BANG TINH DAM I25 7m CẦU ĐƯỜNG TIẾNG ANHBANG TINH DAM I25 7m CẦU ĐƯỜNG TIẾNG ANHBANG TINH DAM I25 7m CẦU ĐƯỜNG TIẾNG ANHBANG TINH DAM I25 7m CẦU ĐƯỜNG TIẾNG ANHBANG TINH DAM I25 7m CẦU ĐƯỜNG TIẾNG ANHBANG TINH DAM I25 7m CẦU ĐƯỜNG TIẾNG ANHBANG TINH DAM I25 7m CẦU ĐƯỜNG TIẾNG ANHBANG TINH DAM I25 7m CẦU ĐƯỜNG TIẾNG ANH
Trang 102 Calculation I-Beam_I25.7m.xls【Input_material】
SHEET NO : 1 / 1
1.4 Material strength & Stress Limits:
1.4.1 Prestressing steel (low-relaxation)
1.4.2 Reinforcement
1.4.3 Concrete
a) Girder Concrete
Limit of tensile stress at time of initial prestress : 0.58(f'ci)0.5 = 3.48 MPa Limit of compresive stress at service
b) Slab Concrete
Limit of compresive stress at service
1.MATERIAL DATA
Trang 2SHEET NO : 1 / 1
2 SECTION PROPERTIES
2.1 Section Input
Section Properties (Origin)
(mm)
SEC-1 1450
SEC-2 1449
SEC-3 1450
SEC-4 1450
SEC-5 1450
Cross Section Properties (PS steel included)
Equivalent diameter of strand = 29.66 (mm)
No of
cable
(No)
Distance
from bottom
of fibre
(at)
Area of steel equivale n
No of cable (No)
Distance from bottom
of fibre (at)
Area of steel equivale n
No of cable (No)
Distance from bottom
of fibre (at)
Area of steel equivale n
No of cable (No)
Distance from bottom
of fibre (at)
Area of steel equivale n
No of cable (No)
Distance from bottom
of fibre (at)
Area of steel equivale n
Included Oval holes
Included PS steel
Sevice stage
Iy
Section 4
(mm 3 )
204,870,204 152,060,058,145
151694336504
(mm)
197,302,365 197,302,365
742 215,146,747
(mm 3 )
725
704 707
706 745
575571
Section 4
575571
723
Section
743
Extreme fibre
Section 1
Section 1
Properties
732
Area (mm 2 )
Bending Modulus
(mm 4 )
Inertia Ix
738 203,304,088 196,303,312 144,813,222,748
141,714,366,383 193,667,610 141,714,366,383 193,667,610
Nslap/con =
Ns/c =
Section 5
Row of
cable
743
709
1049716
Ix inc holes (mm4) 160070283812
Yb inc holes (mm)
area inc holes (mm2)
982655
Ix inc st (mm4) 162326736074 153828298534 146974772379 145393896405 147499185357
311896727716
583 982655
Yt inc st (mm) 708
725
144372240969
314303438731
Ix sv (mm4)
657 1313355
992.598 346976886001
1050
1066
584
Yt sv (mm)
Ytslab sv (mm)
1067 1018
Yb sv (mm)
384
Trang 302 Calculation I-Beam_I25.7m.xls【sectionpro】
SHEET NO : 1 / 1
2.2.1. Cross Section Properties (Oval holes included)
Cross section
2.2.2. Tranformed Section Properties for initial stage at tranfer (Prestressing steel included)
2.2.3. Composite Section Properties for final stage (service stage)
Trang 4SHEET NO : 1 / 4
3 Internal forces
3.1 Due to S.W of Girder (DL1)
W = Σ (FsecixLix0.0000025x9.8066)/ Σ Li = 15.700 N/mm
W= 15.700 N/mm
25.00 m
Bending Moment and Shear forces due to S.W of Girder (DL1)
Distance from section to right bearing mm 25,000 23,438 21,875 18,750 12,500
3.2 Due to S.W of Deck Slab and S.W of longitudinal gider (DL2)
Wdr= (2.65*0.2*2*0+2.52*0.2*2)x25/23.3 1.008 N/mm
W= 15.963 N/mm
25.00 m
Bending Moment and Shear forces due to S.W of deck slab (DL2)
Distance from section to right bearing mm 25,000 23,438 21,875 18,750 12,500
Ltt=
Ltt=
12850
350
12500
110 690
A
A
B
B
1 0 0 6 0 0 1 0 0
8 0 0
6 0 0
2 0 0 2 0 0 2 0 0
6 0 0
A - A
1 0 0 6 0 0 1 0 0
8 0 0
B - B
Bb
Trang 5SHEET NO : 2 / 4
3.3 Due to S.W of Railing, Parapet and Barrier (DL3)
Flc= 361000 mm2
SF=(2*Flc+Fpc)= 722000 mm2
W =(SFx0.0000025x9.8066)/Nd= 3.540 N/mm
W= 3.540 N/mm
25.00 m
Bending Moment and Shear forces due to S.W of Railing , Parapet and Barrier (DL3)
Space from section to right bearing mm 25,000 23,438 21,875 18,750 12,500
3.4 Due to S.W of surface (DW)
25.00 m
B deck = 11000 mm
W = (Bdesk xTlp * 0.0000023*9.8066)/Nd = 2.481 N / mm
Bending Moment and Shear forces due to S.W of Surface (DW)
Space from section to right bearing mm 25,000 23,438 21,875 18,750 12,500
Bending Moment and Shear forces due to S.W of Railing , Parapet and Barrier (DL3)
Ltt=
Ltt=
500 12000
CROSS SECTION
Trang 6SHEET NO : 3 / 4
3.5 Due to Live Load plus Impact (LL+IM)
3.5.1 Calculation distribution of live load on cross beam
Calculation span length (6000mm~73000mm) L = 25000.00 mm
Distance between the centers of gravity of beam and slab eg = 818.00 mm
thickness of concrete slab (450mm~1700mm) t= 200.00 mm
Distance from exterior web of exterior beam
and the interior edge of curb or traffic barrier de = 810.00 mm
Longitudinal stiffness parameter factor Kg = 6.15E+11 mm4
Correction factors for load distribution factors for support shear of the obtuse corner 1.00
Distribution of live loads per Lane for Moment in
Distribution of live loads per Lane for Shear in
VEHICULAR LIVE LOADING DATA
Unit Standard load Distance from axle to front axle Axle concentrated load P1 N 35,000
Lane Load Uniform distributed load W N / mm 9.30
3.6.2 Calculation value of influence line
Distance from calculated section to left bearing mm 0 1,563 3,125 6,250 12,500
Distance from calculated section to right bearing mm 25,000 23,438 21,875 18,750 12,500
Area of Moment influence line MA mm2 0 18,310,547 34,179,688 58,593,750 78,125,000
Area of Shear influence line VA1 > 0 mm2 12,500 10,986 9,570 7,031 3,125
4.3
P4
MY5
Ltt
Ltt
4.3
MY1
P5
MY4
1.2
2 P3
4.3
P4
VY5
Ltt
Ltt
4.3
VY2 VY3
VY1
P5
VY4 1.2
Trang 7SHEET NO : 4 / 4
Bending Moment due to Live Load plus Impact
M = IM*g*MY (i) *P (i) for concentrated load or M = g*MA*W for uniform load
Truck P3 4,300 0 5,863 216,791,992 7,425 398,183,594 10,550 654,765,625 16,800 743,125,000
P2 0 0 1,563 265,502,930 3,125 495,605,469 6,250 849,609,375 12,500 1,132,812,500 P3 4,300 0 5,863 52,329,102 7,425 96,113,281 10,550 158,046,875 16,800 179,375,000
Tandem P5 0.6 0 1,563 196,259,766 3,126 365,664,063 6,251 623,906,250 12,501 818,125,000
Shear forces due to Live Load plus Impact
V = IM*g*VY (i) *P (i) for concentrated load or V = g*VA (i) *W for uniform load
0
Trang 802 Calculation I-Beam_I25.7m.xls【Prestress_1】
SHEET NO : 1 / 2
3.6 Due to prestressing
3.6.1 Stress Loses (22TCN272-05, 5.9.5)
Stress in Prestressing steel immediately prior to transfer fpt = 0.75fpu 1395 MPa
Stress in Prestressing steel at service limit state after all losses fpe = 0.8fpy 1339 MPa
Specified compressive strength of Concrete at time of stress transferf'ci = 0.9f'c 36 MPa
Loss due to Elastic shortening
∆f pES =(n-1)*E p *f cgp /(2*n*E ci )
E ci Modulus of elasticity of concrete at transfer
E ci = 0.043*y c (1.5) *(f ci ') (0.5) = 32250 MPa
n is the number of identical tendon 5
f cgp Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at trasfer and the self-weight
of the member at the section of maximum moment
fo due to self - weight of girder
Mo Moment due to self-weight of girder
fp due to prestressing steel : fp = N/ A + N*e*e/Ix 17.79 MPa
e : Distance from CGS to center of gravity of girder -572 mm
Loss due to Shrinkage
∆ fpSR = (93-0.85*H)
Loss due to Creep
∆f pCR = 12.0 *f cgp - 7.0*∆f cdp ≥ 0
∆f cdp change in concrete stress at center of gravity of prestressing steel due to permanent loads, with the
exception of the load acting at the time the prestressing force is applied
Msw : Moment due to self - weight of deck slab , surface, railing and parapet
Msw = 1,717,524,797 N.mm
Friction and anchor set:
Trang 902 Calculation I-Beam_I25.7m.xls【Prestress_1】
SHEET NO : 2 / 2
Loss due to relaxation
Loss due to relaxation at transfer (Initial stage)
∆f pR1 = log(24.0*t) / 40.0*[f pj / f py - 0.55]*f pj
f pj : initial stress in strand at the end of prestressing = 0.72*f pu
Loss due to relaxation at after transfer (final stage)
∆f pR2 = (138 - 0.4*∆f pES - 0.2*(∆f pSR + ∆f pCR ))*30%
3.6.2 Internal forces due to prestressing
Bending moment, shear force and normal force due to prestressing
INITIAL STAGE AT TRANSFER
Initial prestress σi = Jacking stress σj - (prestress losses due to relaxation at transfer and Elastic shortening)
Jacking stress σj = stress in prestressing steel immidiately prior to transfer fpt
σj = fpt
Normal force N = σi1*Aps1 (A'ps1) + σi2*Aps2
Shear force V = 0
Moment M = σi1*Aps1(A'ps1)*d1 - σi2*Aps2*d2
d1 Distance from CGS at bottom fibre to neutral axles
d2 Distance from CGS at top fibre to neutral axles
A'ps1 for Section 1 and Section 2
FINAL STAGE AT SERVICE
Prestress σi = Jacking stress σj - (total losses of prestress)
Jacking stress sj = Stress in Prestressing steel at service limit state after all losses fpe
σj = fpe
Normal force N = σi1*Aps1 (A'ps1) + σi2*Aps2
Shear force V = 0
Moment M = σi1*Aps1(A'ps1)*d1 - σi2*Aps2*d2
d1 Distance from CGS at bottom fibre to neutral axles
d2 Distance from CGS at top fibre to neutral axles
A'ps1 for Section 1 and Section 2
Where : CGS : Central gravity of strand
Trang 1002 Calculation I-Beam_I25.7m.xls【Summary】
SHEET NO : 1 / 1
3.7 Summary of sectional forces
3.7.1 Summary of sectional forces for initial stage(at tranfer)
3.7.2 Summary of sectional forces for final stage(service stage)
Trang 11SHEET NO : 1 / 1
4 Checking for initial stage at transfer
Specified compressive strength of Concrete f' c 40 Mpa = 40.0 N / mm2
at time of initial prestressing f' ci = 0.9*f' c 36 Mpa = 36.0 N / mm2
Compressive stress limit [ f 1 ] = 0.6*f' ci 21.6 Mpa = 21.60 N / mm2
Tensile stresses limit [ f 2 ] = 0.25*(f' ci ) 0.5
<=1.38 1.38 Mpa = 1.38 N / mm2
4.1 Summary of Sectional forces
Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
M N.mm 0 287,467,534 536,606,064 919,896,110 1,226,528,146
N N 3,719,456 3,787,916 3,824,016 3,892,251 4,043,399
M N.mm 0 -666,166,502 -1,068,146,202 -1,709,098,460 -2,313,198,546
N N 3,719,456 3,787,916 3,824,016 3,892,251 4,043,399
M N.mm 0 -378,698,967 -531,540,138 -789,202,350 -1,086,670,400
M N.mm 0 292,292,450 545,612,573 935,335,840 1,247,114,453
5.2 Calculating of Sectional stress at top, bottom of girder and top slab
f b = M / W - N / A
f t = -M / W - N / A
W , A : Bending modulus and Area of transform section
PS, DL1, DL2 checking with noncomposite section
Girder Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
Stress by PS
Stress by DL1
f b N / mm 2
Stress by DL2
f t N / mm 2
4.2 Checking sectional stress for initial stage at transfer (22TCN272-05, 5.9.4.1)
if f b, f t <0 then |f b | or |F t |< [ f 1 ] ⇒ OK
if f b, f t > 0 then |f b |, |F t |< [f 2 ] ⇒ OK
Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
f b N / mm 2
Checking sectional stress f t N / mm 2
4.3 Checking sectional stress for stage pure slab concrete (22TCN272-05, 5.9.4.1)
if f b, f t <0 then |f b | or |F t |< [ f 1 ] ⇒ OK
if f b, f t > 0 then |f b |, |F t |< [f 2 ] ⇒ OK
Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
f b N / mm 2
-25
-15
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000
Leng of girder(mm) Stress on girder
Series1 Series2
-25
-15
0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000
Stress on girder
Trang 1202 Calculation I-Beam_I25.7m.xls【Checking 2_1】
SHEET NO : 1 / 3
5 Checking for final stage at service
a For girder
Compressive stress limit due to Ps + DL [ f1 ] = 0.45*f'c 18 Mpa = 18.0 N / mm2 Compressive stress limit due to LL + 1/2 (Ps + DL) [ f2 ] = 0.4*f'c 16.0 Mpa = 16.0 N / mm2 Compressive stress limit due to Ps + (DL + LL) [ f3 ] = 0.6*f'c 24 Mpa = 24.0 N / mm2 Tensile stresses limit at service stage [ f4 ] = 0.5*(f'c )0.5 3.16 Mpa = 3.16 N / mm2
b Deck slab
Compressive stress limit due to Ps + DL [ f1 ] = 0.45*f'c 18 Mpa = 18.0 N / mm2 Compressive stress limit due to LL + 1/2 (Ps + DL) [ f2 ] = 0.4*f'c 16.0 Mpa = 16.0 N / mm2 Compressive stress limit due to Ps + (DL + LL) [ f3 ] = 0.6*f'c 24 Mpa = 24.0 N / mm2 Tensile stresses limit at service stage [ f4 ] = 0.5*(f'c )0.5 3.16 Mpa = 3.16 N / mm2
c For prestressing tendon
Tensile stresses limit at service stage [ f5 ] = 0.8*f'py 1339.20 Mpa = 1339.20 N / mm2
5.1 Summary of Sectional forces at service
Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
M N.mm 0 -1,291,905,757 -1,717,762,640 -2,304,503,700 -2,837,707,680
5.2 Calculating of Sectional stress at top, bottom of girder and top slab
f b = M / W - N / A
f t = -M / W - N / A
W , A : Bending modulus and Area of transform section
PS, DL1, DL2 checking with noncomposite section
DL3, DW checking with composite section
ft slab= (-M / W - N / A) * modular ratio between slab and girder
Girder Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
Stress by PS
Stress by DL1
Stress by DL2
Stress by DL3
Stress by DW
Stress by LL
Deck slab Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
Trang 1302 Calculation I-Beam_I25.7m.xls【Checking 2_1】
SHEET NO : 2 / 3
5.3 Checking sectional stress (22TCN272-05, 5.9.4.2)
1.Checking stress due to : Ps + DL1 + DL2 + DL3 + DW + LL
if f b, f t <0 then |f b | or |F t |< [ f 3 ] ⇒ OK
if f b, f t > 0 then |f b |, |F t |< [f 4 ] ⇒ OK
Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
2.Checking stress due to: Ps + DL1 + DL2 + DL3 + DW
if f b, f t <0 then |f b | or |F t |< [ f 1 ] ⇒ OK
if f b, f t > 0 then |f b |, |F t |< [f 4 ] ⇒ OK
Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
3.Checking stress due to: 1/2 (DL1 + DL2 + DL3 + DL4 +Ps) + LL
if f b, f t <0 then |f b | or |F t |< [ f 2 ] ⇒ OK
Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
-30.00
-20.00
-10.00
0.00
10.00
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000
Length of girder
-20.00
-15.00
-10.00
-5.00
0.00
5.00
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000
Length of girder
Stress sevice II
Seri es1 Seri es2
-20.00
-15.00
-10.00-5.00
0.00
5.00
10.00
15.00
20.00
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000
Stress sevice III
Seri es1 Seri es2 Seri es3
Trang 1402 Calculation I-Beam_I25.7m.xls【Checking 2_1】
SHEET NO : 3 / 3
4.Checking stress in prestessing tendon due to: DL1 + DL2 + DL3 + DL4 +Ps + LL
If f s < [ f 5 ] ⇒ OK
f s = f pt + n t *M/W
W , A : Bending modulus and Area of transform section
PS, DL1, DL2 checking with noncomposite section
DL3, DW checking with composite section
fpt : stress in prestress tendon after total loss
W , A : Bending modulus and Area of transform section
Item Unit Section - 1 Section - 2 Section - 3 Section - 4 Section - 5
Note:
if stress value is negative is fibre compress
if stress value is positive is fibre tension
Trang 1502 Calculation I-Beam_I25.7m.xls【Checking 2_2】
SHEET NO : 1 / 2
5.3 Checking Flexural Resistance (22TCN272-05, 5.7.3.2.2)
η*Mu < Mr ⇒ OK
M r = ϕ*M n
M n = A ps *f ps *(d p - a/2) + A s *f y *(d s - a/2) - A' s *f' y *(d' s - a/2) + 0.85*f' c (b - b w )* β 1 *h f *(a/2 - h f /2)
a = c* β 1
c = (A ps *f pu + A s *f y - A' s *f' y ) / (0.85*f' c * β 1 *b + k*A ps *f pu /d p )
f ps = f pu *(1 - k*c/d p )
k=2*(1.04-f py /f pu )
Unit Section 1 Section 2 Section3 Section 4 Section 5 Load combination 1.25*(DL1 + DL2 + DL3) + 1.5*DW + 1.75*LL Mu N.mm 0 1,708,126,547 3,180,200,031 5,497,984,599 7,284,837,267
Distance from extreme compressive fibre to centroid of
Distance from extreme compressive fibre to centroid of
Distance from extreme compressive fibre to centroid of
Distance from extreme compressive fibre to the Neutral
Average stress in Prestress steel at nominal bending