Phame a Combustion Engines and Propulsion Systems Laboratory, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia b Chemical Engineering
Trang 1jo u r n al h om epa g e :w w w e l s e v i e r c o m / l o c a t e / c e p
Thong D Honga,e,∗, Tatang H Soerawidjajab, Iman K Reksowardojoa,
Osamu Fujitac, Zarrah Dunianid, Mai X Phame
a Combustion Engines and Propulsion Systems Laboratory, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung 40132,
Indonesia
b Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
c Division of Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628, Japan
d Research & Development Division, Pertamina Oil Company, Jakarta 13920, Indonesia
e Department of Automotive Engineering, Faculty of Transportation Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City 70350,
Viet Nam
a r t i c l e i n f o
Article history:
Received 31 May 2013
Received in revised form 29 August 2013
Accepted 30 September 2013
Available online 8 October 2013
Keywords:
Aviation biofuel
Bio-jet fuel
Kerosene
Bio-kerosene
Hydroprocessing
a b s t r a c t
Inthepresentwork,theproductionprocessofbio-jetparaffinsisappropriatelyproposedaccordingto theconditionsofthesocioeconomicsituations,thecurrenttechnologiesofbiofuelproductionandthe availablefeedstocksourcesforthetropicalcountries.Theblendingprocessofbio-kerosenewhichisa mixtureofbio-jetparaffinsandfossilkeroseneisalsodisplayed.Thetwoprototypesofbio-paraffins (Bio-P1andBio-JP2),whichweremanufacturedinIndonesiafollowingtheproposedproductionprocess, areusedformakingbio-kerosenesincurrentstudy.Thetheoreticalandexperimentalinvestigationshave beencarriedouttoevaluateandidentifythecriticalpropertiesofbio-kerosenes:distillations,freezing point,lowerheatingvalue,density,flashpointandviscositytoensureASTMcriteriaofjetfuel.Theresults showitcanbeblendeddirectly5%volumeofBio-P1or10%volumeofBio-JP2tocommercialJetA-1for poweringaviationgasturbineengineswithoutredesigningfuelsystemorfuelsupplyinfrastructure.The useofthesebio-paraffinsnotonlyreducesCO2lifecyclebutalsosignificantlydecreasesemissionsof sulfurcompounds(SOx).Withpreliminaryachievementsofthiswork,itisnodoubtaboutthefeasibility
ofdevelopingaviationalternativefuelsaccordingtotheproposedproductionprocessforthetropical countries
© 2013 Elsevier B.V All rights reserved
1 Introduction
Fuelisoneofthebiggestoperatingcostsfortheairtransport
hencetheaviationindustryissignificantlyaffectedbytheoilprices
While thecrudeoiland petroleumproductspricepermanently
fluctuateaccordingtothesocio-politicalsituationofthemainoil
reserves’countriesandtheworld’seconomy.In10years,the
dif-ferenceofjetfuelpricesbetweenthepeaksetinJune2008(3.89
USD/gallon)and thelowestinMay2003(0.71USD/gallon)was
morethan5.4times[1].Thechangingfuelpricesmakeairline
oper-atorsverydifficulttoplanandbudgetforthelong-termoperating
∗ Corresponding author at: Faculty of Mechanical and Aerospace Engineering,
Institut Teknologi Bandung, Jl Ganesha 10, Bandung 40132,
Indonesia Tel.: +62 85794345668; fax: +62 022 2534212.
E-mail addresses: hongducthong@hcmut.edu.vn ,
ducthonghong@gmail.com (T.D Hong).
expenses.Thus,theyhavetriedtodevelopadiversifiedfuelmarket
toreduceriskinthefuelvolatilitythatcomeswithhavingasingle sourceofenergy
Ontheotherhand,today’sairlineindustryis70%morefuel effi-cient thanoverthepast40 years[2]due tomoreaerodynamic andlighteraircrafts;moreefficientmodernturbineengines;huge improvementsintheairtrafficcontrolefficiency,inflyingthe air-craftandindevelopingmoreenvironmentally-friendlyoperations
atairports.AviationCO2 emission,however,isstillkeptgrowth
of2–3%peryearduetothesteadyincreaseinannualair trans-portation.Toreducetheenvironmentalimpactoftheworldwide aircraft’sfleet,theEuropeanCommissionapprovedtheEuropean UnionEmissionsTradingScheme(EUETS)toincludethecivil avia-tionsector.Directive2008/101/ECoftheEuropeanParliamentand Council[3]agreedthatfrom2012,allairlinesflyingwithinorinto EuropehadtobuyCO2allowancesontheopenmarketorreduced theirGHGemissionsto97%ofaverageannualemissionsforthe year2004–2006andthisislowerto95%asfrom2013.Underthe
0255-2701/$ – see front matter © 2013 Elsevier B.V All rights reserved.
Trang 2EUETS,biofuelsareconsideredCO2 neutral[4,5]andairlinecan
benefitfromanexemptionfromtheneedtosurrenderallowances
andcredits
Sustainable biofuels may offer a solution to both problems
above.Recentyears,manyresearchers,airlineoperatorsandenergy
entrepreneurshaveseriouslypreparedandmoreinterestedin
avi-ation alternative fuel [6–23] Applying renewable fuels will be
an inevitable trend of the future airline industry It will bring
agreatsignificanceinmitigatingaviation’stotaldependenceon
petroleum-basedfuel,stimulatingthenationalagricultural
devel-opment,stabilizingthedomesticsocioeconomicsandleadingtoa
cleanerindustryimageforthenation.Eachcountryoreachregion,
however,hasdifferentnatural conditions,resourcesand
poten-tials,therefore,theidentificationofproperproductionprocessand
appropriatetechnologyforaviationbiofuelsarereallyimportant
andnecessary
In present study,the production process of aviation bio-jet
paraffinswasproposedconsistentwiththesocioeconomic
condi-tions,productiontechnologyandfeedstocksourcesoftheTropics
Therouteofblendingbio-jetparaffinswithfossilkerosene
(com-mercialJetA-1),whichformedbio-keroseneusingasalternative
fuelforaircraft,wasalsoprovided.Twoprototypesofbio-paraffins,
whichweremanufacturedinIndonesia,wereusedtomakethe
samplesofbio-kerosenesforcurrentwork.Theexperimentaland
theoreticalinvestigationsofthesebio-keroseneswereperformed
toensuretheircommon propertiessatisfying theASTM D1655
requirementsandtoverifythefeasibilityofdevelopingand
apply-ingrenewablefuelfortheTropics’aviationindustry
2 Production process of aviation biofuel for the Tropics
2.1 Thecurrentstatusofaviationbiofuels
Therearecurrently three mainresearch strategies for
alter-native aviation fuels as following: fatty acid esters (FAEs),
hydroprocessedrenewablejet–synthesisparaffinkerosene(HRJ–
SPK)andFischer–Tropschjet–synthesisparaffinkerosene(FTJ–
SPK)
FAEs,whicharecalledasbiodiesel,derivedfromthe
transesteri-ficationofthetriglyceridesandfattyacidsinthevegetable,animal
orwasteoils.Biodieselhadremarkableadvantageasitwas
pro-ducedonanavailableandsimpletechnology,withlowcostand
highefficiency.Besides,biodieselalsohadbigchallengestobecome
aviationfuelforbyitssmalllowerheatingvalue(LHV)andhigh
freezingpoint.Furthermore,theesterpropertiesdependonthe
startingmaterialandthereisacarrythroughofanycontamination,
rentlytheonlylarge-scaleproducerofHRJ[5]withthemajorof productionusedtosupportenginetestingandqualification.This HRJ–SPKisexpectedtobecommercialinthenot-too-farfuture FTJ–SPKisproducedfromcoal,biomassornaturalgas feed-stockthroughgasificationfollowedbyFischer–Tropschsynthesis process.Thesynthesisgas(i.e.mixtureofcarbonmonoxideand hydrogen)producedinthegasificationprocessarethen catalyt-ically reacted toform a mixtureof long-chain paraffins in the Fischer–Tropsch synthesis process These products are further undergonethehydroprocesslikeHRJ.Theidentificationor develop-mentofsufficientbiomassfeedstockandthelowertechnological readinessoftheprocess,however,presentsignificanthurdlesto overcome[25].FTJ–SPKhasbeenalsousedfortestingflights 2.2 Theproductionprocessofaviationbiofuelproposedforthe Tropics
Theproductionprocessofaviationbiofuelwhichisbuiltforthe TropicsisshowninFig.1.Itisbasedonthehydrotreatingprocess andtherearesomeadjustmentsinordertofitwithconditionsof thetropicalcountries
Themaindifferentpointofthisproposedprocessisthe feed-stocksmustbeselectedfrommediumchainanddominantlauric (thenumberofcarbonis12)fattyacid.Thus,nocrackingstepis nec-essary,resultsinusingthesimpleproductiontechnology,reducing investmentandproductioncostsforaviationbiofuel.Furthermore,
itcanbetaken,inpart,fulladvantageoftheexistingproductionline
ofbiodiesel.Thisissueisconsideredasthekeyofthesolutionsince
itisreallyusefulandsuitableforthesocioeconomicsituationofthe tropicalareas,wherearethemajorityofdevelopingcountries Table 1 shows the compositions of feedstocks that satisfy mediumchainanddominantlauricfattyacids.Ofthese,coconut andpalmkerneloilscanbemass-producedinthetropicalregions They,however,arefromthenutritiousfoodsourcesandthe sus-tainabledevelopmentofaviationbiofuelcanbeaffectedifweuse theseediblefeedstocks.Thesolutiontoovercomethishurdleis givenasfollows:thetriglyceridesandfattyacidsarefirstselectively fractionatedtoseparatehealthyfatty-oils composedofcaprylic (C8:0),capric(C10:0),oleic(C18:1),andlinoleic(C18:2)acidsfor food.Theremainders,whicharethesaturatedC12–C16fattyacids, arehydrotreatedtoproducedC11–C16straightchainbio-paraffins containingundecane(n-C11H24)anddodecane(n-C12H26)asthe dominantcomponents.The chemical reactionsof lauric oiland triglyceridetoformundecaneanddodecaneareillustratedinFig.2 Thisbio-paraffiniccompoundisthenpartiallyisomerizedto pro-ducebranchedchainisomershavingverylowfreezingpointwhich arecalledasbio-jetparaffins
Inordertosatisfythefreezingpoint,densityrequirementsof aviationfuelstandards,thesebio-jetparaffinsare thenblended withappropriateproportionofaromatics(<25%byvolume)toform bio-jetfuel.Blendofbio-jetfuelwithfossilkeroseneiscalledas bio-kerosenewhichcouldbeusedtopowerjetaircraftswithout
Trang 3Fig 1.The production process of aviation biofuel proposed for the tropical countries.
Table 1
Feedstocks have medium chain and dominant lauric fatty acids.
Oil/fat Fatty acid compositions (% weight)
Coconut [27] 4.6–9.5 4.5–9.7 44–51 13–20.6 7.5–10.5 1–3.5 5–8.2 1–2.6 0–0.2 Babassu [27] 2.6–7.3 1.2–7.6 40–45 11–27 5.2–11 1.8–7.4 9–20 1.4–6.6 –
Fig 2.Molecular transformation steps of bio-paraffins production process.
redesigningor modifyingengineand fuelsupply infrastructure
Bio-jetparaffinscanalsobedirectlyblendedwithacertain
pro-portionofconventionalkerosenewithoutaddingaromatictomake
bio-kerosene
3 Experimental
3.1 Thetwoprototypesofaviationbiofuel
Thetwo prototypes ofaviation biofuels, which arecalledas
bio-paraffins 1 (Bio-P1) and bio-jet paraffins 2 (Bio-JP2), were
manufacturedin Indonesiaby usingtheabove production pro-cesswithoutandwiththestepofisomerization,respectively.The compositionofBio-P1,whichisexpectedfrommanufacturer,isa normalparaffiniccompoundwhileBio-JP2hasthepresenceof iso-paraffinichydrocarboninitscomposition.Thatisareasonwhythe freezingpointofBio-JP2islowerthanthatofBio-P1.Thecommon propertiesofBio-P1andBio-JP2arepresentedinTable2
3.2 Experimentalandtheoreticalinvestigations The theoretical and experimental investigations have been carried out to evaluate and identify the critical properties of bio-kerosenes:distillations, freezingpoint, lowerheating value, density,flashpointandviscositytoensureASTMD1655criteria
Incurrentwork,thefeedstockwasusedtoproducetwo pro-totypes of bio-paraffins wascoconut oil, which was purchased fromtheHomeIndustry,Indonesia.ThecommercialJetA-1and propylbenzene,which are usedfor theinvestigations, are sup-pliedrespectivelybythePertaminaOilCompany,Indonesiaand theMerckMilliporeCompany,Japan.Thecommonpropertiesof JetA-1arerevealedinTable2.TheblendsofcommercialJetA-1 withBio-P1andBio-JP2aswellastheblendsofpropylbenzene withBio-P1arepreparedbystandardvolumetricprocedures Vari-ousblendingratiosoftestedfuelsareuseddependingonobserved
Trang 4a Data were extrapolated by using ASTM D341 method which presented in Section 4.6
characteristicsinordertoachieveoptimalresultsofthe
investiga-tions
4 Results and discussions
4.1 Experimentalinvestigationofdistillationproperty
AswecanseeinTable2,amountoflessthan10%volumeof
Bio-P1exceedstheASTMstandardofthefinalboilingpointof300◦C
Ifweblend asmallvolume ofBio-P1withcommercialjetfuel,
thevolumeofdistillationthatexceedsstandardisexpectedtobe
negligibleinblend
Theinvestigationofdistillationtemperaturesiscarriedoutfor
Bio-P1and blendsof 2,5 and 10vol.% Bio-P1in Jet A-1which
arecalledasbio-kerosenemixturesofBK1-2,BK1-5andBK1-10,
respectively.ItcanbeseenfromTable3,whichshowsthedetails
ofthedistillationtemperaturesoftestedbio-kerosenemixtures,
thedistillationspecificationsofBK1-10areinthelimitofASTM
requirement.Wecanconcludethatthemaximumblendingratiois
upto10%volumeofBio-P1incommercialJetA-1
ThedistillationtemperaturesofBio-JP2arelowerthanthoseof
Bio-P1atallrequiredpointsofASTMsuchas:initialboilingpoint,
finalboilingpoint,10%,50%and90%recoveredvolumesthatare
showninTable2,thus,theblendof10vol.%Bio-JP2and90vol.%Jet
A-1certainlymeetsASTMstandardofdistillations
Bio-P1 and Bio-JP2 have high distillation temperatures are
duetothepresenceoflongchainhydrocarboncomponentsand
byproductsofproductionprocess.Inthelongterm,whenalarger
proportionofbio-paraffinsinblendswillberequired,thestepof
separatingtheunexpectedcomponents shouldbeaddedtothe
process
Table 3
The distillation temperatures of Bio-P1, BK1-2, BK1-5 and BK1-10.
%Vol rec Distillation temperature ( ◦ C)
Fig 3.Freezing point versus volume fraction of Bio-P1 in blend.
20%.Figs.3and4showrespectivelythevariationsofexperimental freezingpointsalongwithvolumefractionsofBio-P1andBio-JP2
intheirblendswithJetA-1.Thefreezingpointsofbio-kerosene
ASTMstandard ≤ -470C
-60 -55 -50 -45 -40
0.20 0.15
0.10 0.05
0.00
0 C)
% volume of Bio -JP2, χ
Trang 5Fig 5.Freezing point versus volume fraction of propylbenzene in blend.
mixturesincreasewithincreasingvolumefractionofBio-paraffins
Theresultsrevealthatblendof5vol.%Bio-P1or17vol.%Bio-JP2in
JetA-1meetsASTMrequirementoffreezingpoint
Toimprovethefreezingpointspecificationwecanaddamount
ofaromatic,whichlessthan25%volume,tobio-paraffins.The
fur-therexperimentalinvestigationareperformedfor theblendsof
0,10,20,25vol.%propylbenzene(atypicalsurrogateofaromatic
classforjetfuel[29])inBio-P1,whicharecalledasthebio-jetfuel
mixtures.Testedfreezingpointisplottedagainstthepercentage
ofpropylbenzeneinblendinFig.5whichrevealsfreezingpointof
bio-jetfuelmixturedecreaseswithincreasingvolumefractionof
propylbenzene
4.3 Experimentalexaminationoflowerheatingvalue(LHV)
Theperformanceofturbineenginesignificantlydependsonthe
LHV.Areductionofthispropertybringsaboutanincreaseofspecific
fuelconsumptionofengineandareductionoftheflightdistance
Accordingtothelawsofconservationofmassandenergy,theLHV
ofthemixturecanbeexpressedas:
LHVmix=
i
However,theexperimentalLHVinvestigationisalsoperformed
inthiscase.Thebio-kerosenemixtureswhichareblendsof0,20,50
and100vol.%Bio-P1inJetA-1aretestedLHV.Fig.6aandb
respec-tivelyshowLHVversusvolumefractionandmassfractionofBio-P1
inbio-kerosenemixtures.TheLHVofthemixturedecreaseswith
increasingthepercentageofBio-P1.TomeettheASTMnetheat
ofcombustioncriteria,themaximumvolumeofBio-P1inblendis
81%
Bio-JP2 haslarger LHV than commercial Jet A-1 and ASTM
requirementhenceitcanbeblendedwithJetA-1foranyvolume
fractiontomeettheASTMstandardanduseofBio-JP2willgainin
fuelconsumption
4.4 Theoreticalcalculationandexperimentalinvestigationof
density
Accordingtothelawofconservationofmassandtheassumption
thatthevolumeofthemixtureisthesumofthesinglecomponent
volumes,thedensityofthemixturecanbeexpressedas:
mix=
i
i
Vmix
i
i
Vi
Vi
Vmix
i
(ii) (2)
The density of Bio-P1 and Bio-JP2, which respectively are
759 and 758kg/m3, are under the ASTM standard of range
Fig 6. LHV versus (a) volume fraction and (b) mass fraction of Bio-P1 in blend.
775–840kg/m3.Thedensityspecificationwillbeimprovedif Bio-P1andBio-JP2areblendedwithJetA-1,whichhasadensityof
781kg/m3 Theexperimentalinvestigationisperformedtocomparewith theresultofcalculationbyusingpredictedEq.(2).Thebio-kerosene mixtures which are blends of 0, 25, 50, 75 and 100vol.% Bio-P1 inJet A-1areused fortests Fig.7shows predicteddensity versusvolumefractionofBio-P1/Bio-JP2inblendwithJetA-1and experimentaldensityisplottedagainstthepercentageofBio-P1
in Fig.8.Thetested densityof mixturedecreaseswith increas-ingvolumefractionofBio-paraffinsfollowingalinearrelationship withtheR2=0.988.TomeettheASTMrequirementofdensity,the maximumvolumesofBio-P1inblendare27.3%and29.0% accord-ingtotheresultsofcalculationandexperiment,respectively.The
Fig 7.Predicted linear relationship of density and volume fraction of Bio-P1/Bio-JP2
Trang 6Fig 8. Density versus volume fraction of Bio-P1 in blend.
absoluteerrorbetweenpredictedandexperimentalvaluesof
Bio-P1volumefractionis1.7%
ThepredictedvolumefractionofBio-JP2inblendwithJetA-1
thatsatisfiesdensitycriteriaisupto26.1%.Experimental
investi-gationhasnotyetverifiedinthiscase,however,itreallyisnothard
toacceptthattheexpectedblendof10vol.%Bio-JP2with90vol.%
JetA-1meetscurrentdensityrequirementofaviationfuel
4.5 Theanalysisofflashpoint
TheflashpointofBio-P1andBio-JP2arerespectively47and
45◦C,whichareinaccordancewithASTMrequirement
Theflashpointisthetemperatureatwhichthesaturatedvapor
isequivalenttothelowerflammability composition.Hence,the
flashpointofmixtureisalwaysinthemiddlerangeofthoseoftheir
components.ItwasprovedbyexperimentalstudiesofAffensand
coworker[30]andLlamasetal.[7,8].Thismeansthatanyblending
ratioofBio-P1andBio-JP2withjetfuelalsoagreeswiththeASTM
requirementofflashpoint
4.6 Examinationofviscosity
ThekinematicviscosityofJetA-1,themixtureof95vol.%Jet
A-1and5vol.%Bio-P1(BK1-5),themixtureof90vol.%JetA-1and
10vol.%Bio-JP2(BK2-10)aretestedattemperatureof25,30,35
and40◦C.TheresultsarerevealedinTable4
Z=+0.7+exp(−1.47−1.84−0.512) (3b)
=[Z−0.7]−exp(−0.7487−3.295[Z−0.7]
+0.6119[Z−0.7]2
−0.3193[Z−0.7]3
Substitutingthevalues of thekinematicviscosityin Table4 intoEqs.(3a)and(3b),wecanfindtheconstantsAandBofthe bestfitcurvesforeachfuelsample.Fig.9showsthecorrelationof kinematicviscosityalongwithtemperatureofJetA-1,BK1-5and BK2-10
Thekinematicviscosityoffuelsat−20◦Ccanbedeterminedby
solvingforZinthefindingequationofFig.9andthensubsequently derivingthekinematicviscosityfromthevalueofZbytheuseofEq (3c).Theviscositiesat−20◦CofJetA-1,BK1-5,andBK2-10
respec-tivelyare6.485,6.940,and6.789mm2/swhichallfallwithinthe limitofASTMstandard.Theresultindicateskinematicviscosities raise7.02%forBK1-5and4.69%forBK2-10ascomparisonwithJet A-1
4.7 Theanalysisoftheenvironmentalimpact ConcentrationofsulfurcomponentinBio-P1andBio-JP2are
11and10ppm,respectively.Thesevaluesaremuchsmallerthan theASTMstandardof0.3%and470ppmofthecommercialJet
A-1.Thustheexhaustemissionsofsulfurcompounds(SOx)willbe significantlyreducedwhenusingbio-paraffins
TheCO2lifecycleofalternativejetfuelscanbereducedbyup
to80%[5]dependingontheproductionmethod.Ifwetakeinto
Trang 7differenceofLHVbetweenBio-P1,Bio-JP2andJetA-1,theCO2
life-cyclecanbereducedbyupto76%and81%forBio-P1andBio-JP2,
respectively.Thismeansthateach1%blendofBio-P1orBio-JP2
withfossiljetfuelwillreduceupto0.76%or0.81%ofoverallaviation
CO2emission
Furthermeasurementsonthegasturbineenginearerequiredto
assesstheeffectsofgasexhaustedemissionsandsootformation
However,duetoBio-P1andBio-JP2areexpectedfromthe
man-ufactureraretheparaffiniccompoundsandnotaromatics,useof
thesebio-paraffinsispredictedthathaveremarkablylesssoot
for-mationandhaveasimilarCO,HCandNOxemissionsincomparison
withconventionaljetfuel
5 Conclusions
Therouteoftheproductionprocessproposedinthisstudyis
appropriatetodevelopaviation biofuelin theTropicssince:(1)
thetropicalcountrieshave plentyof suitablefeedstocksforthe
proposedproductionprocess;(2)thetechnologyandcapital
invest-ment for the proposedproduction process are not too highto
implement;(3)besides,theycanuse,inpart,theavailable
infras-tructures,productionlineofbiofuel
Withpreliminaryachievementsofthisstudy,wehavenodoubt
aboutthefeasibilityofdevelopingaviationalternativefuels
accord-ingtotheproposedproductionprocessforthetropicalcountries
Theresultsofthetheoreticalandexperimentalinvestigations
presentthatitcanbemadethe“dropin”bio-kerosenebydirectly
blendingBio-P1andBio-JP2withcommercialJetA-1upto5%and
10%byvolume,respectively.ThevolumefractionsofBio-P1and
Bio-JP2inblendsareabletoreachhigherifthedistillationsofthe
bio-paraffiniccompoundsareimprovedbyaddingthestepof
unex-pectedcomponentseparationonproductionprocessandadding
aromaticsor/andanti-icingadditivestoBio-P1andBio-JP2inorder
todecreasetheirfreezingpoint
UseofBio-P1andBio-JP2isabletoreducerespectivelyupto
0.76%and0.81%ofoverallaviationCO2emissionforeach1%
blend-ingandsignificantlylessenstheemissionsofsulfurcompounds
(SOx).Itisalsopredictedthathasremarkablylesssootformation
whenusingthesebio-paraffins
Thefutureworksneedtodoexperimentalstudieson
perform-ances, gas exhaust emissions, soot formation of these aviation
biofuelstoputthemontousinginpracticesoon
Acknowledgment
Theoperationfundsforthisworkhavebeenpartlyprovidedby
JapanInternationalCooperationAgency(JICA)undertheprojectof
ASEANUniversityNetwork/SoutheastAsiaEngineeringEducation
DevelopmentNetwork(AUN/SEED-Net)
References
[1] Online database, http://www.indexmundi.com/commodities/?commodity=
jet-fuel&months=120 (cited 20.03.2013).
[2] Beginner’s Guide to Aviation Biofuels, Air Transport Action Group, 2009.
[3] Directive 2008/101/EC of the European Parliament and of the Council of 19
November 2008, Official Journal of the European Union (2009).
[4] Commission Decision 2009/339/EC of 16 April 2009, Official Journal of the
European Union (2010).
[5] IATA 2010 Report on Alternative Fuels, fifth ed., International Air Transport Association, Montreal, Geneva, 2010.
[6] J Cromarty, S Abanteriba, Utilisation of bio-fuels in aviation gas turbine engines: an experimental and theoretical evaluation, in: Proc SAME, FEDSM – 78589, 2009, pp 1649–1653.
[7] A Llamas, M.J.G Martínez, A.M.A Lal, L Canoira, M Lapuerta, Biokerosene from coconut and palm kernel oils: production and properties of their blends with fossil kerosene, Fuel 102 (2012) 483–490.
[8] A Llamas, A.M Al-Lal, M Hernandez, M Lapuerta, L Canoira, Biokerosene from babassu and camelina oils: production and properties of their blends with fossil kerosene, Energy Fuels 26 (2012) 5968–5976.
[9] R.W Jenkins, M Munro, S Nash, C.J Chuck, Potential renewable oxygenated biofuels for the aviation and road transport sectors, Fuel 103 (2013) 593–599.
[10] J.I Hileman, H.M Wong, D Ortiz, N Brown, L Maurice, M Rumizen, The feasi-bility and potential environmental benefits of alternative fuels for commercial aviation, in: 26th ICAS – 4.7.5, 2008.
[11] E Corporan, M.J Dewitt, V Belovich, R Pawlik, A.C Lynch, J.R Gord, T.R Meyer, Emissions characteristics of a turbine engine and research combustor burning
a Fischer–Tropsch jet fuel, Energy Fuels 21 (2007) 2615–2616.
[12] M.J DeWitt, E Corporan, J Graham, D Minus, Effects of aromatic type and concentration in Fischer–Tropsch fuel on emissions production and material compatibility, Energy Fuels 22 (2008) 2411–2418.
[13] C.A Moses, P.N Roets, Properties, characteristics, and combustion performance
of Sasol fully synthetic jet fuel, J Eng Gas Turbines Power 131 (4) (2009) 041502.
[14] M.T Timko, S.C Herndon, E.D.L.R Blanco, E.C Wood, Z Yu, R.C Miake-Lye, W.B Knighton, L Shafer, M.J Dewitt, E Corporan, Combustion products of petroleum jet fuel, a Fischer–Tropsch synthetic fuel, and a biomass fatty acid methyl ester fuel for a gas turbine engine, Combust Sci Technol 183 (2011) 1039–1068.
[15] T.F Rahmes, J.D Kinder, T.M Henry, G Crenfeldt, G.F LeDuc, G.P Zombanakis, Y Abe, D.M Lambert, C Lewis, J.A Juenger, M.G Andac, K.R Reilly, J.R Holmgren, M.J McCall, A.G Bozzano, Sustainable bio-derived synthetic paraffinic kerosene (Bio-SPK) jet fuel flights and engine tests program results, in: The 9 th AIAA – ATIO, Hilton Head, South Carolina, 2009.
[16] J Holmgren, Bio Aviation Fuel, World biofuels markets congress, Brussels, Belgium, 2008.
[17] J Holmgren, Creating alternative fuel options for the aviation industry: role of biofuel, in: ICAO Alternative Fuel Workshop, Montreal, Canada, 2009.
[18] J.D Kinder, Bio-SPK (HRJ) Approval Status, Boeing Company, 2009.
[19] J.D Kinder, T Rahmes, Evaluation of Bio-derived Synthetic Paraffinic Kerosenes (Bio-SPK), Boeing Company, 2009.
[20] UOP Honeywell Company, Commercial technologies for green jet fuels, in: RUSI Alternative Fuels & Energy Resources Workshop, London, UK, 2009.
[21] C Bertelli, Current status of biofuels production and use for commercial avia-tion, in: BIO – V Seminario Latinoamericano y del Caribe de Biocombustibles, Santiago, Chile, 2010.
[22] A Beyersdorf, B Anderson, An overview of the NASA alternative aviation fuel experiment (AAFEX), in: TAC–2 Proceedings, 2nd International Conference on Transport, Atmosphere and Climate, Aachen and Maastricht, 2009, pp 21–25.
[23] R.C Miake-Lye, E.C Wood, M.T Timko, Z Yu, Effects of alternative fuels
on hydrocarbon and particle emissions from aircraft engines, in: TAC–2 Proceedings, 2nd International Conference on Transport, Atmosphere and Cli-mate, Aachen and Maastricht, 2009, pp 26–32.
[24] A Bradshaw, N.J Simms, J.R Nicholls, Passage of trace metal contaminants through hot gas paths of gas turbines burning biomass and waste-fuels, Fuel
87 (2008) 3529–3536.
[25] S Blakey, L Rye, C.W Wilson, Aviation gas turbine alternative fuel: a review, Proc Combust Inst 33 (2011) 2863–2885.
[26] M Mittelbach, C Remschmidt, Biodiesel – The Comprehensive Handbook, first ed., Printed and Bound by Boersedruck Ges.m.b.H, Vienna, Austria, 2004.
[27] G Knothe, J.V Gerpen, J Krahl, The Biodiesel Handbook, AOCS Press, Cham-paign, Illinois, 2005.
[28] Exxon Mobil Aviation, World Jet Fuel Specifications, Leatherhead, United King-dom, 2005.
[29] M Colket, T Edwards, S Williams, N.P Cernansky, D.L Miller, F Egolfopoulos,
P Lindstedt, K Seshadri, F.L Dryer, C.K Law, D Friend, D.B Lenhert, H Pitsch,
A Sarofim, M Smooke, W Tsang, Development of an experimental database and kinetic models for surrogate jet fuels, in: The 45th AIAA Aerospace Sciences Meeting and Exhibit Proceedings, 2007.
[30] W.A Affens, G.W Mclaren, H.W Carhart, Flammability properties of hydro-carbon fuels, part 4 – the significance of flash point as an indicator of the flammability hazard of hydrocarbon fuels, in: Naval Research Laboratory Report
6617, Washington, DC, 1973.
[31] Standard Test Method for Viscosity–Temperature Charts for Liquid Petroleum Products, Designation: ASTM D341-03, The American Society for Testing and Materials, 2003.