(𝑥 + 1) = 𝑓(2𝑦)𝑣ậ𝑦 𝑥 + 1 = 2𝑦(3)

Trang 5

𝑙ấ𝑦 (3)𝑡ℎế (2): (2𝑦 − 1)2+ 2𝑦2− 2(2𝑦 − 1) + 𝑦 − 2 = 0

4𝑦2− 4𝑦 + 1 + 2𝑦2− 4𝑦 + 2 + 𝑦 − 2 = 0

6𝑦2− 7𝑦 + 1 = 0 [𝑦 = 1

𝑦 =16𝑣ớ𝑖 𝑦 = 1 𝑣ậ𝑦 𝑥 = 1

𝑣ớ𝑖 𝑦 = 1

6 𝑣ậ𝑦 𝑥 = −

23

𝑏à𝑖 6: { 𝑥

3𝑦√𝑥 + 𝑥3𝑦2 = 2𝑥4√𝑥 + 2𝑥4𝑦(1)𝑦√𝑥 (√2𝑥2− 6 − 1) = √5(2𝑥2− 6)(2)

𝑔𝑖ả𝑖 𝑝𝑡(1): 𝑥3𝑦(√𝑥 + 𝑦) = 2𝑥4(√𝑥 + 𝑦) 𝑣ậ𝑦 √𝑥 = −𝑦 ℎ𝑎𝑦 𝑥 = 0 ℎ𝑎𝑦 𝑦 = 2𝑥

Trang 6

𝑏à𝑖 8: {2𝑥(𝑥

2+ 3) − 𝑦(𝑦2+ 3) = 3𝑥𝑦(𝑥 − 𝑦)(1)(𝑥2− 2)2 = 4(2 − 𝑦)(2)

𝑔𝑖ả𝑖 𝑝𝑡(1)2𝑥3+ 6𝑥 − 𝑦3− 3𝑦 = 3𝑥2𝑦 − 3𝑥𝑦22𝑥3− 3𝑥2𝑦 + 3𝑥𝑦2− 𝑦3+ 6𝑥 − 3𝑦 = 0 (2𝑥 − 𝑦)(𝑥2− 𝑥𝑦 + 𝑦2) + 3(2𝑥 − 𝑦) = 0 2𝑥 = 𝑦 ℎ𝑎𝑦 𝑥2− 𝑥𝑦 + 𝑦2 = −3 (𝑝𝑡 𝑣𝑛)

𝑣ờ𝑖 2𝑥 = 𝑦 𝑡ℎế 𝑣à𝑜 (2):

(𝑥2− 2)2 = 4(2 − 2𝑥)

𝑥4− 4𝑥2+ 4 = 8 − 8𝑥 (𝑥2+ 2𝑥 − 2)(… ) = 0 => 𝑥 = −1 ± √3

8𝑥3− 12𝑥2+ 6𝑥 − 1 + 𝑥 = (𝑦 −1

2) √𝑦 − 1 +1

2

Trang 7

𝑥2+ 𝑥𝑦2− 𝑦2 − 𝑦3 = 𝑥𝑦 + 𝑥 𝑥(𝑥 + 𝑦2) = 𝑥(𝑦 + 1) + 𝑦2(𝑦 + 1) 𝑥(𝑥 + 𝑦2) = (𝑥 + 𝑦2)(𝑦 + 1)

Trang 8

𝑣ậ𝑦 𝑥 + 𝑦2 = 0 ℎ𝑎𝑦 𝑥 = 𝑦 + 1 𝑣ớ𝑖 𝑥 + 𝑦2 = 0 (𝑝𝑡𝑣𝑛)𝑑𝑜 𝑥 + 𝑦2 > 0

𝑣ớ𝑖 𝑦 = 𝑥 − 1 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)

√𝑥3+ 4𝑥 = 1 +(𝑥 + 1)2

𝑥2+ 2𝑥 + 133√𝑥3+ 4𝑥 = 𝑥2+ 2𝑥 + 4(𝑙𝑖ê𝑛 ℎợ𝑝 𝑣ớ𝑖 𝑛𝑔ℎ𝑖ệ𝑚 𝑥 = 2)

𝑣ớ𝑖 𝑥 = 2 𝑡ℎì 𝑦 = 1 𝑣ậ𝑦 ℎ𝑝𝑡 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à: (2,1)

3 = 19𝑥3(1)

𝑦 + 𝑥𝑦2 = −6𝑥2(2)𝑔𝑖ả𝑖

𝑇𝐻1: 𝑥 = 0 𝑡ℎế 𝑣à𝑜 (1) 𝑝𝑡𝑣𝑛 𝑇𝐻2: 𝑥 ≠ 0 𝑐ℎ𝑖𝑎 2 𝑣ế 𝑐ủ𝑎 𝑝𝑡(1)𝑐ℎ𝑜 𝑥3:

1

𝑥3+ 𝑦3 = 19 𝑐ℎ𝑖𝑎 2 𝑣ế 𝑐ủ𝑎 𝑝𝑡(2)𝑐ℎ𝑜 𝑥2:

Trang 9

𝑔𝑖ả𝑖 𝑡ℎế (2) 𝑣à𝑜 (1): 16𝑥3𝑦3− 9𝑦3 = 𝑦3(2𝑥 − 1)(4𝑥2+ 6𝑥 + 1) 𝑣ậ𝑦 𝑦 = 0 ℎ𝑎𝑦 16𝑥3− 9 = 8𝑥3+ 12𝑥2+ 2𝑥 − 4𝑥2− 6𝑥 − 1

đặ𝑡 𝑡ℎử ℎệ 𝑠ố ∶ 𝑥 − 2𝑦 + 𝑎𝑏 + (𝑎 + 𝑏)√𝑥 − 2𝑦 = 0

Trang 10

√−𝑦2− 𝑦 + 1 − 𝑦2+ 𝑦 + 1 = 0( 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑦 = −1) 𝑣ậ𝑦 𝑦 = −1 𝑡ℎì 𝑥 = −2 𝑡ℎế 𝑣à𝑜 đ𝑘 𝑡ℎấ𝑦 𝑡ℎõ𝑎

(∗∗)𝑣ớ𝑖 𝑥 = −𝑦2 − 𝑦 𝑡ℎế 𝑣à𝑜 (2):

√𝑦2− 𝑦 + 1 − 𝑦2+ 𝑦 + 1 = 0

Trang 11

3 − 3𝑥𝑦 + 3𝑥 = 6(1)

𝑥2√𝑦 − 1 − 2𝑥𝑦 = 1 − 2𝑥(2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à: 𝑦 ≥ 1 𝑝𝑡(2): 6𝑥2√𝑦 − 1 − 12𝑥𝑦 + 12𝑥 = 6

𝑥3− 6𝑥2√𝑦 − 1 + 9𝑥𝑦 − 9𝑥 = 0

𝑥 = 0 ℎ𝑎𝑦 𝑥2− 6𝑥√𝑦 − 1 + 9(𝑦 − 1) = 0(𝑝𝑡𝑣𝑛)

(∗)𝑣ớ𝑖 𝑥 = 0 𝑡ℎế 𝑣à𝑜 (2)𝑡𝑎 𝑐ó 𝑝𝑡𝑣𝑛

(𝑥 − 3√𝑦 − 1)2 = 0 (∗)𝑣ớ𝑖 𝑥 = 3√𝑦 − 1 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2):

Trang 12

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ 𝑦 ≥ −1 𝑝𝑡(1): (𝑥3+ 3𝑥2+ 3𝑥 + 1) + (𝑥 + 1) = (√𝑦 + 1)3+ √𝑦 + 1

(𝑥 + 1)3+ (𝑥 + 1) = (√𝑦 + 1)3+ √𝑦 + 1 𝑥é𝑡 𝑓(𝑡) = 𝑡3+ 𝑡 𝑣ậ𝑦 𝑡ℎì 𝑓′(𝑡) = 3𝑡2+ 1 > 0

𝑡ứ𝑐 𝑓(𝑡)đơ𝑛 đ𝑖ệ𝑢 𝑡ă𝑛𝑔 𝑛ê𝑛 𝑓(𝑥 + 1) = 𝑓(√𝑦 + 1)

Trang 13

𝑑𝑒𝑛𝑡𝑎 = 𝑥2 − 8𝑥 + 16 − 4𝑥2+ 12𝑥 − 16 = 0 ≤ 𝑥 ≤ 4

3𝑝𝑡(2): 𝑥2+ 2𝑥 + 27𝑥2 ≤ (4

𝑣ậ𝑦 𝑑ấ𝑢 𝑏ằ𝑛𝑔 𝑥ả𝑦 𝑟𝑎 𝑥 = 4

3 𝑛ê𝑛 𝑦 =

43𝑏à𝑖 23: { 𝑥𝑦

2(√𝑥2+ 1 + 1) = 3√𝑦2+ 9 + 3𝑦(1)(3𝑥 − 1)√𝑥2𝑦 + 𝑥𝑦 − 5 − 4𝑥3+ 3𝑥3𝑦 − 7𝑥 = 0(2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 ∶ 𝑥𝑦(𝑥 + 1) ≥ 5

𝑇𝐻1: 𝑥é𝑡 𝑦2 = 0 𝑇𝐻2: 𝑦2 ≠ 0 𝑛ê𝑛 𝑡𝑎 𝑐ℎ𝑖𝑎 2 𝑣ế 𝑐ủ𝑎 𝑝𝑡(1) 𝑙à 𝑦2:

3+ 2𝑡2√𝑡4+ 𝑡2+ 1 > 0

𝑣ậ𝑦 𝑓(𝑡)đơ𝑛 đ𝑖ệ𝑢 𝑡ă𝑛𝑔 𝑛ê𝑛 𝑓(𝑥) = 𝑓 (3

𝑦) (𝑡ừ đâ𝑦 𝑡ℎế 𝑣à𝑜 (2))

𝑏à𝑖 22: { 𝑥𝑦(𝑥 + 𝑦) = 2(1)

𝑦3 + 𝑦 + 6 = 7𝑥3+ 𝑥(2)

𝑔𝑖ả𝑖 { 3𝑥

2𝑦 + 3𝑥𝑦2 = 67𝑥3+ 𝑥 − 𝑦3 − 𝑦 = 6

Trang 14

−7𝑥3+ 3𝑥2𝑦 + 3𝑥𝑦2+ 𝑦3− 𝑥 + 𝑦 = 0

−(𝑥 − 𝑦)(7𝑥2+ 4𝑥𝑦 + 𝑦2) − (𝑥 − 𝑦) = 0 𝑣ậ𝑦 𝑥 = 𝑦 ℎ𝑎𝑦 7𝑥2 + 4𝑥𝑦 + 𝑦2+ 1 = 0 (𝑝𝑡𝑣𝑛 𝑑𝑜 7𝑥2+ 4𝑥𝑦 + 𝑦2 + 1 > 0)

√1

2−

𝑥𝑦(𝑥 + 𝑦)2+ √1

3−

𝑥𝑦3(𝑥 + 𝑦)2 = 1

Trang 15

𝑎 = 1

4(𝑛ℎậ𝑛 )ℎ𝑎𝑦 𝑎 = −23

4 (𝑛ℎậ𝑛 ) đế𝑛 đâ𝑦 𝑡ℎì 𝑥é𝑡 𝑡ừ𝑛𝑔 𝑐á𝑖 ^^!

𝑥 ≤ 34

để ý 𝑝𝑡(1): (8𝑥2 + 2)𝑥 + (2𝑦 − 6)√5 − 2𝑦 = 0 (2𝑥)3+ 2𝑥 = (√5 − 2𝑦)3+ (√5 − 2𝑦) 𝑥é𝑡 𝑓(𝑡) = 𝑡3 + 𝑡 𝑣ậ𝑦 𝑓′(𝑡) = 3𝑡2+ 1 > 0 𝑡ứ𝑐 𝑓(𝑡) đơ𝑛 đ𝑖ệ𝑢 𝑡ă𝑛𝑔 𝑛ê𝑛 𝑓(2𝑥) = 𝑓(√5 − 2𝑦)

2𝑥 = √5 − 2𝑦 (𝑡ừ đâ𝑦 𝑡ℎế 𝑣à𝑜 (2))

𝑏à𝑖 25: {

𝑥2+ 𝑦2 = 1

5(1)4𝑥2+ 3𝑥 −57

25 = −𝑦(3𝑥 + 1)(2)𝑔𝑖ả𝑖

2+ 25𝑦2 = 5(1)200𝑥2+ 150𝑥 − 114 = −150𝑥𝑦 − 50𝑦(2) 𝑙ấ𝑦 𝑝𝑡(1) + 𝑝𝑡(2): (15𝑥)2+ (5𝑦)2+ 52+ 2(15𝑥)(5𝑦) + 2(5𝑦)5 + 2(15𝑥) 5

= 144

(15𝑥 + 5𝑦 + 5)2 = 122

Trang 16

[ 15𝑥 + 5𝑦 + 5 = 1215𝑥 + 5𝑦 + 5 = −12

𝑏à𝑖 26: { (𝑥4+ 𝑦) 3𝑦−𝑥4 = 1(1)

8(𝑥4+ 𝑦) − 6𝑥4−𝑦 = 0(2)

𝑔𝑖ả𝑖 𝑙ấ𝑦 (2)𝑡ℎế (1): 𝑥4+ 𝑦 = 6

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: {

𝑦 ≥ 0

𝑥 ≥ 83𝑝𝑡(1): 𝑥2+ 𝑦2− 𝑦 = 2𝑥𝑦 − 2𝑥 + 𝑦 − 1

Trang 17

𝑝𝑡(2): (𝑥 + 𝑦)√𝑦 − 1 − √𝑦 − 1 = (𝑦 − 1)√𝑥 + 𝑦 − √𝑥 + 𝑦

√(𝑥 + 𝑦)(𝑦 − 1)(√𝑥 + 𝑦 − √𝑦 − 1) = √𝑦 − 1 − √𝑥 + 𝑦 𝑣ậ𝑦 𝑥 = −1 ℎ𝑎𝑦 √(𝑥 + 𝑦)(𝑦 − 1) = −1(𝑝𝑡𝑣𝑛)

𝑏à𝑖 29: { 𝑥

3+ 12𝑦2+ 𝑥 + 2 = 8𝑦3 + 8𝑦(1)2𝑥2+ (2𝑦 − 1)2 = √𝑥3 3+ 8𝑦 + 2(2)

𝑔𝑖ả𝑖 𝑝𝑡(1): 𝑥3+ 𝑥 + 2 = 8𝑦3+ 8𝑦 − 12𝑦2

𝑥3+ 𝑥 = (2𝑦 − 1)3+ (2𝑦 − 1) 𝑥é𝑡 𝑓(𝑡) = 𝑡3 + 𝑡 𝑣ậ𝑦 𝑓′(𝑡) = 3𝑡2+ 1 > 0

𝑛ê𝑛 𝑓(𝑡)đơ𝑛 đ𝑖ệ𝑢 𝑡ă𝑛𝑔 𝑣ậ𝑦 𝑓(𝑥) = 𝑓(2𝑦 − 1)

𝑣ậ𝑦 𝑥 = 2𝑦 − 1 (∗)𝑡ℎế (∗)𝑣à𝑜 (2)

𝑏à𝑖 30: {2 + √𝑥

2𝑦4+ 2𝑥𝑦2 − 5𝑦4 + 1 = 2𝑦2(4 − 𝑥)(1)2𝑥 + √𝑥 − 𝑦2 = 5(2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ { 𝑥 − 𝑦

2 ≥ 0(𝑥𝑦2+ 1)2− 5𝑦4 ≥ 0𝑝𝑡(1): 2 + √(𝑥𝑦2 + 1)2− 5𝑦4 = 8𝑦2− 2𝑥𝑦2

2(1 + 𝑥𝑦2) + √(𝑥𝑦2+ 1)2− 5𝑦4 = 8𝑦2

𝑇𝐻1: 𝑦2 = 0 𝑇𝐻2: 𝑦2 ≠ 0 𝑡𝑎 𝑐ℎ𝑖𝑎 2 𝑣ế 𝑐ℎ𝑜 𝑦2 𝑐ủ𝑎 𝑝𝑡(1):

Trang 18

2(1 + 𝑥𝑦2)

𝑦2 + √(𝑥𝑦2+ 1)2

𝑦4 − 5 = 8 đặ𝑡 𝑎 = 𝑥𝑦

√𝑥2+ 1 − 𝑥 = −(𝑥 + 𝑦

2)𝑦𝑝𝑡(2): (𝑥 + 𝑦2)2− 2𝑥𝑦2+ 2𝑦2√𝑥2+ 1 = 3𝑦2(𝑥 + 𝑦2)2+ 2𝑦2(√𝑥2+ 1 − 𝑥) = 3𝑦2𝑙ấ𝑦 (1)𝑡ℎế (2): (𝑥 + 𝑦2)2− 2(𝑥 + 𝑦2)𝑦 − 3𝑦2 = 0

𝑥 + 𝑦2 = 3 ℎ𝑎𝑦 𝑥 + 𝑦2 = −1(𝑡ℎế 𝑣à𝑜 𝑝𝑡(2) 𝑔𝑖ả𝑖 𝑏ì𝑛ℎ 𝑡ℎườ𝑛𝑔)

𝑏à𝑖 32: {𝑥(𝑥𝑦 + 𝑥)

2+ (𝑥 + 1)2 = 𝑥3(𝑦2+ 𝑦 + 1) + 𝑥2(𝑦 − 1) + 5𝑥(1)4𝑥3𝑦 + 7𝑥2+ 2𝑥2√𝑦 + 1 = 2𝑥 + 1(2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 ∶ 𝑦 ≥ −1 𝑝𝑡(1): 𝑥3𝑦2 + 2𝑥3𝑦 + 𝑥3+ 𝑥2+ 2𝑥 + 1 = 𝑥3𝑦2+ 𝑥3𝑦 + 𝑥3+ 𝑥2𝑦 − 1 + 5𝑥

Trang 19

𝑥3𝑦 − 𝑥2𝑦 + 𝑥2 − 3𝑥 + 2 = 0

𝑥2𝑦(𝑥 − 1) + (𝑥 − 1)(2𝑥 − 1) = 0 𝑣ậ𝑦 𝑥 = 1 ℎ𝑎𝑦 𝑥2𝑦 + 2𝑥 − 1

= 0 (đế𝑛 đâ𝑦 𝑡ℎì 𝑚ấ𝑦 𝑏ạ𝑛 𝑔𝑖ả𝑖 𝑏ì𝑛ℎ 𝑡ℎườ𝑛𝑔 đượ𝑐 𝑟ò𝑖 ‼!)

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à: 𝑦2− 7 > 0 𝑝𝑡(1): 𝑥4 + 2𝑥3+ 𝑥2− 6𝑥2− 6𝑥 + 𝑦2− 11 = 0

𝑏2 + 𝑏2− 13 = 0

𝑏2 = 3 𝑣à 𝑏2 = 9 𝑛ℎậ𝑛 𝑏 = √3 𝑣à 𝑏 = 3

Trang 20

𝑣ớ𝑖 𝑦2− 7 = √3 𝑡ℎì 𝑦 = ±√√3 + 7 𝑣ớ𝑖 𝑦2− 7 = 3 𝑡ℎì 𝑦 = ±√10

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 ∶ 𝑦 ≠ 0 𝑝𝑡(2): 𝑥2+ 𝑦2+ 2𝑦 + 1 = 2 (𝑦 + 1 − 𝑥

2

𝑥2𝑦 + 𝑦3+ 2𝑦2+ 𝑦 = 2𝑦 + 2 − 2𝑥2

𝑥2(𝑦 + 2) + 𝑦2(𝑦 + 2) − (𝑦 + 2) = 0 𝑣ậ𝑦 𝑦 = −2 ℎ𝑎𝑦 𝑥2+ 𝑦2 = 1 (∗)𝑣ớ𝑖 𝑦 = −2 𝑡ℎế 𝑣à𝑜 𝑝𝑡(1):

4𝑥2 = (√𝑥2+ 1 + 1) 𝑥2𝑣ậ𝑦 𝑥 = 0 ℎ𝑎𝑦 𝑥 = ±2√2 (∗∗)𝑣ớ𝑖 𝑥2 = 1 − 𝑦2 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2):

4(1 − 𝑦2) = (√2 − 𝑦2+ 1) (−𝑦3 − 𝑦2+ 3𝑦 − 1)(𝑙𝑖ê𝑛 ℎợ𝑝 𝑣𝑠 𝑛𝑔ℎ𝑖ệ𝑚 𝑦 = 1)

𝑏à𝑖 35: { 𝑥

3+ 3𝑥𝑦2+ 3𝑥 = 𝑦(3𝑥2+ 𝑦2 + 3)(1)3𝑥4(𝑦2− 2) − 2𝑥3(𝑦2+ 8) + 2𝑥(15𝑦 − 6) = 0(2)

𝑔𝑖ả𝑖 𝑝𝑡(1): 𝑥3+ 3𝑥𝑦2 + 3𝑥 = 3𝑥2𝑦 + 𝑦3 + 3𝑦

Trang 21

(𝑥 − 𝑦)(𝑥2+ 𝑥𝑦 + 𝑦2) − 3𝑥𝑦(𝑥 − 𝑦) + 3(𝑥 − 𝑦) = 0 𝑣ậ𝑦 𝑥 = 𝑦 ℎ𝑎𝑦 (𝑥 − 𝑦)2+ 3 = 0(𝑝𝑡𝑣𝑛 𝑑𝑜 (𝑥 − 𝑦)2+ 3 > 0)

𝑣ậ𝑦 𝑎2− 𝑏2 = 5𝑥

{ 𝑎 − 𝑏 = 4(1)2𝑏 − √𝑎2− 𝑏2+ 8 = 2(2)𝑙ấ𝑦 (1)𝑡ℎế (2): 2𝑏 − √(4 + 𝑏)2− 𝑏2+ 8 = 2

24 + 8𝑏 = 4𝑏2− 8𝑏 + 4

𝑏 = 5(𝑛ℎậ𝑛) ℎ𝑎𝑦 𝑏 = −1 (𝑙𝑜ạ𝑖) (∗)𝑣ớ𝑖 𝑏 = 5 𝑡ℎì 𝑎 = 9 (𝑡ℎõ𝑎) {2𝑥 + 𝑦 = 257𝑥 + 𝑦 = 81 => 𝑥 =56

5 , 𝑦 =

135

Trang 22

𝑏à𝑖 37: {𝑥 + √𝑥2 − 2𝑥 + 5

3

= 3𝑦 + √𝑦3 2+ 4(1)(𝑥 − 𝑦)(𝑥 + 𝑦 − 3) = −1(2)

𝑔𝑖ả𝑖 𝑝𝑡(1): 𝑥 + √(𝑥 − 1)3 2+ 4 = 3𝑦 + √𝑦3 2+ 4𝑝𝑡(2): 𝑥2− 𝑦2− 3𝑥 + 3𝑦 + 1 = 0 𝑙ấ𝑦 𝑝𝑡(2)𝑡ℎế 𝑝𝑡(1): 3𝑦 = 𝑦2− 𝑥2+ 3𝑥 − 1

𝑥 + √(𝑥 − 1)3 2+ 4 = 𝑦2− 𝑥2+ 3𝑥 − 1 + √𝑦3 2+ 4(𝑥 − 1)2+ √(𝑥 − 1)3 2+ 4 = 𝑦2+ √𝑦3 2+ 4

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑦 ≥ 1 𝑝𝑡(1): 𝑥3− 𝑥2+ 𝑥 = (√𝑦 − 1)3− (√𝑦 − 1)2+ (√𝑦 − 1)

Trang 23

𝑏à𝑖 39: {√𝑥3 3 + 2+ 𝑥2(𝑥3+ 𝑥 − 𝑦 − 1) = √𝑦 + 33 + 𝑦 + 1(1)

√4𝑥2− 2

3

− 4𝑥2− 25𝑥 − 24 = 2𝑦(2)𝑔𝑖ả𝑖

𝑝𝑡(1): √𝑥3 3+ 2− √𝑦 + 33 + 𝑥3(𝑥2+ 1) − 𝑥2(𝑦 + 1) − (𝑦 + 1) = 0

𝑥3− 𝑦 − 1(√𝑥3 3+ 2)2+ √(𝑥3 3+ 2)(𝑦 + 3)+ (√𝑦 + 33 )2

𝑙ấ𝑦 𝑝𝑡(1) 𝑡ℎế 𝑝𝑡(2): 10√(𝑥 + 7)3 2− 2𝑦3 − 2(𝑦 + 5)√(𝑥 + 7)3 2+ 4𝑦23√𝑥 + 7

= 0

−2𝑦3 − 2𝑦 √(𝑥 + 7)3 2+ 4𝑦23√𝑥 + 7 = 0

Trang 25

𝑥(𝑦 − 1)2(√𝑥 − 𝑦 + 1) + (√𝑥 − 𝑦 + 1)(𝑥 + √𝑥(𝑦 − 1) + (𝑦 − 1)2) = 0 𝑣ậ𝑦 √𝑥 − 𝑦 + 1 = 0 ℎ𝑎𝑦 𝑥(𝑦 − 1)2+ 𝑥 + √𝑥(𝑦 − 1) + (𝑦 − 1)2

= 0(𝑝𝑡𝑣𝑛 𝑑𝑜 𝑉𝑇 > 0) (∗)𝑣ớ𝑖 𝑦 = √𝑥 + 1 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)𝑡𝑎 đượ𝑐 𝑛𝑔ℎ𝑖ệ𝑚 𝑥 = 1 𝑣à 𝑥 = 5

Trang 26

𝑣ậ𝑦 𝑓(𝑡)đơ𝑛 đ𝑖ệ𝑢 𝑡ă𝑛𝑔 𝑛ê𝑛 𝑓(√𝑥 − 13 ) = 𝑓(𝑦2+ 1) 𝑣ậ𝑦 √𝑥 − 13 = 𝑦2+ 1 (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2) đế𝑛 đâ𝑦 𝑑à𝑛ℎ 𝑐ℎ𝑜 𝑏ạ𝑛 đọ𝑐)

𝑏à𝑖 45: {[𝑥

2+ 2𝑦 − 3 − 3√𝑦(𝑥2+ 1) − (𝑦2+ 𝑥2)] √𝑥2− 𝑦 = √(𝑦 − 1)3(1)

𝑦 − 𝑥 = √2𝑥2+ 1(2)𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 ∶ { 𝑦 ≥ 1

𝑥2− 𝑦 ≥ 0𝑝𝑡(1): [𝑥2+ 2𝑦 − 3 − 3√𝑦𝑥2+ 𝑦 − 𝑦2− 𝑥2] √𝑥2− 𝑦 = √(𝑦 − 1)3

[𝑥2+ 2𝑦 − 3 − 3√(𝑥2− 𝑦)(𝑦 − 1)] √𝑥2− 𝑦 = √(𝑦 − 1)3

đặ𝑡 𝑎(𝑥2− 𝑦) + 𝑏(𝑦 − 1) = 𝑥2+ 2𝑦 − 3 {

Trang 27

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: {

22𝑥+3 + 9 ≥ 03.2𝑦+1 − 1 ≥ 0

22𝑥+1 + 3 ≥ 03.2𝑦+3 − 7 ≥ 0𝑝𝑡(1): √8.22𝑥 + 8 + 1 + √(3.2𝑦) 2 − 2 + 1

= √22𝑥 2 + 2 + 1 + √(3.2𝑦) 8 − 8 + 1

√8(22𝑥 + 1) + 1 + √2(3.2𝑦 − 1) + 1 = √2(22𝑥 + 1) + 1 + √8(3.2𝑦 − 1) + 1

𝑥é𝑡 𝑓(𝑡) = √8𝑡 + 1 − √2𝑡 + 1 𝑣ậ𝑦 𝑓′(𝑡) > 0 𝑛ê𝑛 𝑡𝑎 𝑐ó 𝑓(𝑡)đơ𝑛 đ𝑖ệ𝑢 𝑡ă𝑛𝑔 𝑣ậ𝑦 22𝑥 + 1 = 3.2𝑦 − 1(∗∗) 𝑝𝑡(2): √𝑥3 2+ 𝑥 + 𝑦2− 𝑦 − 2𝑥𝑦 + 1

√𝑡2+ 𝑡 + 1

3

= 𝑡3+ 2𝑡2 + 3𝑡 + 1 𝑣ậ𝑦 𝑡𝑎 𝑡ì𝑚 đượ𝑐 𝑡 = 0 𝑣ậ𝑦 𝑥 = 𝑦 𝑡ℎế 𝑥 = 𝑦 𝑣à𝑜 𝑝𝑡(∗∗)22𝑥 − 3.2𝑥+ 2 = 0

Trang 28

𝑥2+ 4𝑦 + 1 ≥ 0

Trang 29

𝑝𝑡(1): 𝑥3− 3𝑥2+ 6𝑥 + √𝑥 − 1 = 8𝑦3− 12𝑦2+ 12𝑦 + √2𝑦 − 1

𝑥3− 3𝑥2+ 3𝑥 − 1 + 3𝑥 + √𝑥 − 1 = 8𝑦3− 12𝑦2+ 6𝑦 − 1 + 6𝑦 + √2𝑦 − 1 (𝑥 − 1)3+ 3(𝑥 − 1) + √𝑥 − 1 = (2𝑦 − 1)3+ 3(2𝑦 − 1) + √2𝑦 − 1

𝑥é𝑡 𝑓(𝑡) = 𝑡3+ 3𝑡 + √𝑡 𝑣ậ𝑦 𝑓′(𝑡) = 3𝑡2+ 3 + 1

2√𝑡 > 0 𝑣ậ𝑦 𝑥 − 1 = 2𝑦 − 1 𝑣ậ𝑦 𝑥 = 2𝑦 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)

(𝑥 − √𝑥(𝑦 + 3))2 + 2(𝑥 + 𝑦 + 3) = 𝑥 + 𝑦 + 3 + 2√𝑥(𝑦 + 3)

(𝑥 − √𝑥(𝑦 + 3))2+ (√𝑥 − √𝑦 + 3)2 = 0 𝑥(√𝑥 − √𝑦 + 3)2+ (√𝑥 − √𝑦 + 3)2 = 0

𝑣ậ𝑦 𝑥 = −1 ℎ𝑎𝑦 𝑥 = 𝑦 + 3

𝑏à𝑖 51: { (𝑦 − 1) (√𝑥2− 1 − √𝑦 − 1) = 2(1)

(𝑥2+ 4𝑦)√𝑥2− 1 + 6 = 5√𝑥2− 1 (1 + √(𝑥2− 1)(𝑦 − 1)) (2)

𝑔𝑖ả𝑖

Trang 30

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: {|𝑥| ≥ 1

𝑦 ≥ 1𝑝𝑡(2): (𝑥2− 1)√𝑥2− 1 + 4(𝑦 − 1)√𝑥2− 1 + 6 = 5 (√𝑥2− 1)2√𝑦 − 1

𝑡ℎế 𝑝𝑡(1)𝑣à𝑜 𝑝𝑡(2):

(√𝑥2− 1)3+ 4(√𝑦 − 1)2√𝑥2− 1 − 5 (√𝑥2 − 1)2√𝑦 − 1

+ 3(√𝑦 − 1)2√𝑥2− 1 − 3(√𝑦 − 1)3 = 0 (√𝑥2− 1)3+ 7(√𝑦 − 1)2√𝑥2− 1 − 5 (√𝑥2− 1)2√𝑦 − 1 − 3(√𝑦 − 1)3 = 0

𝑣ậ𝑦 √𝑥2− 1 = 3√𝑦 − 1 ℎ𝑎𝑦 √𝑥2− 1 = √𝑦 − 1 (∗)𝑣ớ𝑖 √𝑥2− 1 = 3√𝑦 − 1 𝑡ℎế 𝑣à𝑜 𝑝𝑡(1):

2(𝑦 − 1) = 2 𝑣ậ𝑦 𝑦 = 2 𝑡ℎì 𝑥 = ±√10 (∗∗)𝑣ớ𝑖 √𝑥2− 1 = √𝑦 − 1 𝑡ℎế 𝑣à𝑜 𝑝𝑡(1):

(𝑝𝑡𝑣𝑛)

𝑏à𝑖 52: {

2𝑥3+ 2𝑥 = 𝑦3− 𝑦2+ 3𝑥𝑦(𝑥 − 𝑦) + 𝑦(2𝑥 + 1)(1)(𝑦 + 1) (2 + 2√𝑥2+ 1 +𝑦

Trang 31

(𝑦 − 𝑥)3− 𝑥3− 𝑦(𝑦 − 2𝑥) + 𝑦 − 2𝑥 = 0 (𝑦 − 𝑥)3− 𝑦2+ 2𝑥𝑦 − 𝑥2+ 𝑦 = 𝑥3+ 2𝑥 − 𝑥2(𝑦 − 𝑥)3− (𝑦 − 𝑥)2+ (𝑦 − 𝑥) = 𝑥3− 𝑥2 + 𝑥 𝑥é𝑡 𝑓(𝑡) = 𝑡3− 𝑡2 + 𝑡 𝑣ậ𝑦 𝑓′(𝑡) = 3𝑡2− 2𝑡 + 1 > 0 𝑛ê𝑛 𝑦 = 2𝑥

> 0 𝑛ê𝑛 𝑥2 = 𝑦 − 𝑥 (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)𝑏ì𝑛ℎ 𝑡ℎườ𝑛𝑔)

𝑏à𝑖 54: {3𝑥

3+ 7𝑥 − 9𝑦 = (3𝑦 + 13)√𝑦 − 1 + 1(1)2𝑦 + 6𝑥 + 11 = (4𝑥 − 1)√𝑥2+ 8(2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑦 ≥ 1

Trang 32

𝑝𝑡(1): 3(𝑥 − 1)3+ 9𝑥2− 18𝑥 + 9 + 16(𝑥 − 1)

= 3(√𝑦 − 1)3+ 9(√𝑦 − 1)2+ 16(√𝑦 − 1) 3(𝑥 − 1)3+ 9(𝑥 − 1)2 + 16(𝑥 − 1)

= 3(√𝑦 − 1)3+ 9(√𝑦 − 1)2+ 16(√𝑦 − 1) 𝑥é𝑡 𝑓(𝑡) = 3𝑡3+ 9𝑡2+ 16𝑡 𝑣ậ𝑦 𝑓′(𝑡) = 9𝑡2+ 18𝑡 + 16 > 0

𝑣ậ𝑦 𝑥 − 1 = √𝑦 − 1(𝑡ℎế 𝑣à𝑜 𝑝𝑡(2))

𝑏à𝑖 55: {

3𝑥3+ 𝑥2 + 𝑥 = 10𝑦 + 12√𝑦 + 3(√𝑦)3+ 5(1)4(2𝑥2+ 1) + 3(𝑥2− 2𝑥)√1 + 2√𝑦 = 2(𝑥3 + 5√𝑦 + 5)(2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑦 ≥ 0 𝑝𝑡(1): 3𝑥3+ 𝑥2+ 𝑥 = 3(√𝑦)3+ 9(√𝑦)2+ 9√𝑦 + 3 + 𝑦 + 3√𝑦 + 2

Trang 33

2+ 3𝑦 = 9(1)

𝑦4+ 4(2𝑥 + 3)𝑦2− 48𝑦 + 48𝑥 + 155 = 0(2)

𝑔𝑖ả𝑖 𝑙ấ𝑦 𝑝𝑡(1)𝑡ℎế 𝑣à𝑜 𝑝𝑡(2):

𝑦4+ 4𝑦2(2𝑥 + 3) − 16(9 − 𝑥2) + 48𝑥 + 155 = 0

Trang 34

= 12(2)

Trang 35

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 ∶ 𝑥 ≥ 𝑦 𝑝𝑡(2): √(𝑥 − 𝑦)(𝑥8 2 + 𝑥𝑦 + 𝑦2) + 𝑥𝑦(𝑥 − 𝑦) = 12

√(𝑥 − 𝑦)(𝑥 + 𝑦)2 8

{𝑎 + 𝑏 = 8

𝑎 𝑏 = 12

𝑏à𝑖 61: {𝑥 + √𝑥(𝑥

2− 6𝑥 + 12) = √𝑦 + 23 + √𝑦 + 10 + 2(1)3√𝑥 − 1 − √𝑥2− 6𝑥 + 6 = √𝑦 + 23 + 2(2)

3√𝑥 − 1 − √𝑥2− 6𝑥 + 6 = 𝑥(𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑥 = 5 , 𝑥 = 1.25 𝑠𝑜 𝑙ạ𝑖 𝑣ớ𝑖 đ𝑘)

𝑏à𝑖 62: { (4𝑦 − 1)√𝑥2+ 4 = 2𝑥2+ 2𝑦 + 7(1)

𝑥5 − 3(4𝑦2− 4𝑦 − 3)2− 𝑥3+ 4(3𝑥2− 𝑦2) − 4(3𝑥 − 𝑦) + 7 = 0(2)

𝑔𝑖ả𝑖

Trang 36

𝑐ℎ𝑖𝑎 2 𝑣ế 𝑐ℎ𝑜 2 𝑐ủ𝑎 𝑝𝑡(1): (2𝑦 −1

2) √𝑥

2+ 4 = 𝑥2+ 𝑦 +7

2𝑝𝑡(1): (√𝑥2+ 4 + 𝑎) (√𝑥2+ 4 + 𝑏) = 0

Trang 37

= 0 𝑡ℎế 𝑣à𝑜 𝑝𝑡(1) 𝑡ℎấ𝑦 𝑘ℎô𝑛𝑔 𝑡ℎõ𝑎 𝑇𝐻2: 𝑛ế𝑢 𝑦 ≠ 0 𝑡ℎì 𝑐ℎ𝑖𝑎 2 𝑣ế 𝑐ủ𝑎 𝑝𝑡(2)𝑐ℎ𝑜 𝑦:

Trang 38

𝑏à𝑖 65: {𝑥

2+ 𝑥 = 𝑦3− 𝑦(1)

𝑦2 + 𝑦 = 𝑥3− 𝑥(2)𝑔𝑖ả𝑖

{𝑥(𝑥 + 1) = 𝑦(𝑦 − 1)(𝑦 + 1)(1)𝑦(𝑦 + 1) = 𝑥(𝑥 − 1)(𝑥 + 1)(2)𝑙ấ𝑦 𝑝𝑡(1) 𝑝𝑡(2): 𝑥𝑦(𝑥 + 1)(𝑦 + 1) = 𝑥𝑦(𝑥 + 1)(𝑦 + 1)(𝑥 − 1)(𝑦 − 1)

𝑣à 𝑥𝑦 − 𝑥 − 𝑦 = 0 𝑙ấ𝑦 𝑝𝑡(1) + 𝑝𝑡(2): 𝑥2 + 𝑦2+ 2(𝑥 + 𝑦) = (𝑥 + 𝑦)(𝑥2− 𝑥𝑦 + 𝑦2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≥ 1 (𝑑𝑜 𝑝𝑡(2)) 𝑣à 𝑦 ≥ 1

𝑝𝑡(1): 3√4𝑥(𝑥 + 1)3 + 2√2𝑦2− 𝑦 ≤ 2 + 2𝑥 + 𝑥 + 1 + 𝑦 + 2𝑦 − 1

= 3(𝑥 + 𝑦) + 2 𝑑ấ𝑢 "=" xảy ra khi : {𝑥 = 1𝑦 = 1(𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)𝑡𝑎 𝑡ℎấ𝑦 𝑡ℎõ𝑎)

Trang 39

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à ∶ {𝑥𝑦 ≥ 0

𝑥 ≥ −1

để ý 𝑝𝑡(1): 16𝑥 + 16 = 4(𝑥𝑦)2+ 𝑥2𝑦4(4 − 𝑥𝑦2)(4 + 𝑥𝑦2) + 4𝑥(4 − 𝑥𝑦2) = 0 𝑣ậ𝑦 𝑥𝑦2 = 4 ℎ𝑎𝑦 4 + 𝑥𝑦2+ 4𝑥 = 0

𝑥𝑦2 = 4 ℎ𝑎𝑦 𝑥(4 + 𝑦2) = −4 => 𝑦2 = −4

𝑥 − 4(𝑣𝑠 𝑥 ≠ 0)

𝑥𝑦 + (𝑥𝑦 − 2)2𝑥𝑦 + 𝑥𝑦 = 3(1)(𝑥 + 𝑥𝑦 + 2)(3 𝑥4+ 8𝑥2+ 12𝑥 + 𝑥𝑦 + 20) = 5(𝑥2+ 𝑥𝑦)3(2)

𝑔𝑖ả𝑖 𝑝𝑡(1): (2𝑥𝑦)2+ (𝑥𝑦 − 2) 2𝑥𝑦 + (𝑥𝑦 − 2) − 1 = 0

(2𝑥𝑦 − 1)(2𝑥𝑦+ 1) + (𝑥𝑦 − 2)(2𝑥𝑦 + 1) = 0 𝑣ậ𝑦 2𝑥𝑦 + 𝑥𝑦 − 3 = 0 ℎ𝑎𝑦 2𝑥𝑦 = −1(𝑙𝑜ạ𝑖)

𝑥𝑦 = 1 (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2))

𝑏à𝑖 69: {

𝑥√4𝑦2+ 1 + 2𝑦√𝑥2+ 1 = 0(1)2(1 + 23𝑥−4𝑦)

1 + 2−2𝑦 + 2.2

3𝑥

1 + 2−4𝑦 = 2−2𝑦(1 + 2−2𝑦 + 22𝑥)(2)𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≥ 0, 𝑦 ≥ 0 4(𝑥𝑦)2+ 𝑥2 = 4(𝑥𝑦)2+ 4𝑦2

Trang 40

𝑣ậ𝑦 𝑥 = ±2𝑦 (𝑡ℎế 𝑣à𝑜 𝑝𝑡(2))

𝑏à𝑖 70: {2𝑥(4𝑥

2− 𝑦 + 2) + 4𝑥2(𝑦 − 1) = √𝑦 − 2 − 2𝑥 + 𝑦2− 3𝑦 + 2(1)(√𝑦 − 2 − 1)√2𝑥 + 1 = 8𝑥3− 13(𝑦 − 2) + 82𝑥 − 29(2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚 𝑙à: 2𝑥 + 1 ≥ 0, 𝑦 − 2 ≥ 0 𝑝𝑡(1): 2𝑥(4𝑥2− 𝑦 + 2) + 4𝑥2(𝑦 − 1) = √𝑦 − 2 − 2𝑥 + (𝑦 − 2)(𝑦 − 1)

2𝑥(4𝑥2− 𝑦 + 2) + (𝑦 − 1)(4𝑥2− 𝑦 + 2) = √𝑦 − 2 − 2𝑥

(2𝑥 + 𝑦 − 1)(4𝑥2− 𝑦 + 2) = −(4𝑥

2− 𝑦 + 2)

√𝑦 − 2 + 2𝑥𝑣ậ𝑦 4𝑥2− 𝑦 + 2 = 0 ℎ𝑎𝑦 2𝑥 − 𝑦 + 1 = (2𝑥 + 1) + (𝑦 − 2)

√𝑦 − 2 + 2𝑥(𝑝𝑡𝑣𝑛 𝑑𝑜 đ𝑘) 𝑣ớ𝑖 4𝑥2− 𝑦 + 2 = 0 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2)𝑔𝑖ả𝑖 𝑛ó 𝑡ℎ𝑒𝑜 𝑝𝑝 đ𝑜á𝑛 𝑛𝑔ℎ𝑖ệ𝑚

𝑏à𝑖 71: {20√6 − 𝑥 − 17√5 − 𝑦 − 3𝑥√6 − 𝑥 + 3𝑦√5 − 𝑦 = 0(1)

2√2𝑥 + 𝑦 + 5 + 3√3𝑥 + 2𝑦 + 11 = 𝑥2+ 6𝑥 + 13(2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≤ 6, 𝑦 ≤ 5 𝑣à {3𝑥 + 2𝑦 + 11 ≥ 02𝑥 + 𝑦 + 5 ≥ 0𝑝𝑡(1): (20 − 3𝑥)√6 − 𝑥 = (17 − 3𝑦)√5 − 𝑦 2√6 − 𝑥 + 3(√6 − 𝑥)3 = 2√5 − 𝑦 + 3(√5 − 𝑦)3𝑥é𝑡 𝑓(𝑡) = 2𝑡 + 3𝑡3 𝑣ậ𝑦 𝑓′(𝑡) = 2 + 9𝑡2 > 0 𝑛ê𝑛 6 − 𝑥 = 5 − 𝑦 𝑣ậ𝑦 𝑥 − 𝑦 = 1 (𝑡ℎế 𝑣à𝑜 (2))

Trang 41

𝑏à𝑖 73: {

12𝑥2− 𝑦(2𝑥2− 4𝑥 + 3) − 12𝑥 + 3 = 0(1)512

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 ≥ −1 𝑇𝐻1: 𝑛ế𝑢 𝑥 = 0 𝑡ℎì 𝑝𝑡𝑣𝑛

Trang 42

𝑥 − 2(2𝑦 + 1)

√𝑥 − (2𝑦 + 1) + √2𝑦 + 1 =

−3(𝑥 − 2(2𝑦 + 1))

√𝑥 + 14(2𝑦 + 1) + √4𝑥 + 8(2𝑦 + 1)𝑣ậ𝑦 𝑥 − 2(2𝑦 + 1) = 0 ℎ𝑎𝑦 𝑝𝑡 𝑐ò𝑛 𝑙ạ𝑖 𝑣ô 𝑛𝑔ℎ𝑖ệ𝑚 𝑑𝑜 𝑉𝑇 > 0 𝑚à 𝑉𝑃 < 0

Trang 43

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑦 ≥ −4 𝑣à 𝑥 ≤ 2 𝑝𝑡(1): (4𝑥 + 2)√𝑥2+ 𝑥 + 1 + (2𝑥 − 𝑦)√(2𝑥 − 𝑦)2+ 3 = 𝑦 − 4𝑥 − 1 (2𝑥 + 1)√(2𝑥 + 1)2+ 3 + (2𝑥 + 1) = (𝑦 − 2𝑥)√(𝑦 − 2𝑥)2+ 3 + (𝑦 − 2𝑥)

𝑥é𝑡 𝑓(𝑡) = 𝑡√𝑡2+ 3 + 𝑡 𝑣ậ𝑦 𝑓′(𝑡) > 0 𝑛ê𝑛 𝑡𝑎 𝑐ó 2𝑥 + 1 = 𝑦 − 2𝑥 => 4𝑥 + 1

= 𝑦

𝑏à𝑖 77: {2𝑥

2𝑦 + 3𝑥𝑦 = 4𝑥2+ 9𝑦(1)7𝑦 + 6 = 2𝑥2+ 9𝑥(2)𝑔𝑖ả𝑖

𝑝𝑡(∗∗): 𝑥 = −2, 𝑥 =1

2, 𝑥 =

−9 ± 3√33

4 (𝑡ℎế 𝑡ừ𝑛𝑔 𝑐á𝑖 𝑣à𝑜 𝑡𝑎 𝑡ì𝑚 đượ𝑐 𝑦) 𝑏à𝑖 78: {𝑥

2+ 𝑦2+ 𝑧2 = 20102(1)

𝑥3+ 𝑦3+ 𝑧3 = 20103(2)

𝑔𝑖ả𝑖

𝑡ừ 𝑝𝑡(1): 𝑡𝑎 𝑠𝑢𝑦 𝑟𝑎 đượ𝑐 |𝑥|, |𝑦|, |𝑧| ≤ 2010 𝑠𝑢𝑦 𝑟𝑎 𝑥3+ 𝑦3+ 𝑧3 ≤ |𝑥3| + |𝑦3| + |𝑧3| ≤ 2010(𝑥2+ 𝑦2+ 𝑧2) = 20103

Trang 44

2+ 1

𝑦 , 𝑏 = 𝑥 + 𝑦 {

+ √6𝑥 − 1 = √2𝑦 − 1 + 1

− (𝑦𝑥)3+ 3 (𝑦𝑥)2(√1 − (3 𝑦𝑥)3 + 3 (𝑦𝑥)2)

2

+ √1 − (3 𝑦𝑥)3+ 3 (𝑦𝑥)2 + 1

√2𝑦 − 1 + √6𝑥 − 1

Trang 45

− (𝑦𝑥)2(𝑦𝑥 − 3)(√1 − (3 𝑦𝑥)3 + 3 (𝑦𝑥)2)

𝑏à𝑖 81: { √𝑥4 + 𝑥2+ 𝑥 − 𝑦 = 𝑦 − 𝑥(1)

√𝑥2+ 𝑥 − 2 + (𝑦 − 1)√𝑦 + 6 + (𝑥2+ 𝑥 − 3)(𝑦 − 1) = 7(2)

𝑔𝑖ả𝑖 𝑝𝑡(1): 𝑥4+ 𝑥2+ 𝑥 − 𝑦 = 𝑦2− 2𝑥𝑦 + 𝑥2(𝑦 ≥ 𝑥)

𝑥4+ 𝑥 − 𝑦 = 𝑦2 − 2𝑥𝑦

𝑦2+ 𝑦(−2𝑥 + 1) − 𝑥4 − 𝑥 = 0 𝑑𝑒𝑛𝑡𝑎 = 4𝑥2− 4𝑥 + 1 − 4(−𝑥4− 𝑥) = 4𝑥2+ 1 + 4𝑥4 = (2𝑥2+ 1)2 ≥ 0

+ 𝑥 − 𝑦 = 4(1)𝑥√𝑥 − 𝑦 − (𝑥2+ 1)√𝑦 + (𝑥3 + 2)√𝑦 + 3 = 17(2)

Trang 46

𝑥 = 0(𝑝𝑡𝑣𝑛 𝑑𝑜 𝑉𝑇 > 0 ) 𝑣ậ𝑦 √(𝑥 + 2𝑦)𝑥 = √𝑥3 2(𝑥 + 3𝑦)

(𝑥2+ 2𝑦𝑥)3 = 𝑥4(𝑥 + 3𝑦)2

𝑥6+ 6𝑥5𝑦 + 12𝑥4𝑦2+ 8(𝑥𝑦)3 = 𝑥4(𝑥2+ 6𝑥𝑦 + 9𝑦2) = 𝑥6+ 6𝑥5𝑦 + 9𝑥4𝑦2

Trang 47

𝑏à𝑖 85: { 4𝑥𝑦 + 1 = 𝑥 + 2√𝑥𝑦(1)

(𝑥√𝑥)−1 + 8𝑦√𝑦 = (√𝑥)−1 + 6√𝑦(2)

𝑔𝑖ả𝑖

đ𝑘 𝑐ó 𝑛𝑔ℎ𝑖ệ𝑚: 𝑥 > 0 𝑣à 𝑦 ≥ 0

Trang 50

(𝑦√2 − 𝑥)3− 8 + 3𝑦3√2 − 𝑥 − 6𝑦2 = 0 (𝑦√2 − 𝑥 − 2)(𝑦2(2 − 𝑥) + 2𝑦√2 − 𝑥 + 4) + 3𝑦2(𝑦√2 − 𝑥 − 2) = 0

𝑣ậ𝑦 𝑦√2 − 𝑥 − 2 = 0 ℎ𝑎𝑦 𝑦2(2 − 𝑥) + 2𝑦√2 − 𝑥 + 4 + 3𝑦2 = 0 (𝑝𝑡𝑣𝑛 𝑑𝑜 𝑉𝑇

> 0) 𝑣ớ𝑖 𝑦√2 − 𝑥 − 2 = 0 𝑡ℎế 𝑣à𝑜 𝑝𝑡(2) 𝑡𝑎 đượ𝑐 𝑛𝑔ℎ𝑖ệ𝑚 𝑥 = 1.2

𝑥 + 3𝑦 + 1 ≥ 0𝑝𝑡(2): (√𝑥 − 2)3− (√𝑦 + 1)3+ 2√𝑥 − 2 − 4√𝑦 + 1 + √𝑥 + 3𝑦 + 1 = 0

(√𝑥 − 2 − √𝑦 + 1) ((√𝑥 − 2)2+ √(𝑥 − 2)(𝑦 + 1) + (√𝑦 + 1)2)

+ 2(√𝑥 − 2 − √𝑦 + 1) − √4𝑦 + 4 + √𝑥 + 3𝑦 + 1 = 0 (𝑥 − 𝑦 − 3) ((√𝑥 − 2)2+ √(𝑥 − 2)(𝑦 + 1) + (√𝑦 + 1)2)

2(√𝑥 − 2 + √𝑦 + 1)+

1(√𝑥 + 3𝑦 + 1 + √4𝑦 + 4)= 0(𝑝𝑡𝑣𝑛 𝑑𝑜 𝑉𝑇 > 0)

Ngày đăng: 05/02/2018, 07:53

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w