Many studieshaveconcentrated onimprovingthecorrosion resistanceof copper alloys viavarious methods suchas equal-channel angular pressing [11,12], dynamic plastic deformation [13],surface
Trang 1Contents lists available atScienceDirect
j o u r n a l h o m e p a g e :w w w e l s e v i e r c o m / l o c a t e / c o r s c i
Yttrium 3-(4-nitrophenyl)-2-propenoate used as inhibitor against
copper alloy corrosion in 0.1 M NaCl solution
Nguyen Dang Nama,∗, Vo Quoc Thangb, Nguyen To Hoaia, Pham Van Hienc,∗∗
a Petroleum Department, PetroVietnam University, 762 Cach Mang Thang Tam Street, Long Toan Ward, Ba Ria City, Ba Ria, Vung Tau Province, Vietnam
b Faculty of Fundamental Science, PetroVietnam University, 762 Cach Mang Thang Tam Street, Long Toan Ward, Ba Ria City, Ba Ria, Vung Tau Province,
Vietnam
c Department of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
a r t i c l e i n f o
Article history:
Received 13 May 2016
Received in revised form 2 August 2016
Accepted 6 August 2016
Available online xxx
Keywords:
A Copper
B IR spectroscopy
B SEM
B Polarization
C Neutral inhibition
a b s t r a c t
Yttrium3-(4-nitrophenyl)-2-propenoatehasbeenstudiedasaneffectivecorrosioninhibitorforcopper alloyin0.1Mchloridesolution.Theresultsshowthatthesurfaceofcopperalloycouponsexposedto solu-tionscontaining0.45mMyttrium3-(4-nitrophenyl)-2-propenoatehadnosignsofcorrosionattackdue
toprotectivefilmformation,whereasthesurfaceofcopperalloycouponsexposedtonon-inhibitorand lowerconcentrationsofyttrium3-(4-nitrophenyl)-2-propenoatecontainingsolutionswereseverely cor-roded.Ahighinhibitionperformanceisattributedtotheformingprotectiveinhibitingdepositsthatslow downtheelectrochemicalcorrosionreactionsandmitigatecorrosionbypromotingrandomdistribution
ofminoranodes
©2016ElsevierLtd.Allrightsreserved
1 Introduction
Copperanditsalloysareidealmaterialsfortubecastingand
pipeproductsduetotheirgoodelectricalandthermalconducting
properties,corrosionresistance,antibacterialnature,weldability,
ductility,toughness,nonmagneticcharacteristics,andeasytoform
alloysalongwithrecyclablility[1–3].Duetotheseproperties,they
havebeenextensivelyappliedtostorepotablewaterinbuildings
andhomesaswellasformanydiversefluidsrangingfromoiland
chemicalprocessestomarineindustries[4–6].Importantly,
cop-peralloyshavehighcorrosionresistance,machinabilityandhigh
levelofheattransferwhichareamajorcriteriaforair-conditioning,
refrigerationsystems,firesprinklersystemsandfuelgas
distribu-tionsystems.Unfortunately,pittingofcopperalloysispromotedin
thepresenceofammonia,steamwithsufficientlevelsofCO2,NH3,
sulfides,chloridesinwaters,andironoxide[7–9]
Copperisa noblemetalandmorestable intheatmospheric
environment incomparison withzinc oriron During oxidation
processes,itcanlooseoneortwoelectronstoformtwotypesof
pos-itivelychargedions[10].Thesepositivelychargedionscanexiston
itsowninsolution,however,theycanalsoassociatewithnegatively
∗ Corresponding author.
∗∗ Corresponding author.
E-mail addresses: namnd@pvu.edu.vn , ndnam12a18@yahoo.com (N.D Nam),
phamvanhien240991@gmail.com (P.V Hien).
chargedionssuchashydroxide,chloride,carbonate,bicarbonate and sulphateions, aswellasorganiccompoundstoform solu-bleandsolidcomplexesinsolutions,whichisamajorcausefor seriouscorrosionproblemrelatedtocopperalloysinaggressive environmentsasexpectedduringoperationalprocesses.Therefore, improvingthecorrosionresistanceofcopperanditsalloysisan interestingtopicof studieswitha goalofmeetingtherequired corrosionresistance,whichisakeyforcopperanditsalloy appli-cations
Many studieshaveconcentrated onimprovingthecorrosion resistanceof copper alloys viavarious methods suchas equal-channel angular pressing [11,12], dynamic plastic deformation [13],surfacetreatments[14,15],coatings[16,17],alloyingelements [18,19]andcorrosioninhibitors[20–23].Amongthesemethods, theuseofcorrosioninhibitorssignificantlyinfluencesthecorrosion resistanceofcopperalloysduetotheircostsavingsandchanges
insituwithoutanyinterruptionofanoperationalprocess.Forthese reasons, many corrosion inhibitors have been investigated and developed[20–26].Coppercorrosioninhibitionhasbeenstudied fordecadesandisdoneextremelyeffectivelywithbenzotriazole (BTA),whichisnotparticularlytoxic.Therearenumerousstudies
ofBTAactiononcopperalloyinvariouscorrosionenvironments suchaschlorideions,acidicandneutralsolutions[27–32] Unfortu-nately,BTAactionisweakerinenvironmentcontainingaggressive ionsaswellasinhighlyacidicandalkalineenvironments Therecent conceptsrevealedbyvariousresearchersprovide guideforvariousnewapproachesintermsofdesigningsaferand http://dx.doi.org/10.1016/j.corsci.2016.08.005
0010-938X/© 2016 Elsevier Ltd All rights reserved.
Trang 2Table 1
Copper pipe alloy compositions were checked by optical emission spectroscopy.
Chemical elements (wt.%
0.0369 0.0029 0.0039 0.0338 0.0066 0.0125 0.0041 0.0016 <0.0002 <0.0006 <0.0002 <0.0002 <0.0015 <0.0002 Bal.
environmentallyfriendlyinhibitors.Oneearlierapproachwasto
usepolyphosphateatrelativelyhighlevelswhichwasbasedon
undergoingaprocessofhydrolysis,resultingincalcium
orthophos-phatedeposition.Lateron,ortho-,poly-,andorganicphosphates
havebeencombinedtoimprovethelimitationofpolyphosphate
systems and provide the desired corrosion protection [33–36]
However,one ofconcern isassociated withcalcium phosphate
deposition,whichmakesthemproblematic.Otherapproachwas
todevelopsynergisticrareearthorganiccompoundsviasalvaging
a multifunctional inhibition containing inhibitive properties of
theircomponents[37–46]resultinginsuperiorinhibition when
comparedwitheitherofindividualcomponentsatthesame
con-centration.Inaddition, theuseof thi-andtriazolyl compounds
hasbeenrecommendedascorrosioninhibitorsforcopperalloys
due tothe generationof protective film onthe coppersurface
[47–49].Likewise,the potassium ethyl xanthate[50,51], indole
[52], 5-chloroindole [53], purine [54–56], adenine [55,56] (AD)
andothergroups[57–59]canalsofacilitatetheformationofthe
protectivefilmonthecoppersurfaceinaggressiveenviroments
Importantly,rareearth organiccompounds performedeffective
corrosion inhibitors for both steel and aluminum substrates
Thesecompoundsformbothcontinuousandheterogeneous
pro-tective surface film, leading to extremely improved corrosion
resistance[37,46].Therefore,theaimofthis presentworkisto
develop yttrium 3-(4-nitrophenyl)-2-propenoate compound, as
newinhibitoranddiscusstheireffectivenessinpreventing
corro-siononcopperpipealloy
2 Experimental procedures
2.1 Chemicalsandmaterials
Yttrium 3-(4-nitrophenyl)-2-propenoate (Y(4NO2Cin)3,
“4NO2Cin” is a derivative of 4-nitrocinnamic acid) was
syn-thesizedusingYCl3 and3-(4-nitrophenyl)-2-propenoicacidand
usedascorrosioninhibitor.Molecularstructureofyttrium
3-(4-nitrophenyl)-2-propenoate (Y(4NO2Cin)3) inhibitor is given in
Fig.1 The compounds includingYCl3 and
3-(4-nitrophenyl)-2-propenoicacidwerepurchasedfromSigmaAldrich.Y(4NO2Cin)3
wasadded to 0.1M NaClsolution to make final concentration
of 0.00, 0.02, 0.15, and 0.45mM using reagent grade sodium
chloride, distilled water, and 12h for stirring The working
electrodes used for the electrochemical tests and copper alloy
couponsweremachinedfromacopperalloywithdimensionof
10×10×1.5mm3.Thecopperalloyelectrodeswerecoatedwith
anepoxyresinandattachedtoaTeflonholder.Thecopperalloy
compositionswerecheckedbyopticalemissionspectroscopyand
giveninTable1.Thecopperalloyspecimensforcorrosiontests
werefinished by grindingwith 1200-grit silicon carbide paper
with10×10mm2ofexposedarea
2.2 Electrochemicalinvestigationmethods
Beforeelectrochemicaltest,thesampleswerekeptinthenatural
aeratedsolutionfor2htostabilizetheopen-circuitpotential(OCP)
Theelectrochemicalimpedancespectroscopy(EIS)testswere
per-formedatEOCPandconductedeverytwohouroveraperiodof20h
TheEIStestswereconductedusingaVSPsystem(BioLogicScientific
Fig 1.Molecular structure of yttrium 3-(4-nitrophenyl)-2-propenoate corrosion inhibitor.
Instruments)withacommercialsoftwareprogramforAC measure-ments.Thepeak-to-peakamplitudeofthesinusoidalperturbation was10mV.Thefrequencyrangedfrom100kHzto10mHz Poten-tiodynamicpolarizationtestswerecarriedoutafterEIS.Atitanium counterelectrodewasusedwithasilver/silverchloride(Ag/AgCl) electrodeasthereferenceelectrode.Thepotentialoftheelectrodes wassweptatarateof0.166mV/srangingfromaninitialpotential
of−250mVvs.EOCPto500mVAg/AgCl.Potentiostatictestwas per-formedtofurtherexaminetheeffectofY(4NO2Cin)3onthestability
ofprotectivefilmformedonthealloysurface.Thepotentiostatic testswereperformedataconstantpotentialof0mVAg/AgClusing BiologicVSPmultichannelpotentiostatafterimmersionfor20hin thesolution.Toensurereproducibility,threemeasurementswere runforelectrochemicalandimmersiontests
2.3 Thewirebeamelectrode Wirebeamelectrode(WBE)wasusedtostudythetendencyof localizedcorrosionofcopperalloyinthetestsolutions.TheWBE wasmadefromonehundredidenticalcopperalloywires embed-dedinepoxyresin,insulatedfromeachotherwithathinepoxy layer.Eachwirehadadiameterof0.19cmandactedbothasa sen-sorand asacorrosionsubstrate.Theworkingareawasgrinded using1200-gritsiliconcarbidepaper,rinsedwithdeionisedwater andethanolbeforebeingexposedtothreelitersof0.1MNaCl solu-tionatroomtemperature.After30minsofinitialcorrosiontesting, inhibitorwereinjectedintothetestingcellwithregularaddition
atevery20h.Corrosionprocesses weremonitoredbymapping galvaniccurrentsbetweenachosenwireandalltheotherwires shortedtogetherusingapre-programmedAutoswitchdeviceand
anACMAutoZRA.Galvaniccurrentdatawereobtainedand ana-lyzed.The measurements weretaken regularlyto examinethe changestakingplacewiththeintroductionoftheinhibitors
Trang 3Table 2
Summary of corrosion parameters as obtained from potentiodynamic polarization measurements, showing average and standard deviations.
(mM) (mV Ag/AgCl ) (×10 8 A/cm 2 ) (mV/decade) (mV/decade) (R p cm 2 )
2.4 Surfacecharacterization
To investigatethe relationship between theelectrochemical
behaviourandsurfacemorphology,thespecimenswereexamined
byscanningelectronmicroscopy(SEM) usingSEMSupra55 VP
afterimmersionfor20hin0.1MNaClsolutioncontainingdifferent
Y(4NO2Cin)3concentrationsatroomtemperature.Inaddition,the
protectivefilmwasalsoevaluatedbyattenuatedtotalreflectance
Fouriertransforminfraredspectroscopy(Alpha-FTIR
spectrome-ter)after2and30min,1and20hattheopen-circuitpotential
3 Results and discussion
Fig.2(a)presentsthepotentiodynamicpolarizationcurvesof
copperalloywithoutandwithY(4NO2Cin)3additionin0.1MNaCl
solutionatroomtemperature(approximately25◦C).In
uninhib-itedsystem,theanodicpolarizationcurveshowedthreeregions:
(i)fromcorrosionpotential,thecopperwasdissolutedduetoa
continuousincreaseof theanodiccurrentdensity with
increas-ingofpotential;(ii)filmformationduetoadecreaseoftheanodic
currentdensitywiththeincreasingofpotential;and(iii)the
disso-lutionofthefilmduetoanincreaseoftheanodiccurrentdensity
withtheincreasingpotential.Incontrast,thepresenceofinhibitors
performedthesignificantdecreasein anodiccurrent densityto
lowervaluescomparedtothoseintheuninhibitedsystem
Fur-thermore,theincreaseofY(4NO2Cin)3concentrationleadstolower
corrosioncurrentdensities.Theresultsalsoindicatedbothanodic
andcathodicinhibition.However,asignificanteffectontheanodic
reactionswasobservedduetotheshifttohigherpotentialswhen
theconcentrationofinhibitorwasincreased,resultinginananodic
inhibition Therefore, anincrease of theinhibitorconcentration
shouldresultinashifttomorepositivepotentialsandanoverall
decreaseincorrosioncurrentdensity.Inaddition,theY(4NO2Cin)3
incrementsignificantlyreducedtheanodiccurrentdensityandit
didnotshowrapidincreaseuntil400mVAg/AgClasshownin
polar-ization curveof thespecimen immersedin solutioncontaining
0.45mMinhibitorinFig.2(a).Thiscouldbeduetothefactthatthe
protectivefilmformedonthealloysurface,whichobstructs
diffu-sionofionsinelectrolyteinvolvedintheanodicprocessoccurring
ontheelectrodesurface,suchaschlorideions.Thefilmformation
isensuredbyothertechniquesinnextsections.Table2showsthe
corrosionparametersofthespecimensdeterminedfromthe
poten-tiodynamicpolarizationtest.Thecorrosionparametersaccording
topotentiodynamicpolarizationofthefirst,second,andthirdtests
arelistedas1st,2ndand3rdandcomparedinTable2.Theinhibition
Fig 2.(a) Potentiodynamic polarization curves after 20-h immersion in solutions and (b) inhibition performance measured from potentiodynamic polarization. efficiencyinFig.2(b)wasdeterminedfromthepolarizationcurves usingthefollowingequations:
=iocorr−icorr
io
where (%)istheinhibitionperformance,icorr andio
corrare thecorrosioncurrentdensityinthepresenceandabsenceofthe
Trang 4Fig 3.Current density as a function of time under a constant applied anodic
poten-tial of 0 mV Ag/AgCl after 20-h immersion in solutions.
Y(4NO2Cin)3 inhibitor, respectively.It is noted thatthe current
density (icorr) values were calculated using Tafel extrapolation
methods.Thecomparisonoftheinhibitionperformancerevealed
thattheadditionof Y(4NO2Cin)3 inhibitor ledtoa high
inhibi-tionperformance.Thevalueincreasedwithincreasinginhibitor
concentration,indicatinganimprovedinhibitionperformance
Toensurethefilmformationinpotentiodynamicpolarization
resultsandtocheckthestabilityoftheprotectivefilm,
potentio-statictestswereperformedusinganappliedpotentialthatwas
determinedbaseduponthedatafromthepotentiodynamic
polar-izationcurvesinFig.2(a),correspondingtotheenrichmentofthe
protectivefilm.Fig.3showstheresultsofthepotentiostatictest
performedataconstantpotentialof0mVAg/AgClfor1h.The
cur-rentdensitiesofthecopperalloyin0.1MNaClsolutioncontaining
Y(4NO2Cin)3remainedatalowvalueascomparedwiththatofthe
copperalloyinsolutionwithoutY(4NO2Cin)3.Thissuggeststhat
theY(4NO2Cin)3 additionresultedinthelowanodicdissolution
ofthecopperalloy.Theresultsuggeststheformationofprotective filmmayhavehinderedtheoutwarddiffusionofcorrosionproduct ionssuchasCu+,Cu2+andtheinwardpenetrationofCl−ions.The decreaseincurrentdensitywithincreasingY(4NO2Cin)3 concen-trationcouldbeduetotheincreasedcoverageofthemoleculeson thealloysurface,resultinginprotectivefilmformationtopromote highinhibitionperformancewhichhasbeenshownwithEISand surfaceanalysisresults
Tofurtherstudyinterfacialchangesatthecopperalloysurface withandwithoutinhibitoraddition,electrochemicalimpedance measurementshavebeencarriedout.Fig.4showstheimpedance spectraintheformoftheNyquistplots ofthealloyspecimens immersedin 0.1MNaClsolutions containingdifferentinhibitor concentrationsrangedfrom0.00to0.45mMfor20h.The semi-circular depression in the Nyquist diagram was attributed to theheterogeneityofthesurface,thesurfaceroughnessandthe existenceoftwodifferentprocesseshavingpracticallythesame relaxation time In this study, the heterogeneityof the surface wasincreasedforthespecimensimmersedin0.1MNaClsolutions withoutandwithlowinhibitorconcentrationsduetothepitting, consistingwithahighcorrosionrate.Theincreaseinthediameter
ofthearcindicatedthatthereistheimprovementofamore capac-itivesurfacefilm,promotingtheformationoftheprotectivelayer Fig.5presentstheBodeplots(phaseanglevs.frequency)obtained fromthecopperalloywithdifferentY(4NO2Cin)3 contentsin a 0.1MNaClsolutionfor20h.Thephaseanglediagramsobtained fromcopperalloyelectrodeintheY(4NO2Cin)3-containing solu-tions showed more complicated than that from copper alloy electrode in solution withoutY(4NO2Cin)3 addition, suggesting thattheadditionofY(4NO2Cin)3promotestheformationofa pro-tectivefilmonthealloysurface[60,61].Theapertureofthephase anglesincreasedwithincreasingY(4NO2Cin)3concentrationwhich
Fig 4.Nyquist plots of copper specimens in 0.1 M NaCl solution containing: (a) 0.00, (b) 0.02, (c) 0.15 and (d) 0.45 mM Y(4NO 2 Cin) 3
Trang 5Fig 5.Bode plots (phase angle vs frequency) of copper specimens in 0.1 M NaCl solution containing: (a) 0.00, (b) 0.02, (c) 0.15 and (d) 0.45 mM Y(4NO 2 Cin) 3
couldbea resultof animprovedsurface coverageleading toa
morecapacitivesurfacefilmwhichisconsistentwiththe
potentio-dynamicpolarizationandpotentiostaticresultsdescribedabove
Furtherinformationaboutelectrochemicalprocessesoccurringat
thesolution-electrodeinterfaceis obtainedby detailedanalysis
ofimpedancespectrausingsuitablydesignedequivalentcircuits
Fig.6(a)showsthecircuitforanuninhibitedcopperalloysurface
(Rproisreplacedbycorrosionproductresistanceforthespecimen
immersedinsolutionwithoutinhibitoraddition)atlowinhibitor
concentrationandFig.6(b)shows morecomplicated equivalent
circuitdesigned tosimulate theprotective film formed onthe
copperalloysurfaceimmersedin0.1MNaClsolutionswithhigh
Y(4NO2Cin)3concentrations.Inthecircuit,Rsrepresentsthe
solu-tionresistance, CPEtheconstantphaseelement,CPE1andCPE2
theconstantphaseelementofthefirstandthesecondprotective
films,Rpro1 and Rpro2 thefirstand secondprotectivefilm
resis-tances,CPEdltheconstantphaseelementofthedoublelayer,Rctthe
chargetransferresistance.Inthiscase,thecapacitorwasreplaced
withaCPEtoimprovethefittingquality,wheretheCPEcontains
adouble-layercapacitance(C)andphenomenologicalcoefficient
(n).Thevalueofnseemstobeassociatedwiththenon-uniform
distributionofcurrentasaresultofroughnessandsurfacedefects
ThenvalueofaCPEindicates:n=1,acapacitance;n=0.5,a
War-burgimpedance;n=0,aresistanceandn=−1,aninductance.Inthe
presentstudy,nwasconsistentlymaintainednear0.75,asaresult
ofthedeviationfromidealdielectricbehavior[60,61]
TheZsimpwinprogramwasusedtofittheEISdatato
deter-minetheoptimizedvaluesforthesolution,protectivelayers,charge
transfer,total resistanceparameters(Rs,Rpro,RctandRtotal)and
capacitances,whicharepresentedinFigs.7and8.Thevariationof
thesolutionresistance(Rs)withtheimmersiontimeforall
spec-imensisprovidedinFig.7(a).Itcanbeobservedthatthesolution
resistancesarestableduringthe20hofimmersiontimeforall
spec-imens.Inaddition,thesolutionresistanceincreasedwithincrease
Fig 6.Proposed equivalent circuits used to fit EIS data for copper immersed in 0.1 M NaCl solution with inhibitor additions: (a) two constant phase element (R pro
is replaced by corrosion product resistance for solution without inhibitor addition) and (b) three constant phase element.
inhibitorconcentration,indicatingeffectofinhibitoronthe con-ductivityofsolutions.Fig.7(b–d)showstheprotectiveresistances
ofallspecimens.Solutionswithoutandwith0.02mMinhibitor
Trang 6per-Fig 7. Effect of Y(4NO 2 Cin) 3 inhibitor concentrations on: (a) solution resistance, (b) first protective film, (c) second protective film, (d) total protective film, (e) charge transfer and (f) total resistances as a function of immersion time.
formedsinglelayer,whileamorecomplicatedprotectivelayerwas
performedatconcentrations of0.15and0.45mMinhibitor.The
fittedresultsareinagreementwithBodeplotsinFig.5(candd)
andsurfaceanalysisresults.Itcanbeobservedthattheprotective
layerresistanceincreasessteadilyastheimmersiontimeincreases
during20hofimmersiontimeandstronglyincreaseswith
increas-inginhibitorconcentration.Thisresultindicatesthattheincreasing
inhibitorcontentincreasesnotonlytheprotectivelayerresistance
butalsoitsstability.Thiscouldbeattributedtothefactthatthe
protectivelayersareformedonthesurfaceofthecopperalloyand
thesebarrierlayersarefurtherimprovedbyincreaseininhibitor
additiontothesolutionasnotedabovefromthepotentiodynamic
andpotentiostaticpolarizationmeasurements.Fig.7(eandf)show
thechargetransfer(Rct)andtotalresistances(Rtotal=Rs+Rpro+Rct),
whichalsoincreaseastheimmersiontimeincreasesand asthe
inhibitoradditionincreases.Thisisveryimportantbecausehigher
RctandRtotalvaluesindicatebetterinhibitionperformance
The important capacitance values reflect aggressive
compo-nents in solution such as water and electrolyte ingress in the
protectivelayers.TheCproandCdlareplottedandshowninFig.8 Fig.8(a–c)showsthecapacitanceoftheprotectivelayers.It indi-catesthattheCprovaluesaredecreasedwithexposuretimeand withincreasinginhibitorconcentration,meaningthattheingress
ofaggressivecomponentsinsolutionishinderedbythe protec-tivefilmformedonthecopperalloysurfaces.Thisprotectivefilm becomesmorestabileandcompactwheninhibitoradditiontothe solutionincreases.CdlvaluesinFig.8(d)werealsodeterminedby fittingtheimpedancespectrawiththesuggestedelectricalmodel describingtheelectrochemicalreactionsoccurringattheexposed metalsurfaceinFig.6.Higherdoublelayercapacitancevaluesare observedforsolutionswithoutandwith0.02Minhibitorexplained
bythepooradhesionofcorrosionproductandlowcoverof protec-tivefilmformedonthesurfaces.Forsolutionwithhigherinhibitor concentrations,thesevalues decreasedduring20h.Accordingly, thetendencyobservedforCdlvaluesofthesespecimensfullyagrees withincreaseofcoveredsurfaceareabyprotectivefilm.Theresults indicatedthatCdlvaluesdecreasedwithincreasinginhibitor con-centration.Thiscanbeaccountedforthelowerdensityofpores
Trang 7Fig 8.Effect of Y(4NO 2 Cin) 3 inhibitor concentrations on: (a) first protective, (b) second protective, (c) total protective and (d) double layer capacitances as a function of immersion time.
reachingthemetal leadingto a total lower valueof theactive
metallicsurfacearea.Higherinhibitorconcentrationconsequently
resultsinhigherinhibitionofthecorrosionprocessandconsequent
improvementsof compactibility, adhesive capacity, and surface
coverageoftheprotectivefilmformedonthesubstratesurface
A WBE was used to consider the localized corrosion
phe-nomenonofcopperalloyina0.1MNaClsolution.Galvaniccurrent
as a local electrochemical parameter has been measuredfrom
local areas of a WBE surface, determining the localized
corro-sion processes The galvanic current distribution mapsshowed
instantaneousgalvanic current distributionover a WBE surface
aregiveninFig.9(a–d),thesearecharacterizedbyalarge
num-berofminoranodesrandomlydistributedovertheWBEsurface
Thelocalizedcorrosiondissolutioncanbedescribedbythe
max-imumanodiccurrentdensityofthemostactiveanode,whereas
overallcorrosionofthespecimenisdescribedbythetotalanodic
currentdensity.Inaddition,theresultsalsoshowthatthe
loca-tionsofmostanodeskeptchanging ina randommanner.After
the addition of Y(4NO2Cin)3, almost all locations behaved as
anodes, cathodes and the values of current density decreased
with increasing Y(4NO2Cin)3 addition Furthermore, the
maxi-mumanodicdissolutionandcathodiccurrentdensitiesdropped
to2.88×10−6 and−1.76×10−6A/cm2respectively,after20hof
0.45mMY(4NO2Cin)3contentin0.1MNaClsolution,suggesting
thataddingY(4NO2Cin)3 to0.1MNaClsolutionactedasamixed
typeinhibitor,predominantly anodicinhibitor,thatprefers
uni-formcorrosionratherthanlocalizedcorrosion.Theanodic,cathodic
andtotalcurrentdensitiesinFig.9(e)alsodecreasedsignificantly,
indicatingreductioninbothoverallanodicdissolutionandcathodic
currentandtheinhibitionofgeneralcorrosion.Thisisalso
con-sistentwithboth anodicandcathodicinhibitionwithdominant
anodicinhibitionas showninthepotentiodynamicpolarization
results
Surfaceanalysiswascarriedouttofurtherunderstandthe sur-face morphology and properties and their effects oncorrosion behavior.Fig.10showsSEMimagesofthecopperalloysurfaces after 20h immersion in 0.1M NaCl solution withoutand with Y(4NO2Cin)3addition.Theresultsindicatethesignificantinfluence
ofthecorrosioninhibitoronthecopperalloysurface.Fig.10(aand b)correspondstothemorphologyofcopperalloysurfaceexposed
to0.1MNaClsolution withoutand with0.02mMY(4NO2Cin)3
addition,whichshowagreaterlevelofcorrosionforcopperalloy withoutinhibitor,resultingintheinwardpenetrationofions,such
asCl−.Whilealessattackofcorrosionhasbeenobservedonthe surfaceofcopperalloyexposedto0.1MNaClsolutioncontaining 0.15mMY(4NO2Cin)3 asshowninFig.10(c).Fig.10(d)doesnot showanycorrosionattack,suggestingtheadditionofY(4NO2Cin)3
compoundleadstoamoreinhibitedcorrosion
Fig 11 presents the attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) results Fig 11(a) demonstrates ATR-FTIR result of raw Y(4-NO2Cin)3 powder, this showed (C C)propenyl bands in the infrared spectra of the yttrium 4-nitrocinnamate complexes located at 1643 and
1651cm−1,respectively.Theas(CO2)ands(CO2)absorptionsfor theY(III)complexesoccurat1420and1553cm−1,respectively Furthermore, the as(NO2)and s(NO2) absorptions of yttrium 4-nitrocinnamatewereassignedat1346and1512cm−1, respec-tively[62].TostudytheeffectofY(4-NO2Cin)3concentrationson thecopperalloysurface, alloysurfacesafter20himmersion in 0.1MNaClsolutionscontainingvariousY(4-NO2Cin)3 concentra-tionswerealsomeasuredbyATR-FTIR.Fig.11(b)presentsATR-FTIR spectra results of copperalloy surfaces exposed to 0.1M NaCl solution containing 0.02, 0.15, and 0.45mM Y(4-NO2Cin)3.The mainC Cstretchingofpropenylgrouphasbeenobservedaround
1611and1657cm−1bands.Theinformationpeaksaround1413 and1551cm−1areattributedtotheas(CO2)ands(CO2)
Trang 8absorp-Fig 9. Galvanic current distribution maps measured over a WBE surface in 0.1 M NaCl solution: (a) without Y(4NO 2 Cin) 3 addition, and with (b) 0.02 mM, (c) 0.15 mM, (d) 0.45 mM Y(4NO 2 Cin) 3 addition, and (e) changes of current densities obtained from WBE results.
tions,respectively.Othermainpeaksassignedtotheas(NO2)and
s(NO2)absorptionswereobservedaround1452and1571cm−1,
respectively.Theinformativepeaksaround1200and2150cm−1
are assigned to the C C bands The results indicated that the
absorptionpeakintensitiesoftheC C,(CO2),and(NO2)
absorp-tionsonthecoppersurfacewereincreasedwithanincrease of
Y(4-NO2Cin)3concentration,suggestinganincreaseofthe
forma-tionofamixedmetal4-nitrocinnamatespeciesdepositiononthe
coppersurfaces.Furthermore, tostudy theprocess of film
for-mationonthecoppersurfaces,coppersurfaceswereevaluated
usingATR-FTIRafterimmersionin0.1MNaClsolutioncontaining
0.45mMY(4-NO2Cin)3 after2and 30min,1and20h.Fig.11(c)
presentsATRspectraresultsofcoppersurfacesexposedtoa0.1M
aqueousNaClsolutioncontaining0.45mMY(4-NO2Cin)3 after2
and30min,1and20himmersiontimes.After2minof
immer-sion,ATR-FTIRwasconductedandshowedstrongabsorptionbands
around497,603,and660cm−1,respectively.Thesebandsmaybe
attributedtotheCu-Ostretchingandvibration[63,64]attributed
tothepresenceofthehydratedcopperoxide/hydroxideinsurface
films.Whenimmersiontimeincreased,theintensitiesof
absorp-tion peaks for C C, (CO2), and (NO2) absorptions increased,
indicatingthattheprotectivefilmwasenrichedwithimmersion
time.Thisisconsistentwithelectrochemicalresults,particularly
EISresults.Inaddition,hydratedcopperoxide/hydroxidewasstill present,indicatingthatthehydratedcopperoxide/hydroxidewas initiallyformedonthesurfaces.Thesesituationsleadtopromotea compactandadhesiveprotectivelayerformationonthespecimen surface,resultinginhinderingoftheattackofaggressiveionsin solutions
Theresultsoftheelectrochemicaldataandsurface characteri-sationsuggestedthatinhibitionmechanismcouldberelatedtothe filmformationonthealloysurface.Itshowedevidenceofa domi-nantanodicinhibitionmechanismandalsocharacteristicofanodic protection,butsomeinfluencesonthecathodicreactionprocesses arealsoevident.Thepotentiodynamicpolarizationresultsshowed mixedinhibitionbehaviorwithdominantanodicinhibitioninthe presenceofY(4-NO2Cin)3compoundandtheEISdatadisplayedthe developmentofaprotectivesurfacefilmbytheincreaseof pro-tectiveandchargetransferresistances,aswellasthedecreaseof protectiveanddoublelayercapacitances.Thesurfaceanalysisdata alsoprovidetheevidenceofthefilmformationonalloysurface
aswellasthehydratedcopperwhich isinitiallyformedonthe surfaces.Therefore,Y(4-NO2Cin)3 moleculesmostlikelyhavean uprighttiltedposition,withtheOandNatomspointingtoward thehydratedcopperoncoppersubstrate.Itcouldbeappropriate
toconsiderthefollowinginhibitionmechanismforcopperalloy
Trang 9Fig 10. SEM images of copper surfaces after immersion in 0.1 M NaCl solution containing: (a) 0.00, (b) 0.02, (c) 0.15 and (d) 0.45 mM Y(4NO 2 Cin) 3
Fig 11. ATR-FTIR spectra of (a) Y(4NO 2 Cin) 3 powder as raw material, (b) the copper surface after 20-h immersion in Y(4NO 2 Cin) 3 -containing solutions, and (c) the copper surface after 2-min, 30-min, 1 and 20-h immersion in solution containing 0.45 mM Y(4NO 2 Cin) 3
Trang 10Fig 12.Schematic figure of (a) corrosion process of copper alloy in 0.1 M NaCl
solu-tion without inhibitor, (b) and (c) Y(4NO 2 Cin) 3 inhibition processes of copper alloy
in 0.1 M NaCl solution with inhibitor addition.
in0.1MNaClsolutions.Electrochemicalcorrosioninitiatesatthe
imperfectplaceswhichshouldbesignificantlymorereactivethan
thealloymatrix,makinga changeoflocalizedpH.Thisleadsto
formaninitialhydratedcopperlayeronthesurfacesassimulatedin
Fig.12(a)andthendepositionofprotectiveinhibitivelayers(either
optioninFig.12(b)oroption2inFig.12(c)),thusslowingdown
theelectrochemistryintheseactivelocationsonthecopper
sur-face,whichmostlikelyaccountsfortheinducedanodicinhibition
Inaddition,athin surfacefilmcouldbedepositedontheentire
alloysubstrateduetothecathodicreductionreactions.Itleadsto
formanuniformprotectivefilmonthesubstratesurface,which
correspondsforthehighdegreeofcorrosioninhibition,whichis
alsoconsistentwiththeinfluenceofinhibitorconcentration.When
differentinhibitor concentrationswereaddedtosolutions,they
resultinanimprovedperformanceduetoincreasingamountof
inhibitorcoverage.Thegoodcorrelation,betweenelectrochemical
techniquesandsurfaceanalysisfortheprotectivefilmformation
onthealloysurface,suggeststhatthehighestinhibition
perfor-manceaswellasthefilmformationonthealloysurfacedependon
inhibitorconcentrations
4 Conclusions
Yttrium 3-(4-nitrophenyl)-2-propenoate compound −
Y(4NO2Cin)3 − is abletoinhibit corrosionof copperpipealloy
in0.1Msodiumchloridesolution.Inhibitionefficiencycouldbe
increasedwithanincrease ofinhibitor concentration
Potentio-dynamicpolarizationresultssuggestthat Y(4NO2Cin)3 provided
mixedtype inhibitorwithdominantanodicinhibition ofcopper
alloy in 0.1M sodium chloride solution Y(4NO2Cin)3 inhibitor producedareductioninicorrfrom816nA/cm2to32nA/cm2,high protective inhibiting deposit (Rpro), charge transfer resistances (Rct),and randomdistributionofminoranodes, indicatinggood inhibitionperformance in0.1Msodiumchloridesolutions.SEM andATR-FTIRanalysesofcopperalloysurfaces,afterexposureto Y(4NO2Cin)3-containingsolutions,revealedprogressive,formable depositionofprotectiveinhibitivelayerthathindersthecorrosion reactionsonthecopperalloysurface,therebysignificantly improv-ingthecorrosionresistanceofthecopperalloyunderinvestigated conditions
Acknowledgment
Thisworkisfunded byPetroVietnamUniversityundergrant codeGV1601
References
[1] W Hodge, Some properties of certain high conductivity copper-base alloys, Trans Metall Soc AIME 209 (1957) 408–412.
[2] J.H Bearham, R.J Parker, Elevated temperature tensile, stress-rupture and creep data for six copper-base materials, Metallurgia 78 (1968) 9–14 [3] M.D Hanna, G.W Greenwood, Cavity growth and creep in copper at low stresses, Acta Metall 30 (1982) 719–724.
[4] S.G Temple, Recent developments in properties and protection of copper for electrical use, Met Rev 11 (1966) 47–60.
[5] H Honma, S Mizushima, Applications of ductile electroless copper deposition
on printed circuit boards, Met Finish 82 (1984) 47–52.
[6] W.D France, D.E Trout, Selecting copper alloys for fatigue applications, Metal Prog 101 (1972) 69–72.
[7] A El Warraky, H.A El Shayeb, E.S.M Sherif, Pitting corrosion of copper in chloride solutions, Anti-Corros Method M 51 (2004) 52–64.
[8] S.H Lee, J.G Kim, J.Y Koo, Investigation of pitting corrosion of a copper tube
in a heating system, Eng Fail Anal 17 (2010) 1424–1435.
[9] A.M Abdullah, F.M Al-Kharafi, B.G Ateya, Intergranular corrosion of copper
in the presence of benzotriazole, Scripta Mater 54 (2006) 1673–1677 [10] A.J Bard, R Parsons, J Jordan, Standard Potentials in Aqueous Solution, Marcel Dekker, New York, 1985.
[11] M.Z Bian, Y.L Li, M Mathesh, D Abreu, N.D Nam, Microstructure and texture evolutions and mechanical properties in pure copper by equal-channel angular pressing, J Alloys Comp 578 (2013) 369–372.
[12] H Miyamoto, K Harada, T Mimaki, A Vinogradov, S Hashimoto, Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing, Corros Sci 50 (2008) 1215–1220.
[13] T Sakai, A Belyakov, R Kaibyshev, H Miura, J.J Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog Mater Sci 60 (2014) 130–207.
[14] S Peng, J Han, W Zhao, Z Zeng, J Chen, X Wu, The protection and degradation behaviors of mercapto functional sol-gel coating on copper surface, J Electrochem Soc 162 (2015) C128–C134.
[15] J Blickensderfer, P Altemare, K.O Thiel, H.J Schreier, R Akolkar, Direct electroless plating of iron-boron on copper, J Electrochem Soc 161 (2014) D495–D498.
[16] I Yahyaie, T Khaper, P.K Giesbrecht, M.S Freund, CMOS-compatible polymer-based memory structures on copper substrates, J Electrochem Soc.
161 (2014) D367–D371.
[17] G.K Parker, S.A Holt, Characterization of the deposition of n-octanohydroxamate on copper surfaces, J Electrochem Soc 161 (2014) D277–D286.
[18] R.N Caron, Copper: Alloying, Elsevier, 2016.
[19] S.P Gadag, R Galun, A Weisheit, B.L Mordike, Laser Alloying of Copper and Its Alloys, Springer, 1996.
[20] M Forslund, C Leygraf, P.M Claesson, J Pan, Radial spreading of localized corrosion-induced selective leaching on ␣-brass in dilute NaCl solution, J Electrochem Soc 161 (2014) C330–C338.
[21] S Hosseinpour, M Göthelid, C Leygraf, C.M Johnson, Self-assembled monolayers as inhibitors for the atmospheric corrosion of copper induced by formic acid: a comparison between hexanethiol and hexaneselenol, J Electrochem Soc 161 (2014) C50–C56.
[22] S Hosseinpour, C.M Johnson, C Leygraf, Alkanethiols as inhibitors for the atmospheric corrosion of copper induced by formic acid: effect of chain length, J Electrochem Soc 160 (2013) C270–C276.
[23] R Gaˇsparac, C.R Martin, E Stupniˇsek-Lisac, In situ studies of imidazole and its derivatives as copper corrosion inhibitors I Activation energies and thermodynamics of adsorption, J Electrochem Soc 147 (2000) 548–551 [24] Y Hong, D Roy, S.V Babu, Ammonium dodecyl sulfate as a potential corrosion inhibitor surfactant for electrochemical mechanical planarization of copper, Electrochem Solid-State Lett 8 (2005) G297–G300.