1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes

9 93 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 853,82 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Introduction Soil salinity is one of the most important abiotic stress problems which inhibit growth and reduces productivity of crops including rice, tomato, chili and potato especially

Trang 1

jo u r n al h om e p a g e :w w w e l s e v i e r d e / j p l p h

Noppawan Nounjana, Phan Tuan Nghiab, Piyada Theerakulpisuta,∗

a Genomics and Proteomics Research Group for Improvement of Salt-tolerant Rice, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

b Key Laboratory of Enzyme and Protein Technology, Faculty of Biology, Hanoi University of Science, Hanoi, Viet Nam

a r t i c l e i n f o

Article history:

Received 17 August 2011

Received in revised form 11 January 2012

Accepted 11 January 2012

Keywords:

Antioxidant enzymes

Proline

Rice

Salt stress

Trehalose

a b s t r a c t

Proline(Pro)andTrehalose(Tre)functionascompatiblesolutesandareupregulatedinplantsunder abioticstress.Theyplayanosmoprotectiveroleinphysiologicalresponses,enablingtheplantstobetter toleratetheadverseeffectsofabioticstress.WeinvestigatedtheeffectofexogenousProandTre(10mM)

inseedlingsofThaiaromaticrice(cv.KDML105;salt-sensitive)duringsaltstressandsubsequent recov-ery.Saltstress(S,NaCl)resultedingrowthreduction,increaseintheNa+/K+ratio,increaseinProleveland up-regulationofProsynthesisgenes(pyrroline-5-carboxylatesynthetase,P5CS;pyrroline-5-carboxylate reductase,P5CR)aswellasaccumulationofhydrogenperoxide(H2O2),increasedactivityof antioxida-tiveenzymes(superoxidedismutase,SOD;peroxidase,POX;ascorbateperoxidase,APX;catalase,CAT) andtranscriptup-regulationofgenesencodingantioxidantenzymes(Cu/ZnSOD,MnSOD,CytAPX,CatC) Undersaltstress,exogenousPro(PS;Pro+NaCl)reducedtheNa+/K+ratio,furtherincreasedendogenous ProandtranscriptlevelsofP5CSandP5CR,butdecreasedtheactivityofthefourantioxidantenzymes Thetranscriptionofgenesencodingseveralantioxidantenzymeswasupregulated.ExogenousTre(TS; Tre+NaCl)alsoreducedtheNa+/K+ratioandstronglydecreasedendogenousPro.TranscriptionofP5CS andP5CRwasupregulated,theactivitiesofSODandPOXdecreased,theactivityofAPXincreasedandthe transcriptionofallantioxidantenzymegenesupregulated.Althoughexogenousosmoprotectantsdidnot alleviategrowthinhibitionduringsaltstress,theyexhibitedapronouncedbeneficialeffectduring recov-eryperiodshowinghigherpercentageofgrowthrecoveryinPS(162.38%)andTS(98.43%)comparedwith

S(3.68%).Duringrecovery,plantstreatedwithPSshowedamuchgreaterreductioninendogenousPro thanNaCl-treated(S)orTre-treatedplants(TS).IncreaseinCATactivitywasmostrelatedtosignificant reductioninH2O2,particularlyinthecaseofPS-treatedplants.AdvantageouseffectsofProwerealso associatedwithincreaseinAPXactivityduringrecovery

© 2012 Elsevier GmbH All rights reserved

Abbreviations: APX, ascorbate peroxidase; C, nutrient solution without Pro/Tre

and NaCl; CAT, catalase; GB, glycinebetaine; GSA, glutamate semialdehyde; H 2 O 2 ,

hydrogen peroxide; KDML105, Oryza sativa cv Khao Dawk Mali 105; P, 10 mM

Pro; P5C, pyrroline-5-carboxylate; P5CDH, pyrroline-5-carboxylate dehydrogenase;

P5CR, pyrroline-5-carboxylate reductase; P5CS, pyrroline-5-carboxylatesynthetase;

PDH, proline dehydrogenase; POX, peroxidase; Pro, proline; PS, 10 mM Pro plus

100 mM NaCl; S, 100 mM NaCl; sqRT-PCR, semi-quantitative reverse

transcriptase-polymerase chain reaction; SOD, superoxide dismutase; T, 10 mM Tre; T6P,

Tre-6-phosphate; TPP, Tre-6-phosphate phosphatase; TPS, Tre-6-phosphate

syn-thase; Tre, trehalose; TS, 10 mM Tre plus 100 mM NaCl.

∗ Corresponding author Tel.: +66 43 342908; fax: +66 43 364169;

mobile: +66 89 6231777.

E-mail addresses: 5150200091@stdmail.kku.ac.th (N Nounjan), phantn@fpt.vn

(P.T Nghia), piythe@kku.ac.th (P Theerakulpisut).

Introduction

Soil salinity is one of the most important abiotic stress problems which inhibit growth and reduces productivity of crops including rice, tomato, chili and potato especially in drier parts of many countries around the globe In Thailand, 62% (6.08×106tons/ha) of rice-growing areas are located in the Northeastern part of the country, but due to water short-age and soil salinity problems arising from the presence of underground salt domes, rice productivity from this area has been relatively low In the year 2010, rice productivity from theNortheastwas2×103tons/hacomparedto3.3×103tons/ha fromthecentralplainwhichhardlyexperienceswatershortage and has nosaline soils(ThaiRice Exporters Association, 2011;

http://www.thairiceexporters.or.th/production.htm)

Saltstressarisesfromthecombinationofosmoticandion toxi-cityeffect(primaryeffect),andoxidativestress(secondaryeffect) 0176-1617/$ – see front matter © 2012 Elsevier GmbH All rights reserved.

Trang 2

theability oftheplanttotakeupwaterthusleading toslower

growth.Secondarily,abuildupoftoxiclevelofNa+ andCl− and

inhibitionofK+uptakeseverelyinhibitsseveralenzymesrequiring

K+ascofactorsleadingtoawholerangeofmetabolicimpairment

(Munnsetal.,2006).Undersalinitystress,anincreaseinthe

biosyn-thesisof compatible solutes suchas Pro (Pro), ectoine, glycine

betaine,sorbitolandTre(Tre)protectscellsagainsthyperosmotic

stress.Thehighconcentrationofcompatiblesolutesisableto

bal-ancetheconcentrationofsaltsoutsidethecellononeside,and

ontheother,tocounteract thehighconcentrationsof Na+ and

Cl−inthevacuole(TürkanandDemiral,2009).Undersalinityand

otherabioticstressesplantscangeneratereactiveoxygenspecies

(ROS)suchassuperoxideanion(O2•−),singletoxygen(1O2)and

hydrogenperoxide(H2O2).TheseROSarestronglyreactivebecause

theycaninteractwithessentialmacromoleculesandmetabolites

causingcellulardamage.Inordertoprotectcellsandtissuefrom

oxidative damage plants must produce non-enzymatic

antioxi-dantssuchasglutathione and ascorbate aswellas antioxidant

enzymesincludingperoxidase(POX;EC1.11.1.7),superoxide

dis-mutase(SOD;EC1.15.1.1),ascorbateperoxidase(APX;EC1.11.1.1)

andcatalase(CAT;EC1.11.1.6)todefendagainstoxidativestress

(Ashraf,2009)

Proisthemostcommonosmolyteaccumulatinginplants in

responsetovariousstressconditions.Itoffersawiderangeof

pro-tectiverolesincludingosmoticadjustment,stabilizerforcellular

structureandreductionofdamagetothephotosynthetic

appara-tus.ThelevelofProaccumulationinplantsvariesfromspeciesto

species.TheimportanceofProinenhancingplantstresstolerance

hasrecently beensubstantiatedthrougha transgenicapproach

TransgenicriceexpressingtheP5CSgenefrommothbeanshowed

anenhancedaccumulationofP5CSmRNAlevel,Procontentand

highertolerancetodroughtandsaltstress(SuandWu,2004)

Treisanon-reducingdisaccharidefoundinmanyorganisms

It is an essential component of the mechanisms that

coordi-natemetabolismwithplantgrowthadaptationanddevelopment

(Paul,2007).Treaccumulationinfluencesthealterationofsugar

metabolism leading to an osmoprotectant effect under stress

(Djilianovetal.,2005).IntransgenicricewhichreceivedtheotsA

andotsBgenes(TPSandTPPinhigherplant)fromEscherichiacoli,

Treaccumulated3–10foldhigherwhencomparedtothewildtype

andoverproductionofTreincreasedtolerancetoabioticstresses

(Gargetal.,2002).Geetal.(2008)demonstratedthatOsTPP1

over-expressioninriceenhancedtolerancetosaltandcoldstress

Exogenousosmoprotectantshavebeenreportedtohave

osmo-protectiverolesinabioticstressresponseandhavebeensuggested

asan alternative approach toimprove cropproductivity under

salineconditions(Nakayamaetal.,2005).Exogenousapplication

ofProhasbeenreportedtoofferbeneficialeffectstoplantsunder

stressconditions(AshrafandFoolad,2007).Forexample,intobacco

undersaltstress,addingexogenousProtocellsuspensionculture

alleviatedtheeffectofsaltstressandincreasedtheactivitiesof

antioxidantenzymes(Hoqueetal.,2007).Moreover,exogenousPro

decreasedproteincarbonylationandenhancedantioxidantdefense

andmethylglyoxaldetoxificationsystems(Hoqueetal.,2008)

Pre-treatmentofmaizewith10mMTrerelievedthedamagingeffects

ofsalinitystressonthemetabolicpathwayssuchasHill-reaction

activity,photosyntheticpigmentsandnucleicacidscontent(Zeid,

2009).Trepretreatmentofwinterwheatprotectedthylakoid

mem-branesfromheatdamage,maintainedcellmembraneintegrityand

reducedROSaccumulationfromheatstress(Luoetal.,2010)

Thaiaromatic rice(cv.KDML105) isa well-known

economi-callyimportantThaicultivarhighlyrecognizedintheinternational

market(knownasThaiHomMaliRice)astheworld’sbestquality

aromaticrice.However,KDML105issensitivetosaltstress,

espe-ciallyduringtheseedlingstage,givinglowyieldandpoorgrain

millingqualitywhenitisgrownundersalinesoils(Gregorioetal., 1997; Summartet al., 2010).The aimof this workwas totest theeffects ofexogenous Proand Treonphysiologicalresponses

inseedlingsofKDML105duringsaltstressandrecoveryperiod Fewreportshaveaddressedtheeffectsoftheseosmoprotectants

onmodificationofphysiologicalresponsesduringsaltstressinrice Thisworkprovidesadditionalinformationontherolesof exoge-nously appliedosmoprotectants in modifyingresponses of rice duringsalinitystressaswellasduringtherecoveryperiod

Materials and methods

Plantmaterialsandtreatments Seedsofrice(OryzasativaL.cv.KDML105)weregerminatedin distilledwaterfor5datroomtemperature(RT),andthen trans-ferredtoplastic chamberscontainingYoshida solution(Yoshida

etal.,1976)undernaturalsunlightinagreenhousefor28d dur-ingwhichthesolutionswererenewedevery4d.Theplantswere thendividedintosixtreatmentgroupsbyadditionofthefollowing solutionsintoYoshidasolutionfor6d asfollows:Yoshida solu-tionwithoutPro/TreandNaCl(C),100mMNaCl(S),10mMPro(P),

10mMProplus100mMNaCl(PS),10mMTre(T)and10mMTre plus100mMNaCl(TS).Theuseof10mMProandTrewasbasedon thepreviousreportofGarciaetal.(1997)andapreliminary exper-imentinourlaboratory(unpublisheddata,2006).Theexperiment wassetupaccordingtoacompletelyrandomizeddesignwith5 replications.After6dtreatmenttheplantswerethenallowedto recoverfor5dbyreplacingthetreatmentsolutionswithYoshida solution.Riceplantswereharvestedtwice;thefirst,afterthe6d stressedperiodandthesecond,afterthe5drecoveryperiod.Plants wereanalyzedforfreshanddryweights,Na+/K+ionconcentration, Proaccumulation,H2O2content,totalprotein,activityof antioxi-dantenzymes(POX,SOD,APXandCAT)andgeneexpression(genes encodingProsynthesisandantioxidantenzymes)

Growthparametersandionconcentration Plantfreshweightwasdeterminedandthentheplantswere driedinahot-airovenat70◦Cfor4–5duntilthedryweightwas sta-bilized.Thedriedplantmaterialsweregroundtofinepowder.Dried samples(0.1g)weresubjectedtochemicalanalysesbydigesting

in10mLofnitricacidat300◦C,5mLperchloricacidat200◦Cand

20mLof6Mhydrochloricacid.TheconcentrationofNaandKions wereanalyzedusinganAtomicAbsorptionSpectrometer(Model GBC932AAA,England)

DeterminationofProandH2O2content ThemethoddescribedbyBatesetal.(1973)wasappliedto quan-tifyPro content.Briefly, leafsamples(0.1g)werehomogenized

in5mLof3%sulfosalicylicacidthenfiltered.TwomLoffiltrate wasmixedwith2mLof ninhydrinreagent(1.25gninhydrinin

30mLglacialaceticacidand20mL6Mphosphoricacid)and2mL

ofglacialaceticacid.Thereactionmixturewasheatedat100◦C for1handthenplacedonicefor20minbeforebeingextracted with4mLoftoluene.Theabsorbanceoftheredchromophorein thetoluenefractionwasmeasuredat520nmandtheamountof prolinewasdeterminedbycomparisonwithastandardcurve.For measurementofH2O2,leaftissues(0.1g)werehomogenizedwith

1mLof0.1% (w/v)trichloroaceticacid(TCA)andcentrifugedat 12,000×gfor15min.Thesupernatant(0.5mL)wasaddedto0.5mL

of10mMpotassium phosphatebuffer(pH7.0)and1mLof1M potassiumiodide.TheabsorbanceofH O wasdeterminedusinga

Trang 3

fromastandardcurve(Velikovaetal.,2000)

Determinationoftotalproteinandantioxidantenzymeactivities

Leafsamples(0.5g)werehomogenizedina10mMpotassium

phosphate buffer (pH 7.0) containing 4% polyvinyl pyrrolidone

(PVP),thehomogenateswerecentrifugedat12,000×gat4◦Cfor

15min,andthesupernatantswereimmediatelyusedfor

determi-nationofenzymeactivity.Totalproteinwasdeterminedbythe

Bradfordmethod(Bradford,1976).A20␮Laliquotofthe

super-natantwasmixedwith980␮LofBradfordreagent(BioRad)andthe

absorbancewasreadat595nm.Proteinconcentrationwas

quan-tifiedbycomparisonwithastandard curveusingbovineserum

albumin

ForSOD,theactivitywasassayedbyitsabilitytoinhibit

pho-tochemicalreduction ofnitrobluetetrazolium chloride(NBT)at

560nm.Thereactionmixture(3mL)contained50mMpotassium

phosphatebuffer(pH7.8),13mMmethionine,75␮MNBT,0.1mM

EDTAand0.05mLofenzymeextract.Thereactionstartedwhen

adding2␮Mriboflavin,themixturewasincubatedunder

fluores-centlampsfor10minthenkeptinthedarktostopthereaction.The

absorbanceofthemixturewasmeasuredat560nm.Thereaction

mixturewithnoenzymedevelopedmaximumcolordueto

maxi-mumrateofreductionofNBT.OneunitofSODwasdeterminedas

theamountofenzymethatinhibits50%NBTphotoreduction.The

activitywasexpressedasunitmin−1mg−1protein(Beuchampand

Fridovich,1971;Dhindsaetal.,1981)

ForthePOXassay,thereactionmixture(3mL)contained10mM

potassiumphosphatebuffer(pH7.0),0.2%ofguaiacoland0.04mL

ofenzymesextract.Thereactionwasthenaddedwith3mMof

H2O2andincubatedatRTfor5min,theabsorbancewasthen

mea-suredat470nm.TheactivityofPOXwascalculatedfromtherate

offormationofguaiacoldehydrogenationproduct(GDHP)using

theextinctioncoefficientof26.6mM−1cm−1,andtheactivitywas

expressed as ␮mol GDHP min−1mg−1 protein (Velikova et al.,

2000)

TheactivityofAPXwasdeterminedusingareactionmixture

(3mL)containing0.5mMascorbicacid,0.1mMEDTAand0.1mL

of enzyme extract The reaction started when adding H2O2 to

a finalconcentrationof 1.5mM.The absorbanceofthemixture

wasmeasuredat290nm.TheAPXactivitywascalculatedusing

theextinctioncoefficientof2.8mM−1cm−1andtheactivitywas

expressedas␮molascorbateoxidizedmin−1mg−1protein(Nakano

andAsada,1980)

Theactivity of CATwasassayed in a 3mL reactionmixture

containing10mMpotassiumphosphatebuffer(pH7.0),0.1mLof

enzymeextractand0.035%ofH2O2.TheactivityofCATwas

cal-culatedbased ontherateof disappearanceofH2O2 whichwas

followedasadeclineintheabsorbanceat240nmmeasuredat2

and4minaftertheadditionofH2O2.Theactivitywascalculated

usingtheextinctioncoefficientof40mM−1cm−1,andexpressed

asH2O2reducedmin−1mg−1protein(Velikovaetal.,2000)

Geneexpressionanalysis

Total RNA of rice leaf tissues (0.03g) was extracted using

anRNA isolation kit (SVTotal RNAisolation system,Promega)

Contaminated DNA was removed by DNaseI treatment (RQ1

RNase-Free DNase, Promega) Total RNA was quantified by

UV–visspectrophotometer(NanoDrop,ThermoFisherScientific)

Gene expression was analyzed using semiquantitative reverse

transcriptase-polymerasechainreaction(sqRT-PCR).First-strand

cDNAwassynthesizedfrom0.72␮gtotalRNAbyRevertAidTMFirst

StrandcDNASynthesisKit(Fermentas)using0.5␮g/␮Loligo(dT)18

primerat42◦Cfor60min.Thesecondstepamplificationreactions

for expressionanalysisofP5CS,Cu/ZnSOD,MnSOD,CytAPX,CatC and actin were performed using published primer sequences (Kimetal.,2003,2007).PrimersforanalysisofP5CRexpression was designed based on O sativa Japonica Group mRNAunder accession number NM001051928, using GeneFisher software (http://bibiserv.techfak.uni-bielefeld.de).Theforwardandreverse primer sequenceswere5–3 TTCAGCTGTTGGACAAGCAGCAand

5–3GGTTCCTGCCGGGGAAGTGA,respectively,whichamplifieda PCRproductof317bp.ThetotalreactionofPCRwas25␮L(iTaqTM

DNA polymerase kit), containing 0.2␮L of cDNA template for each sample Thecycling steps includeda pre-denaturationfor

4min at94◦C, 30–35cyclesfor amplification(denaturation for

40sat94◦C,annealingfor45sat60–62◦C,extensionfor30sat

72◦C)andafinalextensionfor7minat72◦C.ThePCRproducts were separated on a 1.5% (w/v) agarose gel then stained with SYBR®Gold(Invitrogen)and observedonaUV transilluminator TherelativequantificationofmRNAlevelwascalculatedbyusing PhotoCaptMWsoftware,version10(VilberLourmat)

Statisticalanalysis Allresultswerepresentedasmeans±SD.Thesignificanceof differencesbetweenthemeanvalueswasdeterminedbyANOVA ThePvaluesmallerorequalto0.05wasconsideredasstatistically significant

Results

Growthparametersandionconcentration Aftertheplants weretreated for6d,mean freshweightfor saltstressed(S,PSandTS),compatiblesolutetreatments(Pand T)andcontrolplants(C)weredetermined.Nosignificant differ-encesbetweenCandP,SandT,PSandTSwereobserved(Fig.1A) However,plantfreshweightsofbothSandTtreatmentswere sig-nificantlyhigherthanthoseundersaltstressedsuppliedwithPro (PS)andTre(TS).After5drecoveryfromstress,freshweightsofall treatmentgroupsweresignificantlyincreased:83.39%inC,46.22%

inP,93.05%inT,162.38%inPSand98.44%inTS,exceptSwhich showedaslightincreaseof3.68%.Freshweightafterrecoveryofthe

C,PandPSgroupswerehighestfollowedbyT,TSandS,respectively

A similartrendwasobserved forplant dryweight (Fig.1B), thesupplementofProandTredidnotimproveplantdryweight understress.After5d recoveryfromstress,meansofplantdry weightwereincreasedupto81.05%,78.35%and40.78%fornon salt-stressedgroups(C,PandT).Inplantswhichexperiencedsalt treatments,dryweightswereincreased25.33%,78.31%and53.16%

inS,PSandTS,respectively

Sixdaysafterthetreatmentwithosmoprotectants,Na+/K+ratios

inC,PandTweremuchlowerthanthoseinsaltstressedplants(S,

PSandTS)asshowninFig.2.Procausedasmallreduction,whereas TreledtosignificantincreaseinNa+/K+ratioswhencomparedwith thecontrol.Insalt-stressedgroups,supplementationwithPro(PS) andTre(TS)ledtoareductioninNa+/K+ratiocomparedwiththe onestreatedwithonlyNaCl(S),buttheeffectwasmorepronounced withPro.Fivedaysafterrecoveryfromstress,Na+/K+ratiosinS,

PSandTSdecreased,althoughnotsignificantlydifferent,fromthe valuesonday6afterstress

ProaccumulationandgeneexpressionofP5CSandP5CRduring salt-stressandafterrecovery

AsshowninFig.3A,aftertheplantsreceivedthetreatmentsfor

6d,Procontentinalltreatmentgroupsweresignificantlydifferent Generally,plantsundersaltstressaccumulatedahighProlevel PlantstreatedwithbothProplusNaCl(PS)showedthehighestPro content,morethanthosetreatedwithNaCl(S)andTreplusNaCl

Trang 4

Fig 1. The effect of NaCl (S), Pro (P), Tre (T), NaCl and Pro (PS) and NaCl and Tre (TS) on fresh (A) and dry (B) weight of rice after 6 d salt-stress treatment (dark bars) and after 5 d recovery (light bars) C, control The values showed means ± SD Different small letters for the dark shaded bars and capital letters for the light shaded bars indicated that the means are significantly different (P ≤ 0.05) The asterisk (*) indicates the significant difference (P ≤ 0.05) in the mean values between 6 d after salt stress and 5 d after recovery.

(TS).TheamountofProinPSwas2.0foldthatofSand4.2fold

thatofTS.InthegroupswithoutNaCl(C,PandT),theapplication

ofPro(P)dramaticallyenhancedProaccumulationinplants(7.9

foldcomparedwiththecontroland11.4foldcomparedwithplants

suppliedwithTre).TheexpressionlevelsofP5CSandP5CRgenes

(Fig.3B)inresponsetoalltreatments(exceptPforP5CR)followed

similarpatternsofchangeinProaccumulation(Fig.3A)

Afterrecoveryfromsaltstress,Proaccumulationwasmarkedly

decreased,exceptintheplantstreatedwithTS.Thereductionwas

verymarkedwithexogenousProtreatmentsi.e.12.29and11.08

foldinPandPScomparedto1.69and2.43inCandS.Incontrast,

exogenousTredidnotaffectProcontentinTandcausedaslight

increaseinTS(1.17foldincrease).ThetranscriptlevelsofP5CSinS,

P,PSandTdecreasedinaccordancewiththereductioninPro

con-tent.ThelevelofP5CSexpressioninTS,however,wasnotconsistent

withthechangeinProcontent.IncontrasttoP5CS,theexpression

levelofP5CRforS,PandPSincreasedwhichdidnotcoincidewith

thereductioninPro

Antioxidativedefenseandexpressionofgenesencoding

antioxidantenzymesduringsalt-stressandafterrecovery

TheeffectsofsaltstressandexogenousProandTreonthe

activ-ityofantioxidantenzymesduringsalt-stressandafterrecovery

Fig 2.The effect of NaCl (S), Pro (P), Tre (T), NaCl and Pro (PS) and NaCl and Tre

(TS) on ratio between Na + and K + in rice leaves after 6 d salt-stress treatment (dark

bars) and after 5 d recovery (light bars) C, control The values showed means ± SD.

Different small letters for the dark shaded bars and capital letters for the light shaded

bars indicated that the means are significantly different (P ≤ 0.05) The asterisk (*)

indicates the significant difference (P ≤ 0.05) in the mean values between 6 d after

Fig 3.The effect of NaCl (S), Pro (P), Tre (T), NaCl and Pro (PS) and NaCl and Tre (TS) on Pro content and expression of Pro synthesis genes (A) Free Pro content in rice leaves after 6 d of salt treatment (dark bars) and after 5 d of recovery (light bars) The values showed means ± SD Different small letters for the dark bars and capital letters for the light bars indicated that the means are significantly different (P ≤ 0.05) The asterisk (*) indicates the significant difference (P ≤ 0.05) in the mean values between 6 d after salt stress and 5 d after recovery (B) and (C) Expression, using sqRT-PCR, of P5CS and P5CR, in rice leaves on day 6 after salt stress and day

5 after recovery The product of RT-PCR of rice actin gene was used as a loading control The histogram shows relative abundance of cDNA from P5CS or P5CR after normalization with the actin signal The experiment was repeated at least three times.

Trang 5

Fig 4.The effect of NaCl (S), Pro (P), Tre (T), NaCl and Pro (PS) and NaCl and Tre (TS) on (A) H 2 O 2 content, (B) POX activity, (C) SOD activity, (D) APX activity and (E) CAT activity in rice leaves after 6 d salt-stress treatment (dark bars) and after 5 d recovery (light bars) C, control The values showed means ± SD Different small letters for the dark bars and capital letters for the light bars indicated that the means are significantly different (P ≤ 0.05) The asterisk (*) indicates the significant difference (P ≤ 0.05) in the mean values between 6 d after salt stress and 5 d after recovery.

areshowninFig.4.Undersaltstress,theproductionofH2O2was

significantlyincreased.TheH2O2 contentinriceplantssupplied

withexogenous Pro(PS)and Tre(TS)were2 and 1.5fold that

of stressed plants without osmoprotectants (S) Among groups

withoutNaCl(C,PandT),theplantssuppliedwithTrealone(T)

producedthehighestH2O2content.Duringrecoveryperiod,H2O2

contentdecreasedinplantspreviouslytreatedwithNaCl(37.39%

inS,34.94%inPSand21.14%inTS).ForCandP,theH2O2content

remained the same Conversely, significant reduction of H2O2

contentwasobservedinT

TheSODandPOXactivitiesshowedsimilarpatternsofresponse

after the6d salt stress period Under salt stress conditions (S,

PS and TS), SOD and POX activities were markedly enhanced

when compared to groups with only exogenous

osmoprotec-tants (P and T) The highest SOD and POX activities were

observed in plants exposed to NaCl (S) In non-NaCl groups,

theplants added withPro alone (P) expressedthelowest SOD

activity The lowest POX activity was observed in rice treated

with either exogenous Pro (P) or Tre (T) During the

recov-ery period, activities of these enzymes significantly decreased

in almost all treatments, but in the case of plants previously

supplied with Pro (P), theSOD and POX activitiessignificantly increased

TheactivitiesofAPXand CATpresentedsimilargeneral pat-ternsofresponsestosaltandosmoprotectants.Underthesaltstress treatment,KDML105plantsexternallysuppliedwithTre(TS)had thehighestAPXactivity[1.8foldcomparedtoplantsreceivingNaCl only(S)and2.6foldcomparedwithplantssuppliedwithPro(PS) respectively].Inresponsetosaltstress,CATactivitywas signifi-cantlyincreasedinplantssuppliedwithNaClonly(S)and NaCl plusTre(TS),whiletheactivityinPSplantswasthelowest ForplantsreceivingosmoprotectantswithoutNaCl;Pro(P)had

noeffectonAPXactivitycomparedtothecontrol(C),whereasTre (T)significantlysuppressedtheactivityofthisenzyme.Exogenous Pro(P)orTre(T)hadnoeffectonCATactivity.Aftertheplants wereallowedtorecoverfromsaltstressfor5d,theactivitiesof APXandCATincreasedinalltreatments(exceptforthecaseofAPX activityinS).PlantspreviouslysuppliedwithProundersaltstress (PS)showedextremelyhighAPXandCATactivities.APXactivity

inPSincreased5foldcomparedtoSand1.4foldcomparedtoTS Likewise,CATactivityinPSincreased1.8foldcomparedtoSand 1.9foldcomparedtoTS

Trang 6

Fig 5.Expression of genes encoding antioxidative enzymes (Cu/ZnSOD, MnSOD, CytAPX and CatC) monitored in rice leaves after 6 d of salt treatment (A) and after 5 d of recovery (B) The product of RT-PCR of rice actin gene was used as loading control The histogram shows relative abundance of cDNA from each gene after normalization with the actin signal The experiment was repeated at least three times.

TheexpressionpatternsofgenesencodingenzymesCu/ZnSOD,

MnSOD,CytAPXandCatCareshowninFig.5.At6dafterstress,the

expressionofCu/ZnSOD,MnSOD,CytAPXandCatCinalltreatments

withthepresenceofsalts(S,PSandTS)weremarkedlyenhanced

comparedtothecontrol.ForplantstreatedwithProwithout

salt-stress(P),theexpressionofallgeneswassuppressed.Tre

supple-ment,ontheotherhand,resultedingeneup-regulation,especially

Cu/ZnSOD,inbothunstressed(T)andsalt-stressed(TS)conditions

Aftertheplants wereallowedtorecoverfor5d,plants

pre-viouslystressedwithsalt (S)showeda slightrepression inthe

expressionof Cu/ZnSODand CytAPX,but smallup-regulation of

MnSODandCatC.Theexpressionofthesegenesinnon-stressed

plantspreviouslysuppliedwithPro(P)wasaslowasduringstress

TheexpressionlevelofallgenesinthePSgroupwashighlysimilar

tothatofS.ForplantspreviouslytreatedwithTrewithout(T)and

withsalt(TS),theexpressionofallgeneswasconsiderablyreduced

Discussion

EffectsofexogenousProandTreonfreshanddryweights,and

Na+/K+ratio

Sodium chloride in the nutrient solution inhibited growth

resultinginthereductioninfreshand dryweightsofKDML105

seedlings Adding Pro and Treinto salinenutrient solution did notpresentanybeneficialeffectsongrowth.Yamadaetal.(2005)

reportedthatexogenousPro(0,5,10and50mM)stronglyinhibited growthandacceleratedleafsenescenceofArabidopsisandpetunia ThetoxicityofProwasfoundtobemediatedbyP5Caccumulation

intheProdegradationpathway(Hellmannetal.,2000).Ourresults correspondwiththesefindings.Plantgrowthinthesolutionwith combinedNaClandPro(PS)wassuppressedpresumablynotonly

byNaClstressbutalsobyPro

TheeffectofTreongrowthinhibitionwasfoundinKDML105 plantsfedwithTrealone(T).SeedlingsofArabidopsisculturedin

MSmediumsupplementedwith100mMTrefailedtodevelop pri-maryleavesandprimaryroots(Aghdasietal.,2010).Schluepmann

etal.(2004)summarizedthatexogenouslysuppliedTreresultedin T6Paccumulationwhichisagrowthinhibitor.Althoughexogenous ProandTredidnotclearlyshowprotectiverolesduringthe salt-stressperiod,theyobviouslyfurnishedtheplantswithenhanced abilitytorecoverascompared withstressedplantswithoutthe osmoprotectants

Amongthemostcommoneffectsofsalinityisgrowthinhibition

byaccumulationofNa+andreductioninK+uptakeandtheratio

ofNa+toK+showedaninverserelationshipwithgrowth(Gregorio andSenadhira,1993).ExogenousProshowedhigherabilitythan TreinalleviatingtheinhibitoryeffectofsaltbyreducingNa+uptake

Trang 7

resultinginlowervaluesofNa+/K+ (Fig.2).Similareffectswere

observedbySobahanetal.(2009)thatexogenousProandGB

sup-pressedNa+ uptakeandaccumulationwhileK+contentwasnot

affectedresultinginlowerNa+/K+ratioinriceplants.Inaddition,

themitigatingeffectsofexogenousProandGBonNa+/K+ratiowere

observedinsalt-sensitivefreshmarkettomato(Heuer,2003)

EffectsofexogenousProandTreonProaccumulationand

expressionP5CSandP5CRgenes

Theeffects Proand TreonPro accumulationandexpression

ofgenesintheProsynthesispathway(P5CSandP5CR)by

sqRT-PCRwereinvestigatedafter6dsaltstressand5drecovery.Plants

treatedwithNaCl(S)accumulated5.53foldhigherProthanthe

control.Luttsetal.(1999)demonstratedthatthesalt-sensitiverice

accumulatedhigherlevelsofNa+ andProthanthesalt-resistant

rice and concluded that accumulationof Pro is related to

salt-stressinjury.ThesefindingsareconsistentwithVaidyanathanetal

(2003)andTheerakulpisutetal.(2005)thatsalt-sensitiverice

cul-tivarsshowedhighergrowthinhibitionandaccumulatedgreater

amountsofPro thanthetolerantonesandconcludedthat high

Prolevelsinsensitivecultivarsdidnotaffordmuchprotection.The

resultsfromthepresentstudyindicatedthatover-accumulationof

Proinriceseedlingsdidnotofferplantprotectionbutwasoneof

theconsequencesofmetabolicperturbationtriggeredbysaltstress

ElevatedamountsofProinplantstreatedwithexogenousPro

alone(P) andNaClplusexogenous Pro(PS)compared withthe

StreatmentcanprobablybeattributedtopassiveProuptakeas

suggestedbyHeuer(2003)inhydroponicallygrowntomatoplants

treatedwith1and10mMPro.Similarresultswerealsoobserved

byHuangetal.(2009)whensalt-sensitivecucumberplantswere

sprayedwith25mMPro.Conversely,supplementswithTre

neg-ativelyaffectedProamountsinbothunstressedandsalt-stressed

conditionsresultinginasignificantreductioninPro.Exogenous

TrealsoreducedProaccumulationintwomaizecultivarsunder

drought stresswhile increasing biomass production, improving

plant water relations and some key photosynthetic attributes

(AliandAshraf,2011).Consideringprofoundmitigatingeffectsof

exogenousTreonrice(Garciaetal.,1997)andprotectiverolesof

enhancedproductionofTreintransgenicrice(Geetal.,2008),it

maybepresumedinthiscasethatosmoprotectiveeffectsofTre

reducedtheneedforplantstoaccumulatePro

TranscriptionlevelsofbothPro-synthesizinggenes,P5CSand

P5CR,werestronglyinducedundersaltstress(S)coincidingwith

severalfoldincreaseinPro(Fig.3B).Severalauthorsdetermined

thattheexpressionoftheP5CSgeneisrelatedtoProaccumulation

undersaltstressinrice(Hienetal.,2003;Kimetal.,2007).Although

P5CRdoesnotcatalyzearatelimitingstep,P5CRgeneexpression

is up-regulatedundersalt stressin someplantspecies suchas

soybean(DelauneyandVerma,1990)andArabidopsis(Verbruggen

etal.,1993),whilethedataregardingexpressionofP5CRinriceare

scanty

Proapplicationtoplantswithoutsaltstress(P)showed

consid-erablyhighercontentofProbutP5CStranscriptswereonlyslightly

induced,andthatofP5CRwasclearlysuppressed.ExogenousPro

intheabsenceofNaCldidnothavenegativeeffectsongrowthand

Na+/K+ratio,andaslighteffectonH2O2accumulation.Ontheother

hand,acombinationofProandsalt(PS)exacerbatedtheeffectof

saltleadingtoexcessiveProaccumulation(Fig.3A)inassociation

withenhancedexpressionofP5CSandP5CR,plantweightreduction

(Fig.1)andH2O2over-accumulation(Fig.4A)comparedtoplants

stressedwithNaClalone(S).DespitetheessentialfunctionsofPro

inprimarymetabolismandstressresponse,excessiveamountsof

ProcausedtheP5Ctoincreasetoatoxiclevelandalsoelevated

theflowofelectronsthroughthemitochondrialelectrontransport

chainleadingtoconcomitantgenerationofROS(Milleretal.,2009)

Afterrecoveryfromsaltstress,markeddecreaseinPro accu-mulationwasobservedinalltreatmentsexceptTS.Thisdeclinein Prowasalsofoundincotton(Paridaetal.,2008)andwas asso-ciatedwithadown-regulationinthetranscriptionlevelofP5CS ThisresultwassimilartothatofPengetal.(1996)whofoundthat AtP5CStranscriptlevelsinArabidopsisdeclinedduringtherecovery fromsalinitystress.Ontheotherhand,theexpressionlevelofP5CR wasupregulatedinalmostalltreatments.However,up-regulation

ofP5CRwasnotrelatedtoProaccumulation.Theresultsregarding P5CRexpression,wereinlinewiththoseofTrovatoetal.(2008)

that declinein Proafter saltstressrecovery wasnotrelated to P5CRexpressionbutinsteadcloselyassociatedwithup-regulation

ofPDH(Milleretal.,2005)

EffectofexogenousProandTreonH2O2,antioxidantenzymes activityandexpressionofrelatedgenes

Increase in H2O2 content in response to salt stress in rice waspreviouslyreported(LinandKao,2001;Vaidyanathanetal.,

2003).SOD activity considerably increased under salt stress to convertO2•− toH2O2 whichisconsequentlydetoxifiedbyPOX, APX and CAT Despite the considerable increase in activity of thefourantioxidativeenzymes(SOD,POX,APXandCAT),H2O2

content was significantly higher in S compared to C (Fig 4) Although a regulatedamount of increased ROS in response to abiotic stress plays an essential role in adjusting the cellular redoxstateandregulatorygeneexpressionassociatedwithstress responsestooptimizedefenseandsurvival,excessiveROSdueto imbalancebetweenthedetoxificationprocessandROSgeneration ultimatelyleadstocellulardamageandgrowthinhibition(Shao

etal.,2008)

ExogenousProplusNaCl(PS)ledtoloweractivityofSOD,POX, APXandCATinplantscomparedtoScorrespondingtoadramatic riseinH2O2inPS.Thesuppressionofantioxidativeenzyme activ-ityunderstressconditionsbyanexternalsupplyofProwasalso foundforSODin Salviaofficinalis underUV-Bstress(Radyukina

etal.,2011)andforSOD andCATingrapevineunderoxidative stress(Ozdenetal.,2009).Incucumberundersaltstress supple-mentedwithexogenousPro,therewasadeclineinSODactivity butanincreaseinPOX(Huangetal.,2009).AddingTretoplants withoutsaltstress(T)significantlyreducedtheactivityofPOXand APX,relatingtomuchhigherlevelofH2O2comparedtoC Expo-sureofTrecombinedwithNaCl(TS)didnotaffectCATactivity, markedlyreducedtheactivitiesofSODandPOXbutenhancedthat

ofAPX.However,increasedactivityofAPXalonewasnotenough

toefficientlyremoveH2O2resultinginasignificantlyhigherlevel

ofH2O2inTSthanS.Incontrast,AliandAshraf(2011)foundthat foliarapplicationofTresignificantlyincreasedPOXandCAT SaltstressinducesexpressionofCu/ZnSODandMnSODto sim-ilar extents Thisis in agreement with Kaminaka et al (1999)

who presented thatMnSOD and Cu/ZnSODgenes werestrongly enhancedbydroughtandsalinity.Yu-zhuoetal.(2008)illustrated thatCu/ZnSODisafirstcellulardefenseenzymetoscavengeO2 •−

andaccountedformostofthetotalSODactivity.Inwheat,Sairam

etal.(2005)showedthattheactivitiesofCu/ZnSODandMnSOD werestrongly enhanced and responsible forsalt tolerance The activityofFeSOD,ontheotherhand,wasextremelylow, insen-sitivetosalt stressanddidnot contributetothescavengingof salinityinducedROS.ItwasfoundthattheexpressionofaFeSOD geneencodingchloroplast-specificSODisoformfromKDML105in saltstresstreatmentwasverylow(datanotshown).Exogenous ProorTrecombinedwithNaClalsoup-regulatedtheexpression

of Cu/ZnSODandMnSOD but intheabsenceof NaClexogenous ProstronglysuppressedwhereasTreenhancedtheexpressionof Cu/ZnSODandMnSOD

Trang 8

The increase in CytAPX transcription and APX activity of

KDML105inresponsetosaltstresscorrespondedwiththatfound

byHongetal.(2007)fortheOsAPX8geneinriceinresponseto

NaCl.Theactivityof CATintheKDML105 leafincreased

corre-spondingtoanelevationoftranscriptlevelofCatC;theleaf-specific

isoform,asearlierdetectedinricebyKimetal.(2007).Similartothe

effectsonexpressionofCu/ZnSODandMnSODdescribed,external

supplyofProorTreundersaltstressalsoup-regulatedthe

expres-sionofCytAPXandCatCbutintheabsenceofNaClexogenousPro

suppressedwhereasTreenhancedtheexpressionofCytAPXand

CatC

Notably,5dafterrecoveryfromstress,thedeclineinH2O2 in

alltreatmentgroups,exceptP,wasrelateddirectlytosignificant

increaseinCATactivity.However,SODandPOXactivityinall

treat-mentgroupsdecreased appreciably,exceptinthecaseofplants

previouslytreatedwithProwithoutNaCl(P).Patternofchanges

inAPXactivitywassimilartothatofCATactivity(exceptforS)

ThissuggestedthatthereductionofH2O2afterthestressdepended

largelyontheincreasedCATandAPXactivities.Thisagreedwith

thefindingsbyLeeetal.(2001)thatCATactivityincreased

cor-respondingtothereductioninH2O2whereasSOD,POXandAPX

activitiesdecreasedduringrecoveryfromsaltstressinrice

Inter-estingly,plantswhichpreviouslyexperiencedbothProandNaCl

(PS),showedextremely highactivityof APXand CAT.Afterthe

plantswererelievedfromstress,thetranscriptlevelsofCu/ZnSOD,

MnSOD,CytAPXandCatCinalltreatmentgroupsweregenerally

down-regulatedor remainedstablecompared withthecontrol

PlantspreviouslytreatedwithProwithoutNaCl(P)stillshoweda

lowlevelofgeneexpression.Onthecontrary,whileplants

receiv-ingTretreatmentalone(T)showedastrongup-regulationofgene

expressionduringstress,theydisplayedanotabledeclinein

tran-scriptlevelsofallgenesafterrecovery

Inthisstudy,thechangesintranscriptlevelsofgenes

encod-ingantioxidantenzymesinmostcasesdidnotcoincidewiththe

increase/decreaseinactivitiesofthecorrespondingenzymes

Sim-ilarly,Hernándezetal.(2000)showedthatlong-termsaltstress

inducedtranscriptlevelsofantioxidantenzymesgenes,but this

inductionwasnotcorrelatedwiththecorrespondingchangesin

theenzymeactivities.Thisdiscrepancymayresultfromahigher

turnoveroftheseenzymesand/oranincreaseoftheirinactivation

byH2O2(Scandalios,1993)

Thedataobtainedinthisworkwasinconsistentwiththe

find-ingsofHoqueetal.(2007)andGerdakanehet al.(2010)which

reportedthatexogenousProshowedprotectiverolesin

alleviat-ingsaltstress.Thismaybebecauseinthispresentstudytherice

plantswerehydroponicallygrownundernaturalconditions,while

thecellculturesystemswereusedintheearlierreports.Garciaetal

(1997)alsofoundthepositiverolesofexogenousTreonreversing

theadverseeffectsofsaltstressinricegrowninthetissueculture

system.However,ourresultsshowedthatexogenousapplication

ofProandTrepromotedastrongerabilityofplantstorecoverfrom

stress

Therolesandmechanismsofactionofexogenous

osmoprotec-tantsarecomplexandremaincontroversial.Thebeneficialeffects

of external supply of osmoprotectants vary dependingon

sev-eralconditionsincludingplantspecies,developmentalstages,the

severityanddurationofsaltstress.Theeffectivenessofthe

osmo-protectantsalsodependsonwhethertheyareappliedpriortoor

duringstress,methodsofapplicationandtheconcentrationsofthe

osmoprotectants.AvailablereportsinriceinvolvedtheuseofGB

andPro,thereforeitisworthexploringtheeffectsofother

osmo-protectantssuchasTre,sorbitolandectoine.Commercialprospects

ofenhancingstresstolerancein ricebyexogenous

osmoprotec-tantswarrantsfurtherin-depthresearchinthisareatogainabetter

understandingofthemechanismofactionwhichcanbeapplicable

toimprovecropproductioninstressfulenvironments

Acknowledgements

ThisworkwasfinanciallysupportedbytheTRFMasterResearch Grant(WII-MRG525S056),KhonKaenUniversityResearchGrantto theGenomicsandProteomicsResearchGroupforImprovementof Salt-tolerantRice,andtheGraduateSchool,KhonKaenUniversity

WewishtothankProf.Dr.DonaldC.Slack,theUniversityofArizona, Tuscon,Arizona,USA,forproofreadingthemanuscript

References

Aghdasi M, Schluepmann H, Smeekens S Characterization of Arabidopsis seedlings growth and development under trehalose feeding J Cell Mol Res 2010;2:1–9 Ali Q, Ashraf M Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defense mechanism J Agron Crop Sci 2011;197:258–71.

Ashraf M Biotechnological approach of improving plant salt tolerance using antiox-idants as markers Biotechnol Adv 2009;27:84–93.

Ashraf M, Foolad MR Roles of glycine betaine and proline in improving plant abiotic stress resistance Environ Exp Bot 2007;59:206–16.

Bates LS, Waldren RP, Teare ID Rapid determination of free proline for water-stress studies Plant Soil 1973;39:205–7.

Beuchamp C, Fridovich I Superoxide dismutase: improved assays and an assay applicable to acrylamide gels Anal Biochem 1971;44:276–87.

Bradford M A rapid and sensitive method for the quantitation of microgram quan-tities of protein utilizing the principle of protein–dye binding Anal Biochem 1976;72:248–54.

Delauney AJ, Verma DPS A soybean  1 -pyrroline-5-carboxylate reductase gene was isolated by functional complementation in E coli and is found to be osmoregu-lated Mol Gen Genet 1990;221:299–305.

Dhindsa RS, Plumb-Dhindsa P, Thorpe TA Leaf senescence: correlation with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase J Exp Bot 1981;32:93–101.

Djilianov D, Georgieva T, Moyankova D, Atanassov A, Shinozaki K, Smeeken SCM,

et al Improved abiotic stress tolerance in plant by accumulation of osmopro-tectants gene transfer approach Biotechnol Biotechnol Eq 2005;19:63–71 Garcia AB, Engler JA, Iyer S, Cerats T, Montagu MV, Caplan AB Effects of osmopro-tectants upon NaCl stress in rice Plant Physiol 1997;11:159–69.

Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, et al Trehalose accu-mulation in rice plants confers high tolerance levels to different abiotic stresses Proc Natl Acad Sci USA 2002;99:15898–903.

Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results

in the activation of stress responsive genes Planta 2008;228:191–201 Gerdakaneh M, Mozafari AA, Khalighi A, Sioseh-Mardah A The effects of exoge-nous proline and osmotic stress on morphology and biochemical parameters of strawberry callus Afr J Biotechnol 2010;9:3775–9.

Gregorio GB, Senadhira D Genetic analysis of salinity tolerance in rice Theor Appl Genet 1993;86:333–8.

Gregorio GB, Senadhira D, Mendoza RD Screening rice for salinity tolerance IRRI Discussion Paper Series 22 Manila: International Rice Research Institute; 1997 Hellmann H, Funck D, Rentsch D, Frommer WB Hypersensitivity of an Arabidop-sis sugar signaling mutant toward exogenous proline application Plant Physiol 2000;123:779–90.

Hernández JA, Jimenez A, Mullineaux PM, Sevilla F Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defense Plant Cell Environ 2000;23:853–62.

Heuer B Influence of exogenous application of proline and glycinebetaine on growth

of salt-stressed tomato plants Plant Sci 2003;165:693–9.

Hien DT, Jacobs M, Angenon G, Hermans C, Thu TT, Son LV, et al Proline accumulation and  1 -pyrroline-5-carboxylate synthetase gene properties in three rice culti-vars differing in salinity and drought tolerance Plant Sci 2003;165:1059–68 Hong CY, Hsuv YT, Tsai YC, Kao CH Expression of ascorbate peroxidase 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl J Exp Bot 2007;58:3273–83 Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y Exogenous proline mitigates the detrimental effects of salt stress more than exoge-nous betaine by increasing antioxidant enzyme activities J Plant Physiol 2007;164:553–61.

Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y Proline and glycinebe-taine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells J Plant Physiol 2008;165:813–24.

Huang Y, Bie Z, Liu Z, Ai Z, Wang W Protective role of proline against salt stress

is partially related to the improvement of water status and peroxidase enzyme activity in cucumber Soil Sci Plant Nutr 2009;55:698–704.

Kaminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K Differential gene expres-sions of rice superoxide dismutase isoforms to oxidative and environmental stresses Free Radic Res 1999;31:219–25.

Kim RA, Nam HY, Kim SU, Kim SI, Chang YJ Normalization of reverse tran-scription quantitative-PCR with housekeeping genes in rice Biotechnol Lett

Trang 9

Kim DW, Shibato J, Agrawal GK, Fujihara S, Iwahashi H, Kim DH, et al Gene

tran-scription in the leaves of rice undergoing salt-induced morphological changes

(Oryza sativa L.) Mol Cell 2007;24:45–59.

Lee DH, Kim YS, Lee CB The inductive responses of the antioxidant enzymes by salt

stress in the rice (Oryza sativa L.) J Plant Physiol 2001;158:737–45.

Lin CC, Kao CH Cell wall peroxidase activity, hydrogen peroxide level and

NaCl-inhibited root growth of rice seedlings Plant Soil 2001;230:135–43.

Luo Y, Li F, Wang GP, Yang XH, Wang W Exogenously-supplied trehalose protects

thylakoid membranes of winter wheat from heat-induced damage Biol

Plan-tarum 2010;54:495–501.

Lutts S, Majerus V, Kinet JM NaCl effects on proline metabolism in rice (Oryza sativa)

seedlings Physiol Plant 1999;105:450–8.

Miller G, Stein H, Honig A, Kapulnik Y, Zilberstein A Responsive modes of Medicago

sativa proline dehydrogenase genes during salt stress and recovery dictate free

proline accumulation Planta 2005;222:70–9.

Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A Unraveling  1

-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of

proline oxidation enzymes J Biol Chem 2009;284:26482–92.

Munns R, James AJ, Läuchli A Approaches to increasing the salt tolerance of wheat

and other cereals J Exp Bot 2006;57:1025–43.

Nakano Y, Asada K Spinach chloroplasts scavenge hydrogen peroxide on

illumina-tion Plant Cell Physiol 1980;21:1295–307.

Nakayama H, Horie T, Yonamine I, Shinmyo A, Yoshida K Improving salt tolerance

in plant cells Plant Biotechnol 2005;22:477–87.

Ozden M, Demirel U, Kahraman A Effects of proline on antioxidant system in leaves

of grapevine (Vitis vinifera L.) exposed to oxidative stress by H 2 O 2 Sci Hortic

2009;119:163–8.

Parida AK, Dagaonkar VS, Phalak MS, Aurangabadkar LP Differential responses of the

enzymes involved in proline biosynthesis and degradation in drought tolerant

and sensitive cotton genotypes during drought stress and recovery Acta Physiol

Plant 2008;30:619–27.

Paul M Trehalose 6-phosphate Curr Opin Plant Biol 2007;10:303–9.

Peng Z, Lu Q, Verma DPS Reciprocal regulation of  1 -pyrroline-5-carboxylate

syn-thetase and proline dehydrogenase genes controls proline levels during and after

osmotic stress in plants Mol Gen Genet 1996;253:334–41.

Radyukina NL, Shashukova AL, Makarova SS, Kuznetsov VIV Exogenous proline

modifies differential expression of superoxide dismutase genes in

UV-B-irradiated Salvia officinalis plants Russ J Plant Physiol 2011;58:51–9.

Sairam V, Srivastava GC, Agarwal S, Meena RC Differences in antioxidant activity

in response to salinity stress in tolerant and susceptible wheat genotypes Biol

Plantarum 2005;49:85–91.

Scandalios JG Oxygen stress and superoxide dismutases Plant Physiol

1993;101:7–12.

Schluepmann H, Dijken AV, Aghdasi M, Wobbes B, Paul M, Smeekens S Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation Plant Physiol 2004;135:879–90.

Shao BH, Chu LY, Lu ZH, Kang CM Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells Int J Biol Sci 2008;4:8–14 Sobahan MA, Arias CR, Okuma E, Shimoishi Y, Nakamura Y, Hirai Y, et al Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na(+) uptake in rice seedlings Biosci Biotechnol Biochem 2009;73:2037–42.

Su J, Wu R Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis Plant Sci 2004;166:941–8.

Summart J, Thanonkeo P, Panichajakul S, Prathepha P, McManus MT Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture Afr J Biotechnol 2010;9:145–52 Thai Rice Exporters Association 2011; http://www.thairiceexporters.or.th/ production.htm

Theerakulpisut P, Bunnag S, Kong-Ngern K Genetic diversity, salinity tolerance and physiological responses to NaCl of six rice (Oryza sativa L.) cultivars Asian J Plant Sci 2005;4:562–73.

Trovato M, Mattioli R, Costantino P Multiple roles of proline in plant stress tolerance and development Rendiconti Lincei 2008;19:325–46.

Türkan I, Demiral T Recent developments in understanding salinity tolerance Env-iron Exp Bot 2009;67:2–9.

Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and -sensitive varieties Plant Sci 2003;165:1411–8.

Velikova V, Yordanov I, Edreva A Oxidative stress and some antioxidant system in acid rain-treated bean plants: protective roles of exogenous polyamines Plant Sci 2000;151:59–66.

Verbruggen N, Villarroel R, Van Montagu M Osmoregulation of pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana Plant Physiol 1993;103:771–81.

Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K,

et al Effects of free proline accumulation in petunias under drought stress J Exp Bot 2005;56:1975–81.

Yoshida S, Forno DA, Cock JH, Gomez KA Laboratory manual for physiological studies

of rice Manila: International Rice Research Institute; 1976.

Yu-zhuo A, Ye-jie D, Yuan-gang Z, Zhi-gang A Inhibition effect of expression of Cu/Zn superoxide dismutase from rice on synthesis of glutathione in Saccharomyces cerevisiae J Forest Res 2008;19:63–6.

Zeid IM Trehalose as osmoprotectant for maize under salinity-induced stress Res J Agric Biol Sci 2009;5:613–22.

Ngày đăng: 16/12/2017, 14:55

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm