1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution

8 168 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 1,94 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Optical macrograph of the cylindrical porous NiTi alloy sample.thecorrosionresistanceofporousNiTialloysdecreasedwhenthe porosityofthealloyincreasedfrom50.2%to60.4%.. A schematic diagram

Trang 1

Electrochimica Acta 56 (2011) 6389– 6396

j o ur na l h o me p ag e :w w w e l s e v i e r c o m / l o c a t e / e l e c t a c t a

A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution

a School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

b School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China

c MEMS Center, Harbin Institute of Technology, Harbin 150001, China

a r t i c l e i n f o

Article history:

Received 12 October 2010

Received in revised form 4 May 2011

Accepted 6 May 2011

Available online 13 May 2011

Keywords:

Porous NiTi alloy

Porous electrode

Corrosion behavior

Potential distribution

Interconnectivity

a b s t r a c t

© 2011 Elsevier Ltd All rights reserved

1 Introduction

Inrecentdecades,porousNiTishapememoryalloyshavedrawn

agreatdealofattentionasoneofthepromisingbiomaterialsfor

orthopedicimplantsandhard-tissuereplacementsbecauseofthe

combinedvirtueoftheshapememoryeffect,superelasticityand

adjustablemechanicalproperties,inparticularthetailoredpore

structureofpromotingtissuein-growth[1,2]

However,thehighnickelcontentoftheNiTialloysmightresult

inpotentiallynegativeeffectsonthesurroundingtissueby

induc-ing allergic responses [3,4] It has been reported that Ni ions

releasedduetothecorrosionprocesscanmaintainhighlevelsfor

upto8weeksorevenforseveralmonths[5,6].Inparticular,

com-paredwithconventionaldenseNiTialloys,thecomplexinterface

structureandlargerexposedsurfaceareasofporousNiTialloys

posea moreseriousissuewithregardtoleachingof Ni[7–10],

whichindicatestheneedforabetterunderstandingofthecorrosion

behaviorofporousNiTialloys

Thecorrosionofmetalimplantsinthehumanbodyisprimarily

drivenbyelectrochemicalreactions.Consequently,

electrochem-icaltestshavebeenusedtoevaluatethecorrosionresistanceof

NiTialloys[7–13].Incontrastwiththedenseelectrode,theporous

electrodegenerallysuffersfromnon-uniformpotential

distribu-∗ Corresponding author Tel.: +86 20 22236396; fax: +86 20 22236393.

E-mail address: mexzhang@scut.edu.cn (X.P Zhang).

tionbecauseoftheohmicpotentialdropandtheconcentration decayoftheelectroactivespecies[14–20].Itisknownthattherole

ofpotentialdistributioninsidecavitiesorrecessesinametal sur-faceisquiteimportanttoitscrevicecorrosionandpittingcorrosion behavior,sincethepotentialdistributionhasastrongeffectonthe distributionofcathodicandanodicreactionsatvariousdistances intothecavityorrecess[21,22].Thus,theelectrodepotential dis-tributionshouldbeanimportantconsiderationinunderstanding theelectrochemicalcorrosionbehaviorofporousNiTialloy Furthermore,theelectrochemicalreactionisessentiallya het-erogeneouselectrontransferreactionoccurringata solid-liquid interface.Thethree-dimensionalnatureoftheporousNiTialloys significantlyincreasestheinterfacialstructurecomplexity.A previ-ousstudy[23]hasshownthatthesinteredporoustitaniumwitha higherporosityratioundergoesmorecorrosionthandoesasample withalowporositybecauseofthelargerrealsurfacearea.However, theunsinteredsample(i.e.,thegreensampleofcoldcompacted titaniumpowder)withahigherporosityratio(producedunderlow compactionpressure)experiencedlesscorrosionthantheonewith

alow porosity(producedunderhighcompactionpressure).The discrepancywasrelatedtotheporecharacteristicsoftheporous titanium

Currently,therearemanypublishedresultsonthecorrosion behaviorofdenseNiTialloys[7–11],whileonlyverylimitedstudies havebeenpublishedonthecorrosioncharacteristicsofporousNiTi alloys.Inapreviousstudy,porousNiTialloysweredeterminedtobe lesscorrosionresistantthanthedenseNiTialloys[24].Additionally, 0013-4686/$ – see front matter © 2011 Elsevier Ltd All rights reserved.

Trang 2

Fig 1. Optical macrograph of the cylindrical porous NiTi alloy sample.

thecorrosionresistanceofporousNiTialloysdecreasedwhenthe

porosityofthealloyincreasedfrom50.2%to60.4%

Thepresentstudyaimedtoclarifytheinfluencesoftheelectrode

potentialdistributionwithintheporeand thepore

characteris-ticsonthecorrosion behavior of theporousNiTialloys during

electrochemicaltests; thiswasaccomplishedthrougha

system-aticcomparisonofthecorrosioncharacteristicsoftheporousand

denseNiTialloys.BoththeporousNiTialloysampleswith

poros-ityrangingfrom35.5%to63.8%andthedenseNiTialloysamples

havingthesamenominalatomiccompositionastheporous

sam-pleswereprepared,andtheircorrosioncharacteristicsina0.9%

aqueousNaClsolutionat37◦Cwereinvestigated

2 Experimental

2.1 PreparationofporousanddenseNiTialloysamples

TheporousNiTialloysampleswerefabricatedbyapore-forming

technique and powder metallurgy method using a high-purity

ammoniumbicarbonate(NH4HCO3)powderanda blendof

ele-mentaltitaniumandnickelpowderswithanominalatomicratio

of50.8at.%Nito49.2at.%Ti[25–27].Theporecharacteristicsand

porosityratiosoftheNiTialloysamplesweretailoredbyadjusting

theamountofNH4HCO3powderaddedtothesamples.Fig.1shows

anopticalmacrographof theporousNiTialloysample

Dimen-sionsof thecylindricalsamplesare 14–15mmindiameter and

10–20mminheight.Therewerefourtypesofsampleswith

poros-ityratiosof35.5%,44.9%,55.8%and63.8%,respectively,andhad

averageporesizesofapproximately100–200␮m

ThegeneralporosityoftheporousNiTialloysamples,P,canbe

calculatedbythefollowingequation:

P(%)=

0V



wheremandVarethemassandvolumeoftheporoussamples,

respectively,and0 isthetheoreticaldensityof NiTialloy(i.e.,

6.45g/cm3forthebulknear-equiatomicNiTialloy)

Foracomparativestudy,thedenseNiTialloywaspreparedin

anon-consumablevacuumarc-meltingfurnace.Inthepreparation

process,theelementaltitaniumandnickelpowders,withthesame

nominalcompositionastheporoussample(i.e.,Ni50.8at.%–Ti

49.2at.%),wereblendedandcoldpressedintogreencompactswith

ageometryof15× 10(diameter×length,mm).Thegreensample

wasfirstsmeltedandthenremeltedfivetimesinanon-consumable

Fig 2. A schematic diagram of porous and dense NiTi alloy samples for electro-chemical tests.

vacuumarc-meltingfurnacewiththeprotectionofargonunder normalpressure.Finally,themoltensamplewasfurnace-cooled andadenseNiTialloyingot(nearlyahemi-sphere,withabase diameterof18mmandaheightof6mm)wasobtainedfor

follow-upstudies

2.2 Samplepreparationforcorrosiontesting Thecorrosionmayhaveoccurredthroughoutthethicknessof theporousalloy.Toaccurately characterizethecorrosion, both sidesofthesamplewereexaminedasthetestsurface Adense NiTialloyrod(2.0mm diameter)wasusedastheconnect elec-trode,whichwasdirectlyscrewedintothethreadedblindhole

onthecylindricalsideofthetestsample,asshowninFig.2.The severewearanddeformationproducedapore-freetappedhole Therefore,theelectrolytewashardlyincontactwiththescrewed rod.Theedgesoftheworkingelectrodeswerenotcoveredbythe non-conductingresinbecausetheresincouldpenetratetheporous sampleswithdifferentporosities

Thedisc-shapedporousNiTialloysampleswithadiameterof

15mmandathicknessof3mmwerecutfromtheporousNiTialloy rods(as-fabricated)andthedenseNiTialloyingotsbyelectrical dischargemachining

TheexposedsurfacesofboththeporousanddenseNiTialloy sampleswerewellpolished.Thesampleswerethendegreasedwith acetoneinanultrasoniccleanerfor20min,followedbyrinsingin distilledwater.Finally,thedenseNiTisamplesweredriedinair

atroomtemperature;theporoussampleswereplacedinadrying ovenataconstanttemperatureof80◦Cfor4h

2.3 Electrochemicaltestprocedure ElectrochemicalmeasurementswereperformedusingaZahner (modelIM6ex)potentiostat,accordingtotheASTMG5[28];the standardthree-electrodesystemwasadopted.Theworking elec-trodewasaporousor denseNiTialloysample withbothsides exposedtothesolution.Thereferenceelectrodewasasaturated calomel electrode (SCE), which was connected to the working electrodeviaaLuggincapillary,anddoublesymmetricalgraphite electrodeswereusedascounterelectrodes.Thetest electrolyte was0.9wt.%NaCl(analyticalreagent)inde-ionizedwater.Prior

Trang 3

X.T Sun et al / Electrochimica Acta56 (2011) 6389– 6396 6391

Fig 3.Evolution of open circuit potential over time for dense and porous NiTi alloys

in a 0.9% NaCl solution.

toimmersionoftheelectrodes,theelectrolytecellwasheatedtoa

constanttemperatureof37◦Cusingawaterbath

The potentiodynamic polarization tests and electrochemical

impedancespectroscopy(EIS)wereperformed24hafter

immer-sionatopencircuit Potentiodynamiccurves weremeasuredby

scanningthepotentialfrom−0.4Vbelowtheopencircuitpotential

to+1.0Vatascanrateof0.02mV/s.Eachelectrochemical

exper-imentwasrepeatedthreetimeswithafreshspecimenforeach

test.Thecorrosionpotentialandthecorrosioncurrentdensitywere

obtainedthroughTafelapproximation.TheEISmeasurementswere

obtainedusingapolarizationof±10mVinthefrequencyrangeof

100kHzto1mHzand6pointsmeasuringperdecade.EISspectra

wereinterpretedbythesoftwareZSimpWin3.10

2.4 MorphologyofporousNiTialloysamples

TheporefeaturesofthefabricatedNiTialloysampleswere

char-acterizedbyanopticalmicroscope(Leica,DM2500P)andviadigital

imageanalysis.ThesurfacemorphologiesoftheporousNiTi

sam-pleswereexaminedbeforeandaftertheelectrochemicaltestsusing

ascanningelectronmicroscopy(SEMQuanta200,FEI)

3 Results

3.1 Opencircuitpotentialmeasurement

Theopencircuitpotentials(OCP)ofdenseandporousNiTialloys

in0.9%NaClsolutionweremeasuredoveraperiodof24h.Fig.3

presentstheevolutionoftheOCPasafunctionoftime,whereitis

obvioustheOCPofporousNiTialloysexperiencedasharperrateof

changecomparedtothedenseNiTialloys.Inallcases,theporous

NiTialloysexhibitedamorepositiveOCPthandidthedenseNiTi

alloys

3.2 Potentiodynamicpolarizationmeasurements

Thecorrespondingchangesinthebehaviorofthe

potentiody-namicpolarizationoftheNiTialloyswiththestructurevariation

fromdensetoporousareshowninFig.4a,andpresentationofthe

extractedelectrochemicalparametersareshowninFig.4b.Both

thedenseandporousNiTialloysexhibitedatypicalpassiveregion

andwerepittingattackedatthechemicalbreakdownpotential,

wherethecurrentdensitysharplyincreased.Thecorrosioncurrent

densitiesofthedenseandporousNiTialloysseeninFig.4 are

cal-Fig 4. (a) Polarization curves of porous and dense NiTi alloy samples after immers-ing in a 0.9% NaCl solution for 24 h and (b) evolutions of extracted electrochemical parameters from polarization curves with porosity ratio.

culatedfromthegeometricalareaforcomparison(i.e.theapparent area,notnecessarilytherealarea).Thevaluessuggestedthatthe currentdensities(icorr)ofporousNiTialloysweremarkedlyhigher thantheicorrvaluesofthedenseones,andthebreakdown poten-tials(Eb)ofporousNiTialloyswereclearlylowerthantheEbvalues

ofthedensesamples.However,itwasworthnotingthatthe cor-rosionpotentials(Ecorr)ofporousNiTialloysexhibitedapositive shiftbymorethan200mVfromtheEcorrvalueofthedenseNiTi alloy

ThetypicalsurfacemorphologiesoftheporousNiTialloy sam-plespolarizedtoapotentialof1.0Vfrom−1.0Vwereexamined

bySEM,asshowninFig.5.Itwasshownthattheobservedpitting primarilyexistedontheedgeoftheporousNiTialloysamples,as indicatedbythewhitearrowsinFigs.5(b),(d)and(f).Theedge attackmayhavebeenrelatedtoacombinationofgeometryand metallurgicalconditions(e.g.,inclusionstringers[26,27]),which cancomplicate thetest results.However, itwaslikely that the uncertaintiesinthesamplegeometryandmetallurgicalconditions wereconsistentacrossthesamplesand,hence,conclusionsbased

onthecomparisonsbetweenthedamageattheedgesshouldstill

bevalid.Intherepeatedtests,theobserveddamageoftheedgewas reproducible

Inparticular,thecharacteristicsofthesurfacemorphologiesdid notshowanobvioustendencyofdeteriorationofcorrosion resis-tancewithanincreaseintheporosityratio.AsshowninFigs.5(g) and(h),comparedwiththesampleswiththeporosityof35.5%and

Trang 4

Fig 5.Typical SEM surface morphologies of the edge region of disc-shaped porous NiTi alloy samples with different porosity ratios before (a, c, e and g) and after (b, d, f and h) potentiodynamic polarization measurement in a 0.9% NaCl solution, terminated at 0.8 V: (a and b) 35.5%; (c and d) 43.9%; (e and f) 55.8%; and (g and h) 63.8%.

Trang 5

X.T Sun et al / Electrochimica Acta56 (2011) 6389– 6396 6393

Fig 6. Bode spectra for porous and dense NiTi alloys: (a) impedance modulus plot;

and (b) phase angle plot.

43.9%,itwasdifficulttodistinguishthemorphologiesofthesample

withtheporosityof63.8%beforeandafterthepolarizationtest

3.3 Electrochemicalimpedancespectroscopy

ImpedancespectraforporousanddenseNiTialloysamplesafter

immersionina0.9%NaClsolutionat37◦Cfor24harepresentedas

Bodeplots(Fig.6 wherebothporousanddenseNiTialloysamples

exhibitedsimilarspectralfeatures.Acapacitivebehavior,whichis

representedbythephaseangleapproaching−90◦andtypicalofin

passivematerials[7,29],appearedinamediumtolowfrequency

range,Fig.6(b).Thismeantthatapassivefilmhadformedonall

samplesintheelectrolyte,whichwasconsistentwiththepassive

regiondeterminedinthepolarizationtests(Fig.4a)

Thelargephaseanglepeakcouldbeindicativeoftheinteraction

ofatleasttwotimeconstants.Therefore,anequivalentcircuitwas

proposedtomodeltheEISdataobtainedfromboththeporousand

denseNiTialloys,asshownFig.7a.Thismodelwaswidelyaccepted

forTiandTi-richalloysonwhichapassivefilmwithadouble-layer

structurewasformed[7,29,30].Inthemodel,Rsistheresistance

ofthesolution,Rpistheadditionalresistanceofthesolutioninside

thepores,R isthechargetransferresistanceofthebarrierlayer,

Fig 7. (a) Equivalent circuits used for fitting the experimental data and (b and c) experimental results and simulated data for the porous NiTi alloy with a poros-ity of 63.8% and dense NiTi alloy after immersion in a 0.9% NaCl solution for 24 h, respectively.

QpisthecapacitanceoftheporewallandQbisthecapacitanceof thebarrierlayer.Here,Qisthemagnitudeoftheconstant-phase element(CPE),representingadeviationfromtheidealcapacitor, theimpedanceofwhichisdefinedasZCPE=

Y0(jw)n−1

,where

−1≤n≤1.Thevalueofnisassociatedwiththenon-uniform distri-butionofcurrentasaresultofroughnessandsurfacedefects.This wasthecasefortheresultspresentedinthisstudy,wherethen valuesoftheporousNiTialloysamplesrangedfrom0.81to0.87, whilethedenseNiTialloysampleswasapproximately0.94 Theresistance,capacitanceandnvaluesfrommeasurements upontheNiTialloys,extractedusingequivalentcircuitillustrated

inFig.7(a),aretabulatedinTable1.Theimpedanceresultswere

Trang 6

4 Discussion

4.1 Effectofporousstructureonthecorrosionresistanceof

porousNiTialloy

Thecorrosion current density ofthe porousNiTialloy

sam-pleswereabouttwoordersofmagnitudehighercomparedtothe

densesamples.Thecorrespondinglysmallerpassivewindowfor

theporousNiTialloyisalsoclearlyseeninthepolarizationcurves

AssuchtheporousNiTialloywasqualitativelymoresusceptible

topittingcorrosionthanthedenseNiTialloy.Thisistoacertain

extentexpectedfromthelarger‘real’surfacearea.Moreover,itis

knownthatcorrosionresistanceoftheNiTialloyisassociatedwith

theformationoftheresistanttitaniumoxidefilmsonthealloy’s

surface[7,31]

Thesurface-finishquality,theamountoftheresiduesleftonthe

surfaceandthemicrostructuresinhomogeneityoftheporousNiTi

alloywerethecriticalfactorsthataffectedtheformationand

qual-ityoftheoxidefilms.Thesefactorswerestronglyinfluencedbythe

preparationprocessofthealloy.However,thepreparationofthe

porousNiTialloysgenerallyconsistedofcomplex

thermomechan-icalprocesses.Fig.8showstheSEMphotographsofporestructure

forporousNiTialloywiththeporosityratioof55.8%.Thepores

Fig 8.SEM image of pore morphology for porous NiTi alloy formed by the

pore-inanypassivefilms,whichisconsistentwiththeEISresults(The resistancevalueRbofporousNiTialloyisthreeordersofmagnitude lowerthanthatofdenseNiTialloy.)

4.2 Effectofporosityratioonthecorrosionbehaviorofporous NiTialloys

Thechangesinelectrochemicalparametersobtainedfromthe polarizationcurvesandimpedanceresultsoftheporousNiTialloys with increasing porosity ratio are summarized in Table 1 and abridgedintoFig.4b.Itwasdifficulttoidentifyatrendinthese parameterswithvaryingporosityratio.Infact,therealsurfacearea

oftheporousNiTialloysgenerallyincreaseswithincreasing poros-ityratiowithincertainlimits;however, thesurface qualityand structureuniformityoftheporousNiTialloysdoesnotnecessarily getworsewiththeporosityincreasing

Fig.9showstheopticalmicrographsforthepolishedporousNiTi alloysampleswithdifferentporosityratios.Clearly,thereweretwo typesofpores.Thelargeporeswithsizesof100–200␮mare pri-marilyformedbythedecompositionofthespace-holder,NH4HCO3 particles[26,27].Thesmallpores(alsocalledsecondarypores)with sizesbelow10␮mcouldbeattributedtothetrappedresidualsof

NH4HCO3decompositionandthenon-metallicimpuritiesexisting

intherawpowders,aswellasthevolumeshrinkageandthe Kirk-endalldiffusionbetweenNiandTiatoms.Thesmallporesshoweda bettersize-uniformityandamoreuniformdistributionthandidthe largeones.Whentheporosityratioincreased,theinterconnectivity

oflargerporeswasclearlyincreased

Forthesampleswithalowerporosity,themajorityofthepores weretheisolatedsecondarypores(seeFig.9a),whichisunlikely

to have trapped appreciable volumes of solution This caused thesamplesrelativeresistanttoinducedpittingcorrosion.When theporosity ratio increased, theinterconnectivity of the larger poreshadbeenmarkedlyimproved.Theinterconnectedchannels allowedthefreeflowoftheliquidandfewersiteswereavailable

toinducepittingcorrosion.Whentheporosityratioreached63.8%, theporemorphologywasdominatedbywiderandmorehighly interconnectedporestructures(Fig.9d).AsshowninFig.5(g)and (h),therewasnovisibledamageontheedgeofthesample Furthermore,withthechangeofporosityratio,poresize,pore sizedistributionandporeshapeoftheporousNiTialloyschange correspondingly.Itwasdifficulttoprovideacomplete characteri-zationoftheporesbysolelymeasuringthesampleporosity.This alsoaccountedfornoobvioustrendinthecorrosionbehaviorwith thesinglefactorchange

Trang 7

X.T Sun et al / Electrochimica Acta56 (2011) 6389– 6396 6395

Fig 9.Optical micrographs of porous NiTi alloy samples with different porosity ratios: (a) 35.5%; (b) 43.9%; (c) 55.8%; and (d) 63.8%.

4.3 Effectofpotentialdistributiononthecorrosionbehaviorof

porousNiTialloys

FromtheEISresults,theRpvalueofporousNiTialloyswasfour

ordersofmagnitudehighercomparingtothedenseNiTialloys

Thiscanprovethatthetypicalpotentialdistributionexistsonthe

internalporesurfaceasaresultofcurrentflowwithinthepore

electrolyte[22,32].Thetypicalpotentialdistributionfollowsthat

E(x)=E(0)−

 x

0

whereE(x)istheelectrodepotentialatadistancexintothepore,E(0)

isthepotentialattheporeopening,andI(x)andR(x)arethe

magni-tudesrespectivelyofthecurrentflowingatadistancexthroughthe

poreelectrolyteandoftheresistanceoftheelectrolyticpathwithin

thepore[32,33].Sincetheelectrodepotentialvarieswithdistance

xintothepore,therateofmetaldissolutionalsovariesoverthe

internalporesurfaceinaccordwiththepolarizationbehaviorof

themetalunderthelocalelectrochemicalconditions

Intheactiveregionofanodicpolarization,E(x)becamelessnoble

withincreasingdistanceintotheinternalpore,andthustherateof

theNiTialloydissolutionreactiondecreasedwithincreasing

dis-tancex.ThisexplainsthediscrepancythattheporousNiTialloys

withthepoorprotectiveoxidefilmsexhibitedmuchnobler

corro-sionpotentialthanthedenseNiTialloys.Inthepassiveregionof

theanodicpolarization,withtheexternalsurfaceinsidethepore

polarizedintothepassiveregion,E(x)decreasedwithincreasing

dis-tancexandmaybestillintheactiveregion,whichdependsonthe

dimensionsoftheporeandtheelectrochemicalconditions

prevail-ingatthewholeporousstructureofporousNiTialloyelectrode[33]

Thus,thepotentialdistributionisplayingarolethatstrengthensthe

differencesamongthedifferentpartsoftheporousmetalsurface

Thisistheessentialelectrochemicalconditionthatresultsinthe

localizedmetalcorrosion.Therefore,theroleofpotential

distribu-tioninsidetheporeandporousstructureintheelectrochemical

corrosionbehavioroftheporousNiTialloysisanimportantfactor

5 Conclusions

FromthepotentiodynamicpolarizationandEISresults,itwas concludedthattheporousNiTialloywasmoresusceptibleto local-izedcorrosionthanwasthedenseNiTialloy.However,theporous NiTialloysamplewithahigherporositydidnotsufferobviously morecorrosionthantheonewithalowerporosity

Thepotentialdistributionshouldexist ontheporewallasa resultofcurrentflowwithintheporeelectrolyteduringthe elec-trochemicaltests.Therefore,theroleofpotentialdistributioninthe electrochemicalcorrosionbehavioroftheporousNiTialloysisan importantfactor,sincethenon-uniformpotentialdistributioncan strengthenthedifferencesamongthedifferentpartsoftheporous metalsurface

Acknowledgements

ThisresearchwassupportedbytheNationalNaturalScience FoundationofChina(Nos.50871039and51001050),China Post-doctoralScienceFoundation(20100470917)andtheFundamental ResearchFundsfortheCentralUniversitiesallocatedinSouthChina UniversityofTechnology(No.2009ZM0160)

References

[1] A Bansiddhi, T.D Sargeant, S.I Stupp, D.C Dunand, Acta Biomaterialia 4 (2008) 773.

[2] A.C Jones, C.H Arns, D.W Hutmacher, B.K Milthorpe, A.P Sheppard, M.A Knackstedt, Biomaterials 30 (2009) 1440.

[3] D.J Wever, A.G Veldhuizen, M.M Sanders, J.M Schakenraad, J.R Horn, Bioma-terials 18 (1997) 1115.

[4] M Es-Souni, M Es-Souni, H Fischer-Brandies, Analytical and Bioanalytical Chemistry 381 (2005) 557.

[5] H.H Huang, Y.H Chiu, T.H Lee, S.C Wu, H.W Yang, K.H Su, C.C Hsu, Biomate-rials 24 (2003) 3585.

[6] M Cioffi, D Gilliland, G Ceccone, R Chiesa, A Cigada, Acta Biomaterialia 1 (2005) 717.

[7] N Figueira, T.M Silva, M.J Carmezim, J.C.S Fernandes, Electrochimica Acta 54 (2009) 921.

Ngày đăng: 16/12/2017, 11:29

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm