Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp
Trang 1ENTROPY – 2ND LAW OF THERMODYNAMICS
Trang 2OUTLINE
• Reversible Process vs Irreversible Process
• Quasi-Static vs Quick Process
• Carnot’s theorem
• Clausius’s Integration
• Entropy
• The Principle of Increase of Entropy
• The Change in Entropy of an Ideal Gas
Trang 3REVERSIBLE – IRREVERSIBLE
PROCESS
In a reversible process, the system can be returned to its initial conditions
along the same path on a PV diagram, and every point along this path is an
equilibrium state
A process that does not satisfy these requirements is irreversible
P
V
1
2
reversible
P
V
1
2
irreversible
irreversible
Quasi–static process
Quick (sudden) - process
Trang 4QUASI-STATIC vs QUICK PROCES
P
V
1
2
reversible
P
V
1
2
irreversible
Quasi–static process
Quick (sudden) - process
Trang 5Carnot's theorem
Carnot's theorem, developed in 1824 by Nicolas Léonard Sadi Carnot, also
called Carnot's rule, is a principle that specifies limits on the maximum
efficiency any heat engine can obtain
Carnot's theorem states:
• All heat engines between two heat reservoirs are less efficient than
a Carnot heat engine operating between the same reservoirs
• Every Carnot heat engine between a pair of heat reservoirs is equally
efficient, regardless of the working substance employed or the operation details
h
c Carnot
max
T
T 1
e
Trang 6CARNOT ENGINE
0 T
Q T
Q
T
Q T
Q
T
T Q
' Q
T
T 1
Q
' Q 1
e e
c
c h
h
h
h c
c
h
c h
c
h
c h
c carnot
cycle le
irriversib
cycle reversible
0 T
Q
i i
i
cycle le
irriversib
cycle
reversible 0
T
Q
CLAUSIUS’S INEGALITY
Qj,
Tj
Qi, Ti
V
P
Divide any reversible cycle into a series of thin Carnot cycles, where the isothermal processes are
infinitesimally short:
Two reservoirs,
temperature Th, Tc
Trang 7ENTROPY
P
V
1
2
a
b
Consider a reversible cycle 1a2b1
The Clausius integration has sign “=“
cycle le
irriversib
cycle
reversible 0
T
Q
rever _ 2 b rever
_ 2 a 1
1 2 2
a 1
1 2 2
a 1
1 2 a 1
T
Q T
Q
T
Q T
Q
0 T
Q T
Q
0 T
Q
T
Q dS
T
Q S
rev
reversible _
2 1
Definition: We define a
state variable S that the
change in the entropy dS
is equal to the heat
received in a reversible
process divided by the
absolute temperature of
the system
Trang 8ENTROPY (Cont.)
P
V
1
2
a
b
Consider an irreversible cycle
1a2: irreversible
2b1: reversible
The Clausius integration has sign “<“
cycle _
le irreversib
cycle _
reversible 0
T
Q
irr _ 2 a 1
rev 2 1
rev _ 2 b 1
irr _ 2 a 1
rev 1 b 2
irr 2 a 1
rev _ 1 b 2
irrev 2
a 1
irrev _
1 b 2 a 1
T
Q S
S T
Q
T
Q T
Q
T
Q T
Q
0 T
Q T
Q
0 T
Q
process _
le irreversib
process _
reversible T
Q S
2
1
Trang 9ENTROPY S
• Entropy S is a state variable State_2
1 _ State
rev 1
2
T
Q S
S
Entropy is a state variable
=> the change in entropy during a process depends only on the endpoints
=> the change in entropy is independent of the actual path followed
Consequently, the entropy change for an
irreversible process can be determined by
calculating the entropy change for a
reversible process that connects the same
initial and final states
P
V
1
2
a
b
2 b 1 12
2 a 1 12
12
rev 2 b 1
irrev
2
a
1
T
Q S
T
Q S
S S
S
Trang 10The principle of Increase of Entropy
12
rev 12
T
Q S
For an isolated system dQ=0 =>
process _
reversible
process _
le
irreversib 0
S 12
S > 0, for irreversible processes
S = 0, for reversible processes
S < 0, the process is impossible
The entropy of the Universe increases in all real processes
S may be >0; <0 or =0
Trang 11The Change in Entropy of an Ideal Gas
1
2 1
2 v
1
2 v
1
2 1
1
2 2 v
1
2 1
2 v
V
V
T
T
rev
V
V ln
nR V
V ln
nC P
P ln
nC
V
V ln
nR V
P
V P ln
nC
V
V ln
nR T
T ln
nC
dV V
nR T
nRdT 2
i S
dV V
nR T
nRdT 2
i T
PdV dU
dS
PdV dU
Q
PdV Q
dU
T
Q
dS
2
1
2
1
R C
R 2
2 i C
R 2
i C
nRT PV
;
nRT 2
i U
v p
v
1
2 p
1
2 v
V
V ln
nC P
P ln nC
S
Trang 12The Change in Entropy of an Ideal Gas
1
2 p
2
1
p
T
T ln nC T
dT nC
Isothermal Process
1
2 1
2 12
2
V ln
nR T
V
V ln nRT T
Q T
dQ
Isovolumetric Process
1
2 v
2
1
v
T
T ln
nC T
dT
nC
Isobaric Process
Adiabatic Process S 0 S const Iso_entropy Process
Trang 13Example 22.6 Change in Entropy: Melting
A solid that has a latent heat of fusion Lf melts at a
temperature Tm
Calculate the change in entropy of this substance when a
mass m of the substance melts
mel f melt
2 1
T
mL T
Q S
Const T
T
T
dQ S
Trang 14Entropy trao đổi, entropy tạo ra
traodoi ra
_ tao
nhiet _
nguon traodoi
2 1
ra _ tao traodoi
S S
S
T
Q S
T
Q S
S S
S
Độ biến thiên entropy của hệ
Entropy trao đổi
Entropy tạo ra
Stạo ra =0: quá trình Thuận nghịch
Stạo ra >0: quá trình Không Thuận nghịch
Q: nhiệt mà hệ nhận
Tnguon nhiet: Nhiệt độ của nguồn nhiệt