Nghiên cứu các tính chất điện và cơ của SAW trên đế áp điện phổ biến hiện nay, LiNO3, và vật liệu CMOS, AlN, khi có tác động của chất lỏng như mật độ, độ nhớt và chuyển động trong các k
Trang 1vi lỏng có cấu trúc SAW đứng trên vật liệu AIN
Bùi Thu Hằng
Đại học Công nghệ Ngành: Kỹ thuật điện tử; Mã số: 60 52 70 Người hướng dẫn: TS Vũ Huy Thông, MBA Hà Nguyên
Năm bảo vệ: 2013
Abstract: Trình bày các thành phần và đặc tính truyền sóng của SAW hoạt
động trong môi trường lỏng và điều kiện truyền giữa hai môi trường Nghiên cứu các tính chất điện và cơ của SAW trên đế áp điện phổ biến hiện nay, LiNO3, và vật liệu CMOS, AlN, khi có tác động của chất lỏng như mật độ,
độ nhớt và chuyển động trong các kênh cảm biến Bộ cảm biến SAW cho ứng dụng vi lỏng Khả năng tích hợp trong ứng dụng cảm biến mực
Keywords: Bộ cảm biến vi lỏng; Kỹ thuật điện tử
Content
Trang 2Bui Thu Hang Page 1
TABLE OF CONTENT
GLOSSARY 3
ACKOWNLEDGEMENTS 4
LISTS OF TABLES 5
LISTS OF FIGURES 6
Chapter 1 Introduction 8
1.1 Motivation and Objectives 8
1.2 Organization of Thesis 9
Chapter 2 Theoretical Analysis of the AlN-based Microfluidic Sensor 12
2.1 Introduction 12
2.2 Surface Acoustic Waves 13
2.2.1 Shear Horizontal Surface Acoustic Waves (SH-SAWs) 13
2.2.2 Rayleigh Surface Acoustic Waves (R-SAWs) 14
2.3 Propagation of Acoustic Waves in contact with a Liquid Medium 16
2.3.1 Boundary Conditions 19
2.3.2 Standing and Linear Motion Medium 19
2.3.3 Moving Liquid Medium 20
2.4 Equivalent Circuit Model of SAW Devices 21
2.4.1 Model Implementation 21
2.4.2 Frequency Response 22
2.4.3 Attenuation 22
2.5 Conclusion 23
Chapter 3 3-D Design of AlN-based Microfluidic Sensor 24
3.1 General Description 24
3.2 Design Principles 25
3.3 FEM Simulation for AlN-based Microfluidic Sensor 29
3.3.1 General Configuration 29
3.3.2 Lithium Niobate 30
3.3.3 Aluminium Nitride 33
Trang 3Bui Thu Hang Page 2
3.4 Masks designed 35
Chapter 4 Results and Discussion 38
4.1 General Description 38
4.2 Density and viscosity 38
4.2.1 Lithium Niobate Crystal 38
4.2.2 Aluminium Nitride Crystal 43
4.3 Sensing Liquid Status 45
4.3.1 Constant Velocity 45
4.3.2 Non-constant Velocity 49
4.4 Conclusion 53
Chapter 5 Conclusions and Future Work 54
5.1 Conclusions 54
5.2 Future work 54
Reference 56
Appendix: Material Parameters for Piezoelectric Substrate 59
A Lithium Niobate 59
B Aluminium Nitride 59
Trang 4Bui Thu Hang Page 56
eference
[1] Leslie Y Y and James R F., “Ultrafast microfluidics using surface acoustic
waves”, Biomicrofluidics, 2009, 3(1): 012002
[2] Subhas C M., Gourab S G., Yueh-Min R H., “Recent Advances in Sensing
Technology”, Springer 2009, ISBN 978-3-642-00577-0
[3] Aisha Q., James R F and Leslie Y Y., “Investigation of SAW Atomization”,
2009 IEEE International Ultrasonics Symposium Proceedings, pp 787-790
[4] Rohan V R., James R F and Leslie Y Yeo, “Particle concentration via
acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies”, Microfluid Nanofluid (2010) 8:73–84
[5] Aisha Q., Leslie Y Y and James R F., “Interfacial destabilization and
atomization driven by surface acoustic waves”, Physics of Fluids 20, 074103
[6] D Morgan, “Surface Acoustic Wave Filters”, Elsevier, New York (1985)
[7] D S Ballantine, R M White, S J Martin, A J Ricco and E T Zellers, G
C Frye and H Wohltjen, “Acoustic wave sensors – Theory, Design and
Physico – Chemical Applications”, Academic Press, 1997
[8] Cleland A.N., “Foundations of Nanomechanics From Solid-State Theory to
Device Applications”, Springer 2002, ISBN 3540436618
[9] Ferrari V and Lucklum R , “Piezoelectric Transducers and Applications”,
Ed A Arnau Vives, ISBN: 978-3-540-77507-2, 2008, Chapter 2
[10] Tung B D., Thu-Hang B., Dat N T and Trinh C D., “R-SAW Analysis on
Single-Crystal AlN Substrate for Liquid Sensors”, ICEMA 2012, pp 13-18
[11] Ying C., “Piezoelectricity in zinc oxide-based multilayer structures for sensor
applications”, New Brunswisk, New Jersey, Doctoral thesis 2008
[12] Thu-Hang B., Tung B D., Dat N T and Trinh C D., “Attenuation
Coefficient for Surface Acoustic Waves in Fluid Region”, VJM2012, Vol 34,
No 4, pp 225-236
[13] Gavignet E., Ballandras S and Bigler E., “Theoretical analysis of surface
transverse waves propagating on a piezoelectric substrate under shallow groove
Trang 5Bui Thu Hang Page 57
6233
[14] Thu-Hang B., Dat N T., Tung B D and Trinh C D., “3-D Finite Element
Modeling of SAW sensing system for liquids”, The 2012 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, pp 782-787
[15] Shiokawa S and Kondoh J., “Surface acoustic wave sensor for liquid-phase
application”, 1999 IEEE ULTRASONICS SYMPOSIUM, pp 445-452
[16] Thomas H H., Chapter 5 Surface Waves
[17] Campell J J and Jones W R., “A method for estimating optimal crystal cuts
and propagation directions for excitation of piezoelectric substrate waves”,
IEEE Trans on Sonics and Ultrasonics, vol SU-15, No 4, 1968
[18] Wilson W C and Atkinson G M., “Rapid SAW sensor development tools” [19] W Richard Smith, H M Gerard, J H Collins and T M Reeder, “Analysis
of Interdigital surface acoustic wave transducers by use of an equivalent circuit model”, IEEE Tran on Microwave theory and Techniques, vol MIT-17, No 11,
1969
[20] H Trang, “Design and realization of SAW pressure sensor using Aluminum Nitride”, thesis 2009, Uni Joseph Fourier-Grenoble I Sciences Technologie Sante
[21] A Takayanagi, K Yamanouchi and K Shibayama, “Piezoelectric leaky
[22] K Yamanouchi and M Takeuchi, “Application for piezoelectric leaky
surface waves”, Ultrasonics Symposium, pp 11-18(1990)
[23] S Tonami, A Nishikata and Y Shimizu, “Characteristics of leaky surface
Phys., Part 1, Vol 34, No 5B, 2664-2667(1995)
[24] J Semmlow, “Signals and systems for bioengineers”, Elsevier Inc ISBN:
978-0-12-384982-3, http://www.elsevierdirect.com, 2nd Edition, 2011
Trang 6Bui Thu Hang Page 58
[25] K Shin and J K Hammond, “Fundamentals of signal processing for sound
and vibration engineers”, John Wiley & Sons Ltd, ISBN-13 978-0470-51188-6,
2008
[26] G Zhang, “Orientation of Piezoelectric Crystals and Acoustic Wave
Propagation”, 2012 COMSOL Conference
[27] J G Gualtiei, J A Kosinski and A Ballato, “Piezoelectric materials for
acoustic wave applications”, IEEE Tran on Ultrasonics, Ferroelectrics and
Frequency control, vol 41, No 1, 1994
[28] G Bu, D Ciplys and M S Shur, L J Schowalter and S B Schujman,
“Leaky Surface Acoustic Waves in single-Crystal AlN Substrate”, International
J of High Speed Electronics and Sys., Vol 14, No 3, pp 837-846, 2004