1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Fundamentals of futures and options markets 9th by john c hull 2016 chapter 18

21 163 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 189,03 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Binomial Trees in PracticeChapter 18... Binomial Trees Binomial trees are frequently used to approximate the movements in the price of a stock or other asset  In each small interval o

Trang 1

Binomial Trees in Practice

Chapter 18

Trang 2

Binomial Trees

 Binomial trees are frequently used to approximate the movements in the

price of a stock or other asset

 In each small interval of time the stock price is assumed to move up by a

proportional amount u or to move down by a proportional amount d

Trang 3

Movements in Time t

(Figure 18.1, page 392)

Su

Sd S

Trang 4

Risk-Neutral Valuation

We choose the tree parameters p, u, and d so that the tree gives

correct values for the mean and standard deviation of the stock price changes in a risk-neutral world

Trang 5

1 Tree Parameters for a

Nondividend Paying Stock

e rt = pu + (1– p)d

σ 2t = pu 2 + (1– p )d 2 – [pu + (1– p )d ]2

Trang 6

2 Tree Parameters for a

Nondividend Paying Stock

(Equations 18.4 to 18.7, page 393)

When ∆ t is small a solution to the equations is

t

r

t t

e a

d u

d

a p

e d

e u

∆ σ

∆ σ

Trang 7

Stock Prices on the Tree

(Figure 18.2, page 393)

S0u 2 S0u 4

S0d 2 S0d 4

S0

S0u S0d

S0

S0 S0u 2

S0d 2

S0u 3 S0u S0d S0d 3

Trang 8

Backwards Induction

calculate the value of the option at each node, testing for early exercise when appropriate

Trang 9

Example: Put Option

Trang 10

Example (continued)

Figure 18.3, page 395

89.07 0.00 79.35

28.07

Trang 11

Example (continued; Figure 18.3, page 395)

Trang 12

Convergence of tree (Figure 18.4, page 396)

Trang 15

Calculation of Theta

day calendar

per

or

year per

=

Theta

012 0

3

4 1667

0

49

4 77

3

=

Trang 16

Calculation of Vega

4 62 4 49 013 − = per 1% change in volatility

Trang 17

Trees and Dividend Yields

When a stock price pays continuous dividends at rate q we construct the tree in the

same way but set a = e(r – q )t

For options on stock indices, q equals the dividend yield on the index

For options on a foreign currency, q equals the foreign risk-free rate

For options on futures contracts q = r

Trang 18

Binomial Tree for Stock Paying Known Dollar Dividends

 Procedure :

 Draw the tree for the stock price less the present value of the dividends

 Create a new tree by adding the present value of the dividends at each node

 This ensures that the tree recombines and makes assumptions similar to those

when the Black-Scholes-Merton model is used for European options

Trang 19

Extensions of Tree Approach (pages 405 to 407)

Time dependent interest rates or dividend yields (u and d are unchanged and p is

calculated from forward rate values for r and q)

Time dependent volatilities (length of time steps varied so that u and d remain the

same)

 The control variate technique (European option price calculated from tree Error in

European option price assumed to be the same as error in American option price)

Trang 20

Alternative Binomial Tree

Instead of setting u = 1/d we can set each of the 2 probabilities to 0.5

and

t t

r

t t

r

e d

e

u

∆ σ

∆ σ

∆ σ

+

∆ σ

=

=

) 2 / (

) 2 / (

2 2

Trang 21

Monte Carlo Simulation

the tree randomly and calculating the payoff corresponding to each path

Ngày đăng: 06/01/2018, 12:21

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm