DSpace at VNU: Metamorphic evolution of pelitic–semipelitic granulites in the Kon Tum massif (south-central Vietnam) tài...
Trang 1j ourna l h o me p ag e:h t t p : / / w w w e l s e v i e r c o m / l o c a t e / j o g
a VNU-Hanoi University of Science, 334-Nguyen Trai Str, Hanoi, Viet Nam
b Laboratoire de Géoscience, Université Montpellier 2, Montpellier, France
c Laboratoire de Tectonique, Université Pierre et Marie Curie, Paris, France
d Department of Geology, National Taiwan University, Taipei, Taiwan
Article history:
Received 12 August 2010
Received in revised form 29 March 2012
Accepted 30 March 2012
Available online 11 April 2012
Keywords:
Kon Tum massif
Granulite
Metapelite
Indosinian
Vietnam
© 2012 Elsevier Ltd All rights reserved
1 Introduction
The Indosinian orogeny in late Permian and Triassic times
(Fromaget, 1941) is the expression of thecollision of different
Gondwana-derivedcontinentalterrains(Indosinia,Sibumasu,and
SouthChina),afternarrowingandsuturingofdifferentbranchesof
thePaleotethys(Metcalfe,1996;Lepvrieretal.,2004).The
south-centralareaofVietnamterritorywhichcorrespondstotheKonTum
massif(Fig.1A)exposeswidespreadhightemperaturecrystalline
rockssubdividedintofourlithologicalunits:granuliticfaciesKan
Nackcomplexinthesouth-east;amphiboliticfaciesNgocLinh
com-plexincentral;greenschists-amphibolitefaciesKhamDuccomplex
inthenorthand– greeschists-amphiboliteSaThay(DienBinh)
complexinthewest,whichiscommonlyregardedasanoldand
∗ Corresponding author Tel.: +84 4 35 58 70 60; fax: +84 4 38 58 30 61.
E-mail address: tichvv@vnu.edu.vn (V.V Tích).
stablePrecambrianbasement(PhanCuTienetal.,1989).Becauseof theoccurrenceofhigh-temperaturemetasedimentaryandigneous seriescomprisinggranulitesandcharnockites,thismassifhas clas-sicallybeeninterpretedasafragmentofGondwana,equivalentin agetothesamefaciesrockswhichareexposedinsouthernIndia andAntarctica(Katz,1993).However,recentisotopicdatashow thattheKonTumbasementwasaffectedbyPermo-Triasic tectono-metamorphicevent(TranNgocNametal.,2001;Nagyetal.,2001; Osanaietal.,2001;Maluskietal.,2005)
Thereis nowabroadrecognitionofthevarietyofP–Tpaths and tectonicsettings tobefoundin granulite-facies terrains.It wasfirstlyassumedthatgranuliticrocksinorogenicbeltstypically experiencedacrustalthickening(EnglandandRichardson,1977) Somemodels wereproposed toaccount for type of retrograde path suchas: metamorphismin extensionalterrains(Sandiford andPowell,1986)orinterrainsheatedbytheadditionof volumi-nousmagmas(Bohlen,1987).Whenpartsoftheprogradehistory (isobaric heating)could bedetected,it suggests thatmagmatic 0264-3707/$ – see front matter © 2012 Elsevier Ltd All rights reserved.
Trang 2Fig 1. (A) Location of the Kon Tum massif; (B) geological sketch map of the Kon Tum Massif and more detail of the Kan Nack complex (modified after Phan Cu Tien et al.,
1989 ); (C) folliation data from the Kan Nack complex (along the Song Ba and the Song Bien reiver); (D) Interpretative section of the Kan Nack complex [1 granulites; 2 gneiss, micaschists (the Ngoc Linh Complex: Metamorphic cover of the Kan Nack Complex); 3 Paleozoic sediment; 4 charnockites; 5 Undeformed granites (Late Triassic and Cretaceous); 6 Cenozoic basalts; 7 Mesozoic sediments; 8 quaternary sediments], Vn811 sample location.
accretionhadplayedanimportantroleinheatadvection(Sandiford
andPowell,1986)
Previous studies have given an idea of the globalevolution
ofthearea,butthediversityinprotolithofgranulitesfrom
dif-ferent places obtainedby previous works (Osanaiet al., 2004)
showthatthethermo-tectonicsettingoftheKonTummassifis
morecomplicatedindetail.Moreover,thelargeexposureofpelitic
andsemipeliticanatecticgranulites(granuliteleucosomes)inthe
KonTumbasement which isimportant tounderstand
tectono-metamorphicsetting,which hasnot beenstudiedin detail.The
questionthereforehastobeasked,isthemetamorphicP–Tpath
of metapeliticgranulitic leucosomes observed in the KanNack
complexasingleisothermaldecompressionand decompression
coolingpathordoesitreflectaprograde(decompressionheating)
andisothermaldecompression?So,detailedpetrogeneticdataare
neededtoconstraintectono-metamorphicevolutionofthisarea
Inthethispaper,wepresentheredetailedpetrography,
min-eralassemblage,and mineralchemistry oftheKan Nackpelitic
granulitesinordertounderstandthemetamorphichistorythrough reactiontexturesobservedcombiningwithP–Ttrajectoryand ther-mobarometriccalculations.Thisdatawillbeinterpretedinthelight
ofpreviousworks(geochronologydata)inordertodiscussmore aboutthethermo-tectonicevolutionoftheKonTummassifandits roleduringtheIndosinianorogenicevolution
2 Geological setting of the Kon Tum massif and the Kan Nack complex
Thestudiedarea(KonTummassif)islocatedinsouth-central Vietnam (Fig 1A) The Kon Tum massif exposes a large scale
of crystalline rocks It consists of mainly metasediments and orthogneisses,which weremetamorphosedin amphiboliticand granulitic facies (PhanCu Tienet al., 1989).This metamorphic basementiscovered fromplacetoplace byPaleozoic-Mesozoic sedimentsorevendirectlybyNeogenetoQuaternarylavaflows (Lee et al.,1998),and intrudedbyundeformedJurassic-Triassic
Trang 3oftheKonTummassif,thePaleozoicsedimentsarenearlyabsent
intheKonTummassif.Basedonmetamorphicgrade(PhanCuTien
etal.,1989),KonTummassifhasbeensubdividedintodifferent
complexessuchastheKanNackcomplexcomposedessentiallyof
granuliticandcharnockiticrocks;theNgocLinhcomplex
contain-inglower-grademetamorphicrocksinamphiboliticfacies;theSa
Thaycomplexcontainingmetapeliticandmagmaticgneissicrocks,
nowsocalledDienBinhunit(Maluskietal.,2005)andKhamDuc
amphibolitefaciescomplex(kyaniterocks)whichwasatransition
zonebetweentheTruongSonbeltandtheKonTummassif
Structurally,theKonTummassif(Fig.1B)isessentiallyaffected
bytwoshearzonesystems.ThewesternpartoftheKonTumMassif
isboundedbyamajorN-Sfault,asinferredbytypical
geomorpho-logicfeatures,whichcanbefollowedoveratleast200km,running
fromPhuocSonalong thePoKoriver, andnamed “PoKo fault
zone”(Fig.1B).AtthelatitudeofDakTo,thePoKofaultswings
eastwardsandsplaysindifferentbranchestowardstheSaThay
val-leyandtowardstheKonTumbasinandprobablyextendsmoreto
theSouthbeneaththePleikuplateau-basaltsreachingthecourse
ofDaRangriver.Thekinematiccriteriasobservedonmylonites
alongthisfaultzoneindicateasinitralductilefault.Thissocalled
PoKofaultcoincideswiththeboundaryoftwodistinctand
con-trastedpetrologicdomainsintheKonTumbasementwhichare:To
theEastofthefaultareexposedrecentlydiscoveredcharnockitic
andgranuliticrockswhichconstitutethewesternmostoccurrence
ofthismaterial.TotheWest,theexposedrocksarerepresented
bytheDienBinhunit (Fig.1B),whichistectonicallyadifferent
unit,mainlyconsistinginlessdeformedandnon-granulitic
meta-igneousrockswitholderthan250Ma(VuVanTich,2004).Mafic
andultramaficrocksassemblagesofophioliticaffinitiesare
tecton-icallyenclosedaselongatedlensesandshearedbodieswithinthe
PoKofaultzone.Assemblagesofophioliticaffinitiesarepresent
alongthisfaultzone,whichwasconsideredasapaleosuture(Tran
VanTri,1986)andresultinginasinistralobliquesubductionofKon
Tummicro-continentbeneathtoKhoRatmicro-continent(Lepvrier
etal.,2004).Inthenorthernpart,theKonTummassifwasaffected
byaseriesoftheE–Whightemperaturedeformedshearzones
ofTraBong–PhuocSon(KhamDuc),progressivelybend
north-westwardstoconnectwiththePoKoFault(Fig.1B)whichforms
thetransition with theTruong Son belt Along this fault zone,
rocksarehighlydeformedinultramylonitefacieswherefibrous
sillimanitedominates.Kinematiccriteriaobservedalongthisfault
zoneshowsadextralmovementwitha60–70◦ dippingfoliation
tothe south Ngoc Linh complex is limited by two these fault
zonestothewestandthenorth.Rockofthiscomplexare
princi-pallyinbiotite-hornblendegneisses,amphibolites,biotite-fibrous
sillimanite-garnetbearingschistsandgraphiteschists.Alongthe
cross-sectionfromKonTumcitytoSongReRiver,through
Konp-long,theserocksformawideantiformwhichexhibitsnormalshear
movementsonbothflanks,whilealargegraniticundeformedbody
occupiesthecoreofthestructure(Maluskietal.,2005)
TheKanNackcomplexissituatedincentral-easternpartofthe
KonTumblock,separated withtheNgocLinh complexby two
mainshearzonesmentionedabove.DifferingfromtheNgocLinh
complexinmetamorphicgrade,theKanNackcomplexpresentsa
basementwithmainlyanatecticgranuliticrocks.Geologicalmaps
ofVietnamshowvariousnames(KonCot,XaLamCo,DakKoand
KimSonunit)whichidentifythedifferentstratigraphicunitsof
theKanNack complex.Butthisterminology generallyrefersto
localtoponymyandmanynamescorrespondinfacttothesame
petrologicunits To clarifyand simplify this situation,many of
thislocalformationshavebeengrouped,takingonlyintoaccount
theirmineralassemblagesandmajorpetrologicalcharacteristics,
whatevertheirdegreeofdeformationandtheirgeographic
loca-tion.Nevertheless,wehavemaintainedusualterminology,when
justified.We observedalongtheuppercourseof SongBaRiver (Fig.1B),thisbasementexposedbyAl-richmetapelites,quartzites andmarbles.Maficgranulites,probablyUHTgranulites,although moderatelydeformed,arepresentedaslensesofanatecticpellitic granulites Structurally, they present low tomoderate dipping-foliation,locallymyloniticandformgentledomestructures(Fig.1C, D) Whole of this basement is intruded by charnockitic rocks Charnockitic bodies, represented essentially by enderbites and locallynorites,occurinthecoreofthisstructure(Fig.1D).NearKan Nackvillage,inclusionsoffoliatedgranuliteswithinthe charnock-iteshavebeensimilarlyobserved(Fig.2).TheKanNackcomplexis consideredtobesurroundedbyagneissicandschistosedmaterial, formingtheamphibolitefaciesNgocLinhComplex(PhanCuTien
etal.,1989).Thelimitbetweenthistwocomplexissometimesin faultedcontact(Fig.1)
Availablegeochronologicdatashowthat theKonTum base-mentwasaffectedatleastby threemaintectono-metamorphic events.Theoldesteventoccurredaroundof1400Ma,evidenced
byageoncoreofzirconfrompeliticgranulitedatedbyShrimps method(TranNgocNametal.,2001).Thisresultisexplainedas agefromProterozoicrocksintheKonTummassifcrust corrob-oratedbyTMD fromSm/Nddataofgranuliteandcharnockitein theKanNack complex.The middletectono-metamorphicevent tookplaceataroundof400–670Ma.Thiseventisevidencedby someagesof439and451Maisobtainedfromamphiboliticgneiss andorthogneissfromDienBinhunit(Fig.1B)datedrespectivelyby U–Pband40Ar–39Armethod(Nagyetal.,2001).ASRHIMPresult with401–418Mawasobtainedfromorthogneissinnorthernpart
of theTra Bong(Fig.1B)shear zone(Carter etal.,2001).Some recentdataobtainedbydifferentmethodsgivesimilarresults:a
678MaSm–NdageforremainingamphibolitefromKanNack com-plex(Nakanoetal.,2003);479MaonmonaziteoftheUHTgranulite (smallboudinsofmaficgranuliteinpeliticbasement)obtainedby U–Th–PbCHIME(Osanaietal.,2001);405–403Maonbiotitesof granuliterelicinapolymetamorphicgreen-schists,fromthe east-ernpartoftheKanNackcomplex,obtainedby40Ar–39Armethod (Maluskietal.,2005).Thethirdeventtookplaceduring Permian-TriassictimeandmarkstheIndosinianorogeny,namedforfirst timebyFrenchgeologist(Fromaget,1941),andexpressedasa col-lisionbetweendifferentGondwanianblocks(Lepvrieretal.,2004) Thiseventwasrecordedbyradiometricmultimethodson differ-entrocksnotonlyintheKonTummassifbutalsointheTruong Sonbelt(Lepvrieretal.,1997;Loetal.,1999;Maluskietal.,2005),
onHainanisland(southChina),andalsointhesouthChinablock
asnotedinCarteretal.(2001).Thefirstevidenceforthiseventin KonTummassifisanageof235–246Maobtainedby40Ar–39Ar methodonbiotiefromdifferentmetapeliticgranulitesintheKan Nackcomplex(Maluskietal.,2005).Theseagesareconfirmedby SHRIMPmethod,equivalenttopeakmetamorphicageof254Ma Thesameresult(242,250and238Ma)hasbeenobtainedbythe U–Th–PbCHIMEmethodforultrahightemperaturegranuliteinthe KanNackcomplex(Osanaietal.,2001).Alltheseagesforgranulites correlateswellwithemplacementageofthecharnockiticintrusion
at251Maonfiveconcordantzirconofthesamerock(Nagyetal.,
2001)and258.5MabytheSHRIMPtechnique(Carteretal.,2001)
3 Petrography, mineral chemistry and P–T path of pelitic granulites
Petrologicaldatawereobtainedaftera detailedstudyunder microscopeandanextensivestudywithCamebax-50EPMAat Uni-versityofMontpellierIIinFrance.Therocktype,samplelocation andmineralassemblageofeachsamplearepresentedinTable1 Representativeelectronicmicroprobeanalysesofthemineralogical phasesaregiveninweight%andcationsperformulaunits,where
Trang 4Fig 2. Field observation photos in the Kan Nack complex from the Kon Tum massif: (A) contact granulite (dark and banded) and enderbitic charnockite (white color), (B) banded pelitic granulites.
molarfractionsare alsogiven(Table2).Someparticularities of
studiedmineralsarediscussedinthetext.Allmineralabbreviations
inthetable;figureandthetextareofPowellandHolland(2001)
3.1 Petrography
WehaveobservedgranulitesalongtheSongBienbrook,south
ofHoaiAntownandalongtheSongBaRiver(Fig.1B).They
consti-tutethebasementoftheKanNakcomplex.Originally,theprotolith
ofgranuliteswasconstitutedbysedimentaryAl-richseries.They
containedpelites,semipelites,sandstonesandAl-quartzites
Cal-careousanddolomiticsedimentswereintercalated.Now,allthese
sediments are found as high-temperature metamorphic rocks,
in thegranulite facies, giving rise tokhondalitic and kinzigitic
bandedanatecticgneisses(Fig.2B),granuliticmetaquartzitesfor
themoresiliceousprotoliths,andforsterite-humitecalc-schistsfor
thescarcecalcareous-dolomiticones
Inthefieldasinhandspecimen,thesehigh-grademetapelitic
rocksshowvery intense layering and banding Thislayering is
partlycompositional,anatecticandtectonic.Thedarklayersrich
ingarnet, cordierite,biotiteand prismatic sillimaniterepresent
thegneissic paleosomes or the residual melanosomes often as
boudinswrappedbytheregionalfoliation.Thewhitelightlayers
representquartzo-feldspathicleucosomes(anatecticpeakliquid)
Thesetwokindsoflayersarealwaysparallelwiththefoliation
Fromthepointofview,thesegranulitesaretruemetatexites.The
diatecxitestageoffusionhasnotbeenreached.However,thevery
localintrusionofcharnockites.lmagmaticliquid,cross-cuttingthe
bandedgranulitefoliationisevenconfusingasitlookslikeas eval-uateddiatexite(Fig.2)oreven agmatite.Thegranulitelayering
isalsocompositionalsincequarziticorsemi-peliticlayers (some-timezincian-poororzincian-richequilibrium),khondaliticquartz, K-feldspar layers, kinzigitic plagioclase rich, quartz poor layers coexistparallelinthesameoutcrops.Theobservationof associ-atedcalcarousdolomiticdeformedpodsorlayerforsterite-humit, calc-schistandmarblesstronglysupportsthisidea.Atlast,allthis high-graderocksexhibitahugetectonicbanding.Theyarestrongly deformedinductileconditions.Theyareintensivelyfoliatedand lineated.Thisisdemonstratedbyastrongstretchinglineationinthe mainmyloniticshearzones,revealedbyelongatedprismatic silli-manite,platenquartzribbonsandovalgarnets(Fig.3).Underthe microscope,themineralogiesofalltheselayersisdifferent accord-ingtothebulk-rockcompositionsoftheirprotolitegivingriseto quartz,acidicplagioclase,K-feldspar(mesoperthiticornot),biotite, andsometimesalmandine-pyropegarnetandsillimanitegranulitic leucosomes(Figs.4and5).Anatecticconditionsarereachedwithin thestablebiotite/quartzandgarnet/K-feldspar/sillimanite/Zn–Fe richspinelstabilityfields
Quartz, K-feldspar, acidic plagioclase, Ti–Mg rich-biotites, Fe–Mggarnet,Mgrich-cordierites,prismaticsillimanite,Fe–Mg–Zn spinels are the main granulitic phases Graphite, Mg-ilmenite, Fe-sulphides, apatite and zircon are the main accessory min-erals Magnetite and Ti-magnetite are rare and always altered
inhydrated-hematite(martite).Zirconpresentssometimes over-growths When present, rutile has only been observed in the mostaltered granulites samples.Yellow monaziteand perhaps
Table 1
Mineral assemblage observed in some metasedimentary granulitic rocks in Kan Nack complex.
Vn354, 355 14◦1804, 108◦2901 Aluminium granulitic quartzite qtz, pl.ap, Ksp.mp, Ti-bi, ga, sil.p, crd, rt, Fe-Ti ox, chl2, pn2, mus2 Vn356 14 ◦ 18 04 , 108 ◦ 29 01 Calc-silicate per, for, phl, grt, graph, zn, serp2, chl2
Vn373 14 ◦ 15 15 , 108 ◦ 45 11 Khondalito-kinzigitic granulite qtz, pl.ap, Ksp.mp, bi, crd, ilm, zn
Vn379 14 ◦ 23 06 , 107 ◦ 52 21 Khondalito-kinzigitic granulite qtz, pl.ap, Ksp.mp, bi, crd, ilm, zn
Vn413 14 ◦ 18 04 , 108 ◦ 29 01 Pelitic granulite qtz, pl.ap, Ksp.mp, Ti-bi, ga, sil.p, crd, zn, graph, rt, chl2, pn2, mus2 Vn414 14 ◦ 18 04 , 108 ◦ 29 01 Granulitic quartzite qtz, pl.ap, Ksp, bi, sil.p, ga, sp, zn, ap
Vn415 14◦1804, 108◦2901 Pelitic granulite qtz, pl, Ksp.mp, bi, ga, sil.p, crd, spl, dsp2, pn2
Vn514 14◦1804, 108◦2901 Granulitic anatectic gneiss qtz, Ksp.mp, Ti-bi, ga, crd, chl2
Vn515 14 ◦ 18 04 , 108 ◦ 29 01 Granulitic gneiss qtz, pl.ap, Ksp, crd, Ti-bi, ga, pn2, sc2, chl2
Vn803 14 ◦ 13 47 , 108 ◦ 30 53 Quartzitic granulite qtz, Ksp.mp, bi, grt, sil.p, graph, zn, ap, chl2, mus2
Vn362 14 ◦ 13 47 , 108 ◦ 30 53 Quartzo-feldspathic granulite qtz, pl.ap, Ksp.mp, bi, sil.p, ga, spl, rt, Fe-Ti ox, chl, mus
Vn363 14 ◦ 13 47 , 108 ◦ 30 53 Metatectic granulite qtz, pl.ap, Ksp.mp, Ti-bi, ga, sil.p, crd, spl, chl2, mus2, pn2, dsp2 Vn805 14 ◦ 13 47 , 108 ◦ 30 53 semi-pelitic granulite qtz, pl.ap, Ksp.mp, Ti-bi, ga, crd, spl, chl2, ms2, pn2, dsp2
Vn811 14◦1207, 108◦3204 Granulitic quartzite qtz, pl.ap, Ti-bi, ga, zn, ap, chl2.
Trang 5Table 2
Representative analyses of the main mineral phases in the granulites terranes of the Kontum Block (Song Ba river: Vn356a, Vn362, Vn363; Song Bien Brook: Vn413, Vn414, Vn415) Vn413/Vn413-S1 and Vn414/Vn414BB/Vn414-S4/Vn414-1 ◦ Vn414-2/VN414p represent different compositional layers in two representative samples from the two main outcrops granulitic area (a) Spinels (sp) The number of ions in the spinel formula is based on 4 oxygens and the sum of cations is recalculated to 3 (sp2: secondary spinel in the reactional cordierite corona around garnet; cmp incl., composite inclusion; mph, mesoperthite); (b) K-feldspars (ksp) The number of ions in the K-feldspar formula is based on 8 oxygens (Xab, Xalbite; Xor, Xorthose; Xan, Xanorthite); (c) Plagioclases (pl) The number of ions in the plagioclase formula is based on 8 oxygens (Xab, Xalbite; Xor, Xorthose; Xan, Xanorthite pl2: secondary plagioclase in the cordierite-spinel reactional corona around garnet); (d) Biotites (bi) and phlogopites (phl) The number of ions in the black-micas formula is based on 10 oxygens and 2 (OH) (synf., synfolial; incl in, inclusion in; /, against (e.g bi/ga: biotite against garnet); crd2: secondary cordierite in the reactional corona around garnet; gpt: graphite; cmp incl.: composite inclusion); (e) Garnets (ga) The number of ions in the garnet formula is based
on 12 oxygens and the sum of cations is recalculated to 8 (Xalm, X almandin; Xpyr, Xpyrope; Xgro, Xgrossular; Xspe, X spessartite); (f) Cordierites (crd) The number of ions in the cordierite formula is based on 10 oxygens (crd1, primary with biotite and sillimanite; crd2, reactional cordierite); (g) Prismatic sillimanite (sil) The number of ions in the sillimanite formula is based on 5 oxygens; (h) Ilmenites (il) The number of ions in the ilmenite formula is based on 3 oxygens and the sum of cations is recalculated to 2 (sulph, Fe-sulphide; Xil, Xilmenite; Xhm, Xhematite; Xgk, Xgeikileite; Xpy, X pyrophanite); (i) magnetites (mt) The number of ions in the magnetite formula is based
on 4 oxygens and the sum of cations is recalculated to 3 (Xmt, Xmagnetite; Xulv, Xulvöspinel).
(a) Spinel (spl)
Vn362 incl.
in ga core
Vn363 sp2 core
Vn414.S4 matrix sp core
Vn414.S4 cmp incl in ga
Vn414B incl in ga core
Vn414B matrix sp rim
Vn414B incl in bi core
Vn414BNL inc in sil core
Vn413 incl.
in mph core
Vn415 sp2 incl bi core
Vn415NL sp2 core
Al 2 O 3 60.91 58.34 60.22 60.92 59.82 57.55 58.51 57.52 57.79 57.00 58.53
Sum 100.93 100.50 100.32 100.09 101.82 100.55 101.36 99.76 101.29 100.90 100.69
XFe 2 0.623 0.836 0.653 0.605 0.714 0.853 0.810 0.768 0.849 0.866 0.741 XFe 3 0.015 0.016 0.018 0.012 0.030 0.028 0.013 0.032 0.038 0.037 0.035 (b) K-felspars (Ksp).
Vn362 ksp Vn362 ksp2 Vn362 ksp Vn362
antiperthite
Vn362NL antiperthite
Vn363 ksp Vn363
antiperthite
VNn14B ksp VNn14B ksp VNn13 ksp Vn413 ksp
Al 2 O 3 19.56 19.13 19.15 19.07 19.26 18.86 19.11 19.21 19.23 19.02 19.08
Trang 6Sum 99.74 98.84 100.02 99.57 99.58 98.35 99.75 99.89 100.11 100.36 100.5
(c) Plagioclase (pl)
Vn356a pl Vn362 pl Vn363 pl Vn363 pl2 Vn363 pl2 Vn414.S4 pl Vn414.S4 pl Vn414B pl Vn414B pl Vn413 pl Vn413-S1 pl Vn415 pl Vn415 pl Vn415 pl2 SiO 2 64.99 57.61 58.08 55.89 56.34 60.66 60.19 60.86 59.43 67.14 66.1 53.11 57.17 51.72
Al 2 O 3 20.23 27.15 25.9 28.31 27.91 24.41 25.06 24.94 24.89 21.43 20.97 29.95 27.49 30.7
FeO 0.05 0.24 0.02 0.51 0.37 0.3 0.09 0.09 0.13 0.1 0.01 0.74 0.52 5.15
Na 2 O 7.43 6.59 7.05 5.94 6.2 8.17 7.84 8.53 7.81 10.87 8.04 4.76 6.55 6.08
K 2 O 3.86 0.19 0.35 0.19 0.15 0.09 0.14 0.12 0.6 0.08 3.86 0.04 0.06 0.22
Sum 96.92 100.56 99.07 100.73 100.49 99.42 99.36 100.51 98.92 100.99 100.37 100.36 100.71 102.23
Si 2.956 2.57 2.622 2.501 2.523 2.713 2.691 2.695 2.68 2.914 2.921 2.4 2.55 2.336
Al 1.085 1.427 1.378 1.494 1.473 1.286 1.32 1.302 1.323 1.096 1.092 1.595 1.445 1.635
Fe 2 0.002 0.009 0.001 0.019 0.014 0.011 0.003 0.003 0.005 0.004 0.001 0.028 0.02 0.195
Ca 0.017 0.418 0.367 0.474 0.454 0.272 0.287 0.282 0.29 0.062 0.063 0.569 0.423 0.39
Na 0.655 0.57 0.617 0.516 0.538 0.708 0.68 0.732 0.683 0.915 0.689 0.417 0.566 0.533
K 0.224 0.011 0.02 0.011 0.008 0.005 0.008 0.007 0.034 0.004 0.218 0.002 0.004 0.013
Sum 4.941 5.006 5.007 5.015 5.012 5 4.992 5.023 5.017 4.997 4.985 5.012 5.011 5.118
Xan 0.02 0.42 0.37 0.47 0.45 0.28 0.29 0.28 0.29 0.06 0.07 0.58 0.43 0.42
Xab 0.73 0.57 0.61 0.52 0.54 0.72 0.7 0.72 0.68 0.93 0.71 0.42 0.57 0.57
Trang 7Table 2 (Continued )
(d) Biotite (bi)
Vn353 bi
synf core
Vn356a bi synf core
Vn362 synf./ga core
Vn362 synf.
core
Vn362 incl.
in ga core
Vn363 incl.
in ga core
Vn414.S4 synf phl/ga core
Vn414B synf core
Vn414 synf rim
Vn414B synf/ga rim
Vn413 synf./sil core
Vn415 included in
sp core
Vn415NL incl in ga core SiO 2 37.71 38.79 36.66 37.75 36.43 36.83 37.3 35.53 35.94 36.81 33.62 36.35 35.57
Al 2 O 3 17.76 17.08 16.15 16.3 16.3 15.32 18.46 17.9 18.21 17.46 18.31 18.36 16.62
MgO 12.81 12.03 14 15.36 14.77 12.63 18.01 13.43 12.37 14.45 10.66 13.13 16.76
FeO 13.03 12.42 13.84 13.52 12.12 16.15 9.74 14.94 16.15 13.82 19.5 15.87 11.25
Na 2 O 0.14 0.19 0.22 0.22 0.34 0.17 0.08 0.14 0.06 0.12 0.22 0.18 0.41
K 2 O 9.35 9.3 9.91 9.68 9.47 9.64 9.99 9.99 10.32 10.23 9.79 9.64 9.35
Sum 101.17 99.1 99.55 100.17 99.61 100.9 98.66 99.37 100.3 99.99 98.5 99.98 99.35
Si 2.726 2.846 2.726 2.773 2.684 2.728 2.733 2.66 2.681 2.721 2.603 2.703 2.622
Ti 0.326 0.278 0.259 0.174 0.332 0.331 0.05 0.191 0.176 0.166 0.144 0.132 0.289
Al 1.514 1.477 1.415 1.411 1.415 1.337 1.594 1.58 1.601 1.522 1.672 1.609 1.444
Mg 1.381 1.316 1.552 1.682 1.622 1.394 1.967 1.5 1.375 1.592 1.23 1.455 1.841
Fe 2 0.788 0.762 0.86 0.83 0.747 1 0.597 0.935 1.007 0.855 1.263 0.987 0.694
Mn 0.002 0.001 0 0.001 0.001 0.002 0.001 0 0.001 0.001 0.002 0.004 0.003
Na 0.02 0.028 0.032 0.032 0.049 0.025 0.012 0.021 0.009 0.017 0.034 0.026 0.058
K 0.862 0.871 0.94 0.907 0.89 0.91 0.933 0.955 0.982 0.965 0.968 0.914 0.879
Sum 9.631 9.587 9.792 9.816 9.745 9.736 9.891 9.846 9.838 9.842 9.917 9.831 9.835
XFe 0.363 0.367 0.357 0.331 0.315 0.418 0.233 0.384 0.423 0.349 0.507 0.404 0.274
(e) Garnet (Ga)
Vn355 core Vn362 core Vn362 rim/bi Vn363NL core Vn363 core 414-S4 core Vn414BNL rim/qz Vn414BNL rim/bi Vn414BNL rim/spl Vn413 incl in pl Vn415 core Vn803 core Vn803 rim/qz SiO 2 38.000 37.290 36.990 38.330 37.860 37.470 37.270 36.770 37.370 34.840 37.990 37.770 37.790
TiO 2 0.050 0.050 0.070 0.050 0.040 0.020 0.010 0.010 0.000 0.010 0.040 0.060 0.040
Al 2 O 3 21.840 22.380 22.150 22.170 21.810 21.560 21.390 21.210 21.550 22.350 21.790 22.080 22.120
Cr 2 O 3 0.000 0.010 0.040 0.020 0.030 0.000 0.000 0.010 0.020 0.100 0.010 0.020 0.020
Fe 2 O 3 2.270 2.990 2.510 2.280 1.160 1.720 2.110 2.180 1.420 1.290 1.840 2.100 2.290
MgO 7.540 8.370 5.790 9.540 5.800 6.430 6.070 4.620 5.150 3.640 6.530 7.770 7.780
FeO 30.750 27.340 31.460 26.740 32.740 30.840 31.170 33.060 32.930 32.610 30.210 29.110 29.370
MnO 1.010 0.480 0.800 0.380 0.540 1.540 1.480 1.490 1.470 1.840 1.900 0.560 0.580
ZnO 0.020 0.000 0.000 0.040 0.000 0.000 0.010 0.000 0.060 0.000 0.000 0.030 0.060
CaO 0.170 1.440 1.220 1.310 1.270 0.720 0.810 0.810 0.790 0.390 1.320 1.260 0.960
Na 2 O 0.000 0.000 0.000 0.010 0.010 0.000 0.010 0.020 0.000 0.040 0.000 0.010 0.030
K 2 O 0.000 0.000 0.040 0.000 0.000 0.010 0.000 0.010 0.000 0.000 0.000 0.000 0.000
Sum 101.660 100.360 101.060 100.880 101.260 100.310 100.330 100.200 100.770 97.110 101.630 100.770 101.040
Si 2.936 2.888 2.900 2.932 2.959 2.949 2.942 2.937 2.953 2.873 2.947 2.927 2.924
Ti 0.003 0.003 0.004 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.002 0.004 0.003
Trang 8Cr 0.000 0.001 0.002 0.001 0.002 0.000 0.000 0.001 0.001 0.006 0.001 0.001 0.001
Fe 3 0.132 0.174 0.148 0.131 0.068 0.102 0.125 0.131 0.084 0.080 0.107 0.122 0.134
Mg 0.869 0.967 0.677 1.087 0.676 0.754 0.714 0.550 0.607 0.448 0.755 0.898 0.898
Fe 2 1.987 1.771 2.063 1.710 2.140 2.030 2.058 2.208 2.177 2.249 1.960 1.886 1.900
Mn 0.066 0.032 0.053 0.025 0.036 0.103 0.099 0.101 0.099 0.129 0.125 0.037 0.038
Zn 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.001 0.003
Ca 0.014 0.120 0.102 0.107 0.107 0.061 0.068 0.070 0.067 0.035 0.110 0.105 0.079
Na 0.001 0.001 0.000 0.002 0.001 0.000 0.001 0.004 0.000 0.006 0.000 0.002 0.004
K 0.000 0.000 0.004 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 Sum 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 XFe 0.696 0.647 0.753 0.611 0.760 0.729 0.742 0.801 0.782 0.834 0.722 0.677 0.679 Xalm 0.680 0.610 0.710 0.580 0.720 0.690 0.700 0.750 0.740 0.790 0.660 0.640 0.650 Xpyr 0.300 0.330 0.230 0.370 0.230 0.260 0.240 0.190 0.210 0.160 0.260 0.310 0.310 Xgro 0.000 0.040 0.040 0.040 0.040 0.020 0.020 0.020 0.020 0.010 0.040 0.040 0.030 Xspe 0.020 0.010 0.020 0.010 0.010 0.030 0.030 0.030 0.030 0.050 0.040 0.010 0.010 (f) Cordierite (Crd).
Vn413 crd1/bi core Vn413 crd1/bi rim Vn363 crd2 core Vn363 crd2/ga rim Vn414-1 rim Vn414-2 crd2/sp rim Vn414-2 crd2/ga rim Vn415 crd2/ga rim Vn415 crd2/bi rim
Trang 9Table 2 (Continued )
(g) Prismatic sillimanite (sil)
Vn353 Vn362 Vn362 Vn363 Vn414.S4 Vn414.S4 Vn414BNL Vn414BNL Vn413 Vn415 Vn415 Vn803 Vn803 SiO 2 36.1 39.73 36.24 36.41 35.62 35.84 35.94 35.13 34.95 36.42 36.24 36.3 36.16
Al 2 O 3 63.92 60.1 62.93 63.96 63.99 63.83 62.85 64.04 63.37 63.22 63.22 63.76 64.01
Cr 2 O 3 0.07 0.02 0.04 0.05 0.03 0.03 0.03 0.02 0.02 0.01 0.06 0.04 0.06
Sum 100.45 102.74 100.61 100.81 101.07 100.99 99.85 100.02 99.52 100.64 100.77 100.44 100.86
Si 0.972 1.05 0.977 0.976 0.958 0.963 0.975 0.952 0.953 0.98 0.975 0.977 0.97
Al 2.028 1.872 2 2.022 2.028 2.022 2.011 2.046 2.038 2.006 2.006 2.023 2.025
Fe 3 0.004 0.039 0.024 0.006 0.026 0.022 0.02 0.016 0.023 0.018 0.024 0.005 0.011
Sum 3.01 2.995 3.01 3.008 3.015 3.013 3.009 3.017 3.016 3.008 3.009 3.008 3.01 (h) Ilmenite (il)
Vn363/sp2,
crd2 core
Vn363/crd2 rim
Vn363/crd2, sulph, sp2 rim
Vn414-S4 in crd2/sp2 rim
Vn414-1 in crd2/mt, sp core
Vn414B matrix
il rim/bi
Vn413/mt core Vn413 incl in
mph core
Vn415/bi12 rim
Vn415 in crd2 rim/sp2
Vn803/ga rim
TiO 2 54.83 50.7 51.03 51.01 48.86 50.66 47.47 46.89 49.69 49.61 53.12
Sum 103.27 101.79 100.2 98.1 98.42 99.97 102.52 97.26 99.04 99.7 99.34
Trang 10(i) Magnetite (mt)