1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: MEAN CONVERGENCE THEOREMS AND WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS OF RANDOM ELEMENTS IN BANACH SPACES

16 118 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 226,57 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

467–482DOI 10.4134/BKMS.2010.47.3.467 MEAN CONVERGENCE THEOREMS AND WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS OF RANDOM ELEMENTS IN BANACH SPACES Le Van Dung and Nguyen Duy Tien Abstr

Trang 1

Bull Korean Math Soc 47 (2010), No 3, pp 467–482

DOI 10.4134/BKMS.2010.47.3.467

MEAN CONVERGENCE THEOREMS AND WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS OF RANDOM

ELEMENTS IN BANACH SPACES

Le Van Dung and Nguyen Duy Tien

Abstract For a double array of random elements {V mn ; m ≥ 1, n ≥

1} in a real separable Banach space, some mean convergence theorems

and weak laws of large numbers are established For the mean

conver-gence results, conditions are provided under which k − mn1

Pu m

i=1

Pv n

j=1 (V ij − E(V ij |F ij )) → 0 in L r (0 < r < 2) The weak law results provide

con-ditions for k mn −1PT m

i=1

Pτ n

j=1 (V ij − E(V ij |F ij )) → 0 in probability where

{T m ; m ≥ 1} and {τ n ; n ≥ 1} are sequences of positive integer-valued

random variables, {k mn ; m ≥ 1, n ≥ 1} is an array of positive integers.

The sharpness of the results is illustrated by examples.

1 Introduction

The classical notion of uniform integrability of a sequence {X n ; n ≥ 1} of

integrable random variables is defined through the condition

lim

a→∞sup

n≥1 E|X n |I(|X n | > a) = 0.

Landers and Rogge [4] prove that the uniform integrability condition is suffi-cient in order that a sequence of pairwise independent random variables verifies the weak law of large numbers

Chandra [2] obtains the weak law of large numbers under the condition which is weaker than uniform integrability: the condition of Ces`aro uniform

integrability A sequence {X n ; n ≥ 1} of integrable random variables is said to

be Ces`aro uniformly integrable if

lim

a→∞sup

n≥1

1

k n

k n

X

j=1

E|X j |I(|X j | > a) = 0,

where {k n ; n ≥ 1} is a sequence of positive integers such that lim n→∞ k n = ∞.

Received August 8, 2008; Revised August 25, 2009.

2000 Mathematics Subject Classification 60B11, 60B12, 60F15, 60F25, 60G42.

Key words and phrases martingale type p Banach spaces, double arrays of random

ele-ments, weighted double sums, weak laws of large numbers, mean convergence theorem.

c

°2010 The Korean Mathematical Society

467

Trang 2

468 LE VAN DUNG AND NGUYEN DUY TIEN

Definition Let {X n ; n ≥ 1} be a sequence of random variables and {a nj ; 1 ≤

j ≤ v n , n ≥ 1} be an array of constants withPv n

j=1 |a nj | ≤ C for all n ∈ N and

some constant C > 0 The sequence {X n ; n ≥ 1} is {a nj }-uniform integrable if

lim

a→∞sup

n≥1

v n

X

j=1

|a nj |E|X j |I(|X j | > a) = 0,

where {v n ; n ≥ 1} is a sequence of positive integers such that lim n→∞ v n = ∞ Under the condition of {a nj }-uniform integrability, Ord´o˜nez Cabrera [5] ob-tains the weak law of large numbers for weighted sums of pairwise indepen-dent random variables; the condition of pairwise independence can be even dropped, at the price of slightly strengthening the conditions on the weights Recently, Thanh [10] obtains the mean convergence theorems for the weighted sums Pk m

i=1

Pl n

j=1 a mnij (X ij − EX ij ) in L p and the weak laws of large num-bers with random indices for the weighted sumsPT m

i=1

Pτ n

j=1 a mnij (X ij −EX ij),

where {X ij , i ≥ 1, j ≥ 1} is an array of random variable, {a mnij ; m, n, i, j ≥ 1} are constants, {T m ; m ≥ 1} and {τ n ; n ≥ 1} are sequences of positive

integer-valued random variables

Sung [9] introduces the concept of Ces`aro type uniform integrability with

exponent r.

Definition Let {X n ; n ≥ 1} be a sequence of random variables and r > 0 The array {X n ; n ≥ 1} is said to be Ces`aro type uniformly integrable with

exponent r if

sup

n≥1

1

k n

v n

X

j=1

E|X j | r < ∞ and lim

a→∞sup

n≥1

1

k n

v n

X

j=1

E|X j | r I(|X j | > a) = 0,

where {k n ; n ≥ 1} and {v n ; n ≥ 1} are two sequences of positive integers such

that limn→∞ k n= limn→∞ v n = ∞.

In this paper, we not only enlarge on some results of Adler et al [1] and Thanh [10] but we also weaken the suppositions and bring more general results

2 Preliminaries

For a, b ∈ R, min {a, b}, max {a, b} and the integer part of a will be denoted, respectively, by a ∧ b, a ∨ b and [a] Throughout this paper, the symbol C will denote a generic constant (0 < C < ∞) which is not necessarily the same one

in each appearance

Technical definitions relevant to the current work will be discussed in this section Scalora [8] introduced the idea of the conditional expectation of a

random element in a Banach space For a random element V and sub σ-algebra G of F, the conditional expectation E(V |G) is defined analogously to

that in the random variable case and enjoys similar properties

Trang 3

MEAN CONVERGENCE THEOREMS AND WLLNS FOR DOUBLE ARRAYS 469

A real separable Banach space X is said to be martingale type p (1 ≤ p ≤ 2) if there exists a finite positive constant C such that for all martingales {S n ; n ≥ 1} with values in X ,

sup

n≥1

EkS n k p ≤ C

X

n=1

EkS n − S n−1 k p

It can be shown using classical methods from martingale theory that if X is of martingale type p, then for all 1 ≤ r < ∞ there exists a finite constant C such

that

E sup

n≥1

kS n k r ≤ CE

à X

n=1

kS n − S n−1 k p

!r p

Clearly every real separable Banach space is of martingale type 1 and the real line (the same as any Hilbert space) is of martingale type 2 If a real separable

Banach space of martingale type p for some 1 < p ≤ 2, then it is of martingale type r for all r ∈ [1, p).

It follows from the Hoffmann-Jørgensen and Pisier [3] characterization of

Rademacher type p Banach spaces that if a Banach space is of martingale type

p, then it is of Rademacher type p But the notion of martingale type p is

only superficially similar to that of Rademacher type p and has a geometric

characterization in terms of smoothness For proofs and more details, the reader may refer to Pisier [6, 7]

The following lemma is needed to prove our main results

Lemma 2.1 Suppose that the array of random elements {V mn ; m ≥ 1, n ≥ 1}

is Ces`aro type uniform integrability with exponent r, in the sense that

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

EkV ij k r ≤ M < ∞ and

a→∞ sup

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

EkV ij k r I(kV ij k r > a) = 0, where {k mn ; m ≥ 1, n ≥ 1} is an array of positive integers such that

lim

m∨n→∞ k mn = ∞.

Then

1

k β r

mn

u m

X

i=1

v n

X

j=1

EkV ij k β I(kV ij k r ≤ k mn ) → 0 as m ∨ n → ∞ if r < β.

Proof.

1

k β r

mn

u m

X

i=1

v n

X

j=1

EkV ij k β I(kV ij k r ≤ k mn)

Trang 4

470 LE VAN DUNG AND NGUYEN DUY TIEN

k β r

mn

u m

X

i=1

v n

X

j=1

kXmn

l=1

EkV ij k β I(l − 1 < kV ij k r ≤ l)

k β r

mn

u m

X

i=1

v n

X

j=1

kXmn

l=1

l β−r r EkV ij k r I(l − 1 < kV ij k r ≤ l)

k β r

mn

u m

X

i=1

v n

X

j=1

kXmn

l=1

l β−r r (EkV ij k r I(kV ij k r > l − 1) − EkV ij k r I(kV ij k r > l))

k β r

mn

u m

X

i=1

v n

X

j=1

EkV ij k r I(kV ij k r > 0)

+ 1

k β r

mn

u m

X

i=1

v n

X

j=1

k mnX−1 l=1

³

(l + 1) β−r r − (l) β−r r

´

EkV ij k r I(kV ij k r > l)

=: A mn + B mn

For A mn we have

A mn ≤ 1

k β r −1

mn

sup

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

EkV ij k r → 0 as m ∨ n → ∞,

by β

r − 1 > 0 and (2.2) Next, we will show that

lim

m∨n→∞ B mn = 0.

For arbitrary ε > 0, since (2.3) there exists a0 such that

sup

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

EkV ij k r I(kV ij k r > a0) < ε

2.

Now for all large enough m ∨ n, we have k mn ≥ ([a0] + 1)

µ

2M

ε

r β−r

and

B mn

k β r

mn

u m

X

i=1

v n

X

j=1

[a0 ]

X

l=1

³

(l + 1) β−r r − (l) β−r r

´

EkV ij k r I(kV ij k r > l)

+ 1

k β r

mn

u m

X

i=1

v n

X

j=1

k mnX−1 l=[a0 ]+1

³

(l + 1) β−r r − (l) β−r r

´

EkV ij k r I(kV ij k r > l)

k β r

mn

u m

X

i=1

v n

X

j=1

[a0]

X

l=1

³

(l + 1) β−r r − (l) β−r r

´

EkV ij k r I(kV ij k r > 1)

Trang 5

MEAN CONVERGENCE THEOREMS AND WLLNS FOR DOUBLE ARRAYS 471

+ 1

k β r

mn

u m

X

i=1

v n

X

j=1

k mnX−1 l=[a0 ]+1

³

(l + 1) β−r r − (l) β−r r

´

EkV ij k r I(kV ij k r > [a0] + 1)

k β r

mn

u m

X

i=1

v n

X

j=1

³

([a0] + 1)β−r r − 1´EkV ij k r I(kV ij k r > 1)

+ 1

k β r

mn

u m

X

i=1

v n

X

j=1

³

(k mn)β−r r − ([a0] + 1)β−r r

´

EkV ij k r I(kV ij k r > [a0] + 1)

µ

[a0] + 1

k mn

β−r

r

sup

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

EkV ij k r

+ sup

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

EkV ij k r I(kV ij k r > [a0] + 1) < ε

2 +

ε

2 = ε.

Thus B mn → 0 as m ∨ n → ∞ The proof is completed. ¤

To prove Lemma 2.3, we need the following lemma:

Lemma 2.2 If {X kl , F l ; l ≥ 1}, k = 1, 2, , m are nonnegative

submartin-gales, then {max 1≤k≤m X kl , F l ; l ≥ 1} is a nonnegative submartingale.

Proof For L > l ≥ 1,

E( max

1≤k≤m X kL |F l ) ≥ max

1≤k≤m E(X kL |F l ) ≥ max

1≤k≤m X kl

¤

Let F kl be the σ-field generated by the family of random elements {V ij ; i <

k or j < l}, F 1,1 = {∅; Ω} We have the following lemma:

Lemma 2.3 Let {V ij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a collection of mn random

elements in a martingale type p (1 ≤ p ≤ 2) Banach space with E(V ij |F ij) = 0

for all i, j (1 ≤ i ≤ m, 1 ≤ j ≤ n) Then

°

°

°

m

X

i=1

n

X

j=1

V ij

°

°

°

p

≤ C

m

X

i=1

n

X

j=1

EkV ij k p;

1≤k≤mmax

1≤l≤n

°

°

°

k

X

i=1

l

X

j=1

V ij

°

°

°> ε

C

ε p

m

X

i=1

n

X

j=1

EkV ij k p ∀ε > 0.

Proof First, we prove (2.3) Set S kn =Pk i=1Pn j=1 V ij , since E(V ij |F ij) = 0

we have that {S kn , G k = F k+1,1 ; 1 ≤ k ≤ m} is a martingale Thus

E

°

°

°

m

X

i=1

n

X

j=1

V ij

°

°

°

p

≤ E max 1≤k≤m kS kn k p ≤ C

m

X

k=1

Ek

n

X

j=1

V kj k p

(2.5)

Trang 6

472 LE VAN DUNG AND NGUYEN DUY TIEN

On the other hand, for each k (1 ≤ k ≤ m), {Pl j=1 V kj , G kl = F k,l+1 ; 1 ≤ l ≤ n}

is a martingale Hence,

Ek

n

X

j=1

V kj k p ≤ E max

1≤l≤n k

l

X

j=1

V kj k p ≤ C

n

X

l=1

EkV kl k p

(2.6)

Combining (2.5) and (2.6) yields the conclusion (2.3).

Next, we will prove (2.4) Set S kl=Pk i=1Pl j=1 V ij , Y l= max1≤k≤m kS kl k.

If σ l is a σ-field generated by {V ij ; 1 ≤ i ≤ m, 1 ≤ j ≤ l}, then for each

l (1 ≤ l ≤ n), σ l ⊂ F i,l+1 for all i ≥ 1, which follows that E(V i,l+1 |σ l) =

E(E(V i,l+1 |F i,l+1 )|σ l) = 0 Thus, we have

E(S k,l+1 |σ l ) = E(S kl |σ l) +

k

X

i=1

E(V i,l+1 |σ l ) = S kl

It means that {S kl , σ l ; 1 ≤ l ≤ n} is a martingale Hence, {kS kl k, σ l ; 1 ≤ l ≤

n} is a nonnegative submartingale for each k = 1, 2, , m, which follows by

Lemma 2.1 that {Y l , σ l ; 1 ≤ l ≤ n} is a nonnegative submartingale Applying

Kolmogorov’s inequality, we obtain

P

1≤k≤mmax

1≤l≤n

°

°

°

k

X

i=1

l

X

j=1

V ij

°

°

°> ε

= P { max 1≤l≤n Y l > ε} ≤ 1

ε p EY n p

= 1

ε p E max 1≤k≤m kS kn k p ≤ C

ε p

m

X

k=1

Ek

n

X

j=1

V kj k p

ε p

m

X

k=1

E max 1≤l≤n k

l

X

j=1

V kj k p

ε p

m

X

k=1

n

X

l=1

EkV kl k p

= C

ε p

m

X

i=1

n

X

j=1

EkV ij k p

3 Main results With the preliminaries accounted for, the main results may now be

estab-lished In the following we let {V mn ; m ≥ 1, n ≥ 1} be an array of random elements defined on a probability (Ω, F, P ) and taking values in a real sepa-rable Banach space X with norm k · k, F kl be a σ-field generated by {V ij ; i <

k or j < l}, F 1,1 = {∅; Ω} Let {u n ; n ≥ 1}, {v n ; n ≥ 1} be sequences of

posi-tive integers such that limn→∞ u n= limn→∞ v n = ∞, {k mn ; m ≥ 1, n ≥ 1} be

an array of positive integers such that limm∨n→∞ k mn = ∞.

Trang 7

MEAN CONVERGENCE THEOREMS AND WLLNS FOR DOUBLE ARRAYS 473

Theorem 3.1 Let 1 ≤ r < p ≤ 2, Banach space X be a martingale type p.

Suppose that {V mn ; m ≥ 1, n ≥ 1} satisfies the Ces`aro type uniform integrability

with exponent r, in the sense that (2.1) and (2.2) hold Then

1

k mn1

u m

X

i=1

v n

X

j=1 (V ij − E(V ij |F ij )) → 0 in L r as n ∨ m → ∞.

Proof For each m, n, 1 ≤ i ≤ u m , 1 ≤ j ≤ v n, set

V 0

mnij = V ij I(kV ij k r ≤ k mn ), V 00

mnij = V ij I(kV ij k r > k mn ),

U 0 mnij = E(V 0

mnij |F ij ), U 00

mnij = E(V 00

mnij |F ij ).

Observe that for each i and j, 1 ≤ i ≤ u m , 1 ≤ j ≤ v n, we have

V ij − E(V ij |F ij ) = (V mnij 0 − U mnij 0 ) + (V mnij 00 − U mnij 00 )

and E(V 0

mnij − U 0

mnij |F ij ) = E(V 00

mnij − U 00

mnij |F ij) = 0 Hence,

E

°

°

° 1

k mn1

u m

X

i=1

v n

X

j=1

V ij

°

°

°

r

k mn E

°

°

°

u m

X

i=1

v n

X

j=1

(V 0 mnij − U 0

mnij) +

u m

X

i=1

v n

X

j=1

(V 00 mnij − U 00

mnij)

°

°

°

r

k mn E

°

°

°

u m

X

i=1

v n

X

j=1 (V mnij 0 − U mnij 0 )

°

°

°

r

+ C 1

k mn

E

°

°

°

u m

X

i=1

v n

X

j=1

(V 00 mnij − U 00

mnij)

°

°

°

r (by c r-inequality)

k mn

E

°

°

°

u m

X

i=1

v n

X

j=1

(V 0 mnij − U 0

mnij)

°

°

°

p

r/p

+ C 1

k mn E

°

°

°

u m

X

i=1

v n

X

j=1 (V mnij 00 − U mnij 00 )

°

°

°

r

(by Liapunov’s inequality)

k mn

u m

X

i=1

v n

X

j=1

Ek(V mnij 0 − U mnij 0 )k p

r/p

+ C 1

k mn

u m

X

i=1

v n

X

j=1

Ek(V mnij 00 − U mnij 00 )k r (by Lemma 2.3)

Trang 8

474 LE VAN DUNG AND NGUYEN DUY TIEN

k mn

u m

X

i=1

v n

X

j=1

EkV ij k p I(kV ij k r ≤ k mn)

r/p

+ C 1

k mn

u m

X

i=1

v n

X

j=1

EkV ij k r I(kV ij k r > k mn) (by c r-inequality)

≤ C

 1

k p r

mn

u m

X

i=1

v n

X

j=1

EkV ij k p I(kV ij k r ≤ k mn)

r/p

+ C

 sup

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

EkV ij k r I(kV ij k r > k mn)

 → 0 as m ∨ n → ∞,

by Lemma 2.1 with β = p and (2.2) The proof is completed. ¤

Corollary 3.2 Let 1 ≤ r < p ≤ 2, Banach space X be a martingale type p.

Let {A mnij ; m ≥ 1, n ≥ 1, 1 ≤ i ≤ u m , 1 ≤ j ≤ v n } be an array of random variables satisfying Pu m

i=1

Pv n

j=1 E|A mnij | r ≤ C < ∞ for all m ≥ 1, n ≥ 1 Suppose that {A mnij ; 1 ≤ i ≤ u m , 1 ≤ j ≤ v n } and {V ij ; i ≥ 1, j ≥ 1} are

independent for all m ≥ 1, n ≥ 1 Assume that the following conditions hold:

(i) {kV mn k r ; m ≥ 1, n ≥ 1} is {E|A mnij | r }-uniformly integrable, in the sense that

lim

a→∞ sup

m≥1,n≥1

u m

X

i=1

v n

X

j=1

EkA mnij V ij k r I(kV ij k > a) = 0;

(ii) sup

1≤i≤u m ,1≤j≤v n

E|A mnij | → 0 as m ∨ n → ∞.

Then

u m

X

i=1

v n

X

j=1

A mnij (V ij − E(V ij |F ij )) → 0 in L r as m ∨ n → ∞.

Proof Let

k mn=

sup

1≤i≤u m ,1≤j≤v n

E|A mnij |

Then k mn → ∞ as m ∨ n → ∞ It is easy to prove that

sup

m≥1,n≥1

u m

X

i=1

v n

X

j=1

EkA mnij V ij k r < ∞.

Hence, take k mn 1/r A mnij V ij instead V ij in Theorem 3.1, we have by (i) that

sup

n≥1,m≥1

1

k mn

u m

X

i=1

v n

X

j=1

Ekk 1/r mn A mnij V ij k r= sup

m≥1,n≥1

u m

X

i=1

v n

X

j=1

EkA mnij V ij k r < ∞.

Trang 9

MEAN CONVERGENCE THEOREMS AND WLLNS FOR DOUBLE ARRAYS 475

On the other hand, for all large enough m ∨ n we have

sup

1≤i≤u m ,1≤j≤v n

E|A mnij | ≤ 1,

which follows that

k mn E|A mnij | r ≤ E|A mnij |

r

sup

1≤i≤u m ,1≤j≤v n

E|A mnij | ≤

E|A mnij | r

sup

1≤i≤u m ,1≤j≤v n

E|A mnij | r ≤ 1.

Therefore, for all large enough m ∨ n, k mn |A mnij | r ≤ 1 a.s Thus, it follows

by (i) that

lim

a→∞ sup

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

Ekk 1/r

mn A mnij V ij k r I(kV ij k r > a)

≤ lim

a→∞ sup

m≥1,n≥1

u m

X

i=1

v n

X

j=1

EkA mnij V ij k r I(kV ij k > a) = 0.

This implies

lim

a→∞ sup

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

Ekk 1/r

mn A mnij V ij k r I(kV ij k r > a) = 0.

Theorem 3.3 Let 0 < r < 1 Suppose that {V mn ; m ≥ 1, n ≥ 1} satisfies the

Ces`aro type uniform integrability with exponent r, in the sense that (2.1) and

(2.2) hold Then

1

k mn1

u m

X

i=1

v n

X

j=1

V ij → 0 in L r as n ∨ m → ∞.

Proof.

E

°

°

° 1

k mn1

u m

X

i=1

v n

X

j=1

V ij

°

°

°

r

= 1

k mn E

°

°

°

u m

X

i=1

v n

X

j=1

V ij

°

°

°

r

k mn

E

°

°

°

u m

X

i=1

v n

X

j=1

V ij I(kV ij k r ≤ k mn) +

u m

X

i=1

v n

X

j=1

V ij I(kV ij k > k mn)

°

°

°

r

k mn E

°

°

°

u m

X

i=1

v n

X

j=1

V ij I(kV ij k r ≤ k mn)

°

°

°

r

+ 1

k mn E

°

°

°

u m

X

i=1

v n

X

j=1

V ij I(kV ij k r > k mn)

°

°

°

r

k mn

E

°

°

°

u m

X

i=1

v n

X

j=1

V ij I(kV ij k r ≤ k mn)

°

°

°

r

Trang 10

476 LE VAN DUNG AND NGUYEN DUY TIEN

+ 1

k mn E

°

°

°

u m

X

i=1

v n

X

j=1

V ij I(kV ij k r > k mn)

°

°

°

r

(by Liapunov’s inequality)

 1

k mn1

u m

X

i=1

v n

X

j=1

EkV ij kI(kV ij k r ≤ k mn)

r

+

 sup

m≥1,n≥1

1

k mn

u m

X

i=1

v n

X

j=1

E kV ij k r I(kV ij k r > k mn)

 → 0 as m ∨ n → ∞,

by Lemma 2.1 with β = 1 and (2.2) The proof is completed. ¤

Corollary 3.4 Let 0 < r < 1 and {A mnij ; m ≥ 1, n ≥ 1, 1 ≤ i ≤ u m , 1 ≤ j ≤

v n } be an array of random variables satisfyingPu m

i=1

Pv n

j=1 E|A mnij | r ≤ C < ∞ for all m ≥ 1, n ≥ 1 Suppose that A mnij and V ij are independent for all

m ≥ 1, n ≥ 1, 1 ≤ i ≤ u m , 1 ≤ j ≤ v n Assume that the following conditions hold:

(i) {kV mn k r ; m ≥ 1, n ≥ 1} is {E|A mnij | r }-uniformly integrable;

(ii) sup

1≤i≤u m ,1≤j≤v n

E|A mnij | → 0 as m ∨ n → ∞.

Then

u m

X

i=1

v n

X

j=1

A mnij V ij → 0 in L r as m ∨ n → ∞.

In the following theorem, we establish the weak law of large numbers with random indices for weighted double sums of random elements

Theorem 3.5 Let 1 ≤ r < p ≤ 2, Banach space X be a martingale type p.

Suppose that {V mn ; m ≥ 1, n ≥ 1} satisfies the Ces`aro type uniform integrability

with exponent r, in the sense that (2.1) and (2.2) hold Let {T n ; n ≥ 1} and

{τ n ; n ≥ 1} be sequences of positive integer-valued random variables such that

n→∞ P {T n > u n } = lim

n→∞ P {τ n > v n } = 0.

Then

k mn1

T m

X

i=1

τ n

X

j=1 (V ij − E(V ij |F ij))−→ 0 as n ∧ m → ∞ P

Proof For arbitrary ε > 0,

(3.3) P

1

k mn1

°

°

°

T m

X

i=1

τ n

X

j=1 (V ij − E(V ij |F ij))

°

°

°> ε

Ngày đăng: 16/12/2017, 09:02

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm