1. Trang chủ
  2. » Giáo Dục - Đào Tạo

nhiệt động học, nguyên lý ETROPY, định lý 2 NDHs

14 181 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 296,93 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp

Trang 1

ENTROPY – 2ND LAW OF THERMODYNAMICS

Trang 2

OUTLINE

• Reversible Process vs Irreversible Process

• Quasi-Static vs Quick Process

• Carnot’s theorem

• Clausius’s Integration

• Entropy

• The Principle of Increase of Entropy

• The Change in Entropy of an Ideal Gas

Trang 3

REVERSIBLE – IRREVERSIBLE

PROCESS

In a reversible process, the system can be returned to its initial conditions

along the same path on a PV diagram, and every point along this path is an

equilibrium state

A process that does not satisfy these requirements is irreversible

P

V

1

2

reversible

P

V

1

2

irreversible

irreversible

Quasi–static process

Quick (sudden) - process

Trang 4

QUASI-STATIC vs QUICK PROCES

P

V

1

2

reversible

P

V

1

2

irreversible

Quasi–static process

Quick (sudden) - process

Trang 5

Carnot's theorem

Carnot's theorem, developed in 1824 by Nicolas Léonard Sadi Carnot, also

called Carnot's rule, is a principle that specifies limits on the maximum

efficiency any heat engine can obtain

Carnot's theorem states:

• All heat engines between two heat reservoirs are less efficient than

a Carnot heat engine operating between the same reservoirs

• Every Carnot heat engine between a pair of heat reservoirs is equally

efficient, regardless of the working substance employed or the operation details

h

c Carnot

max

T

T 1

e

Trang 6

CARNOT ENGINE

0 T

Q T

Q

T

Q T

Q

T

T Q

' Q

T

T 1

Q

' Q 1

e e

c

c h

h

h

h c

c

h

c h

c

h

c h

c carnot

cycle le

irriversib

cycle reversible

0 T

Q

i i

i

cycle le

irriversib

cycle

reversible 0

T

Q

 

CLAUSIUS’S INEGALITY

Qj,

Tj

Qi, Ti

V

P

Divide any reversible cycle into a series of thin Carnot cycles, where the isothermal processes are

infinitesimally short:

Two reservoirs,

temperature Th, Tc

Trang 7

ENTROPY

P

V

1

2

a

b

Consider a reversible cycle 1a2b1

The Clausius integration has sign “=“

cycle le

irriversib

cycle

reversible 0

T

Q

 

rever _ 2 b rever

_ 2 a 1

1 2 2

a 1

1 2 2

a 1

1 2 a 1

T

Q T

Q

T

Q T

Q

0 T

Q T

Q

0 T

Q

T

Q dS

T

Q S

rev

reversible _

2 1

 

Definition: We define a

state variable S that the

change in the entropy dS

is equal to the heat

received in a reversible

process divided by the

absolute temperature of

the system

Trang 8

ENTROPY (Cont.)

P

V

1

2

a

b

Consider an irreversible cycle

1a2: irreversible

2b1: reversible

The Clausius integration has sign “<“

cycle _

le irreversib

cycle _

reversible 0

T

Q

irr _ 2 a 1

rev 2 1

rev _ 2 b 1

irr _ 2 a 1

rev 1 b 2

irr 2 a 1

rev _ 1 b 2

irrev 2

a 1

irrev _

1 b 2 a 1

T

Q S

S T

Q

T

Q T

Q

T

Q T

Q

0 T

Q T

Q

0 T

Q

process _

le irreversib

process _

reversible T

Q S

2

1 



 

Trang 9

ENTROPY S

Entropy S is a state variable     State_2

1 _ State

rev 1

2

T

Q S

S

Entropy is a state variable

=> the change in entropy during a process depends only on the endpoints

=> the change in entropy is independent of the actual path followed

Consequently, the entropy change for an

irreversible process can be determined by

calculating the entropy change for a

reversible process that connects the same

initial and final states

P

V

1

2

a

b

2 b 1 12

2 a 1 12

12

rev 2 b 1

irrev

2

a

1

T

Q S

T

Q S

S S

S

Trang 10

The principle of Increase of Entropy

 

12

rev 12

T

Q S

For an isolated system dQ=0 =>

process _

reversible

process _

le

irreversib 0

S 12

 S > 0, for irreversible processes

 S = 0, for reversible processes

 S < 0, the process is impossible

The entropy of the Universe increases in all real processes

S may be >0; <0 or =0

Trang 11

The Change in Entropy of an Ideal Gas

1

2 1

2 v

1

2 v

1

2 1

1

2 2 v

1

2 1

2 v

V

V

T

T

rev

V

V ln

nR V

V ln

nC P

P ln

nC

V

V ln

nR V

P

V P ln

nC

V

V ln

nR T

T ln

nC

dV V

nR T

nRdT 2

i S

dV V

nR T

nRdT 2

i T

PdV dU

dS

PdV dU

Q

PdV Q

dU

T

Q

dS

2

1

2

1

R C

R 2

2 i C

R 2

i C

nRT PV

;

nRT 2

i U

v p

v

1

2 p

1

2 v

V

V ln

nC P

P ln nC

S  

Trang 12

The Change in Entropy of an Ideal Gas

1

2 p

2

1

p

T

T ln nC T

dT nC

Isothermal Process

1

2 1

2 12

2

V ln

nR T

V

V ln nRT T

Q T

dQ

 

Isovolumetric Process

1

2 v

2

1

v

T

T ln

nC T

dT

nC

Isobaric Process

Adiabatic Process  S  0 S  const Iso_entropy Process

Trang 13

Example 22.6 Change in Entropy: Melting

A solid that has a latent heat of fusion Lf melts at a

temperature Tm

Calculate the change in entropy of this substance when a

mass m of the substance melts

mel f melt

2 1

T

mL T

Q S

Const T

T

T

dQ S

Trang 14

Entropy trao đổi, entropy tạo ra

traodoi ra

_ tao

nhiet _

nguon traodoi

2 1

ra _ tao traodoi

S S

S

T

Q S

T

Q S

S S

S

Độ biến thiên entropy của hệ

Entropy trao đổi

Entropy tạo ra

Stạo ra =0: quá trình Thuận nghịch

Stạo ra >0: quá trình Không Thuận nghịch

Q: nhiệt mà hệ nhận

Tnguon nhiet: Nhiệt độ của nguồn nhiệt

Ngày đăng: 06/01/2018, 13:55

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w