A study hassuggested that betterosteoconductivity can be achieved if the synthetic HAp resembles bone minerals in composition,size,andmorphology[29].Inapreviousstudy,we successfullyprepa
Trang 1Colloids and Surfaces B: Biointerfaces xxx (2013) xxx– xxx
ContentslistsavailableatScienceDirect
j o ur na l h o me p a g e :w w w e l s e v i e r c o m / l o c a t e / c o l s u r f b
Surfactant-assisted size control of hydroxyapatite nanorods for bone
tissue engineering
Claudio Migliaresid
a School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Viet Nam
b National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, Viet Nam
c Research Center for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai Street, Hanoi, Viet Nam
d Department of Industrial Engineering and BIOtech Research Centre, University of Trento, Via Mesiano, 77, I-38123 Trento, Italy
a r t i c l e i n f o
Article history:
Received 29 July 2013
Received in revised form 26 October 2013
Accepted 2 November 2013
Available online xxx
Keywords:
Hydroxyapatite nanorods
Pluronic
SBF
Bioactivity
Bone tissue engineering
a b s t r a c t
Thisstudypresentsthephysicochemicalcharacterizationofthepluronicsurfactant-assistedsizecontrol
ofhydroxyapatite(HAp)nanorodsforbonetissueengineering(BTE).Rod-shapedHApnanoparticles weresynthesizedviaasimpleroutebyhydrothermal treatmentandwiththeassistanceofthe tri-blockco-polymerPEO20-PPO70-PEO20(P123).Thefilmsofpoly(d,l)lacticacid(PDLLA)wereprepared
asasubstratetospreadsynthesized HApnanorods.Powder X-raydiffraction(XRD),fieldelectron scanningmicroscopy, Fourier transform infrared spectroscopy, nitrogenadsorptionisotherms, and energy-dispersiveX-rayspectroscopywereusedtocharacterizethestructureandcompositionofthe HApsamples.Resultsshowedthatregularrod-shapedHApnanoparticles(withameanlengthof120nm andameanwidthof28nm)weresuccessfullyproduced.Moreover,synthesizedHApnanorodsrevealed therapidformationofbone-likeapatitewithadistinctivemorphology,similartoflower-likeapatite;the formationwasobservedasearlyas7daysafterincubationinstimulatedbodyfluids.Thisstudyisa posi-tiveadditiontotheongoingresearchonthepreparationofHApnanostructurestowardthedevelopment
ofbiocompatiblecompositescaffoldsforBTEapplications
© 2013 Elsevier B.V All rights reserved
1 Introduction
Bone tissue engineering (BTE) has attracted considerable
scientificattentioninthefieldsofnanomedicineand
biotechnol-ogybecauseit offersamore promisingmethodforbone repair
and regeneration than traditional methods (e.g., allografts and
autografts) [1] BTE uses scaffolding materials as template for
cell interactions and formation of extracellular matrix, thereby
providingstructuralsupporttothenewlyformedtissue[2].Till
date,anumberofbiomaterialshavebeeninvestigatedforpossible
use in BTE scaffolds, and these biomaterials can be classified
into the following categories according to their composition:
biodegradable polymers[3–9], bioactiveinorganics [10,11], and
polymer/bioactive ceramic composites [12–20] Calcium
phos-phates withCa/P ratiosof 1.5–2.0 and belonging to thegroup
of bioactive inorganics have three main compounds namely,
tetraphosphate Ca4P2O9, hydroxyapatite Ca10(PO4)6(OH)2, and
tricalcium phosphate Ca3(PO4)2 Among them, hydroxyapatite
(HAp)isthermodynamically themoststablecalciumphosphate
∗ Corresponding author Tel.: +84 4 38680 110; fax: +84 4 38680 070.
E-mail address: nga.nguyenkim@hust.edu.vn (N.K Nga).
in physiological environments [10] and a major component of bonesandteeth.HAphasbeenwidelystudiedaloneorasfillerin polymericcompositesforBTEapplicationsbecauseofitschemical similaritytoinorganiccomponentsofbonematrix,strongaffinity forhosthardtissues,andosteoconductivity[6].Anumberof stud-ieshavefocusedoninvestigatingtheformationofnanoscaleHAp foradditionalapplications,suchasproducingrestorablescaffolds thatcanbereplacedbyendogenoushardtissuesovertime[21] Several wet chemistry methods (e.g., co-precipitation, hydrothermal, and ultrasonic) assisted by organic molecules (e.g., sodium dodecylbenzene sulfonate, sodium dodecyl sulfate [22], block copolymer poly(lactide-co-glycolide)-block-monomethoxy (polyethylene glycol) and polyvinyl pyrrolidone (PVP) [23], cetyltrimethylammonium bromide (CTAB) [24], polyvinyl alcohol [25], and polyethylene glycol 400/CTAB [26], CTAB/n-pentanol/n-hexane/water[27], double-hydrophilic block copolymer poly-(vinylpyrrolidone)-b-poly(vinylpyrrolidone-alt-maleic anhydride)-b-poly-(vinylpyrrolidone) [28]) have been studied to produce rod-shaped (or needle-like) HAp nanopar-ticles A study hassuggested that betterosteoconductivity can
be achieved if the synthetic HAp resembles bone minerals in composition,size,andmorphology[29].Inapreviousstudy,we successfullypreparedHApnanorodsviahydrothermaltechnique 0927-7765/$ – see front matter © 2013 Elsevier B.V All rights reserved.
http://dx.doi.org/10.1016/j.colsurfb.2013.11.001
Trang 2lengthof85–439nm)[24].Surfactants (e.g.,CTAB) areefficient
chemicals in modifying the desired size and shape of
nano-structuresbecause of theirself-assembly intorod-like micelles
or lamellar structures at high concentrations to improve their
properties [24,30] As reported, the wide size distributions of
syntheticHApcanreducethemechanicalpropertiesofscaffolds
[31] Despite recent advances in the synthesis of HAp for BTE
applications,theproductsstill facemajordrawbacksrelated to
bioactivities,fracturetoughness,andothermechanicalproperties
[21]
Inthisstudy,wefocusonthesynthesisandcharacterization
ofHApnanoparticlesthatresemblebonemineralswithnarrow
sizedistributionstodevelopbiocompatiblecompositescaffoldsfor
BTEapplications.Rod-shapedHApnanoparticlesweresynthesized
bytriblockco-polymerPEO20-PPO70-PEO20(P123)tocontroltheir
sizes.P123isanon-ionicchemicalthathasbeenusedtoassistthe
synthesisofrod-likenanostructures[32].Apossiblemechanismfor
theformationofrod-shapedHApnanoparticleswasalsoproposed
toidentifytheeffectofP123ontheformationofHApnanorods.The
filmsofpoly(d,l)lacticacid(PDLLA)werepreparedassubstrates
tospreadHApnanorodsandtesttheirbioactivity.Bioactivitywas
determinedbyassessingtheformationofapatiteonthesurfaceof
HAp/PDLLAfilmsuponincubationinstimulatedbodyfluids(SBF)
after1,3,and7days
2 Experimental
2.1 Chemicals
Allreagentswereofanalyticalgradeandusedasreceived
with-outfurtherpurification.Calciumchloridedihydrate(CaCl2·2H2O),
sodium monophosphate dihydrate (Na2HPO4·2H2O), NaOH,
C2H5OH,CHCl3,hydrochloricacid(HCl),thepluronicco-polymer
PEO20-PPO70-PEO20 (P123), NaCl, NaHCO3, KCl, K2HPO4·3H2O,
MgCl2·6H2O, Na2SO4, and tris-hydroxymethyl aminomethane
((HOCH2)3CNH2)wereobtainedfromSigma–Aldrich.PDLLAwas
purchased from Boehringer Ingelheim (Ingelheim, Germany)
Buffer solutions (pH 4, 7, and 9) were purchased from Merck
Deionizedwaterwasusedtoprepareallsolutionsandreagents
2.2 SynthesisandcharacterizationofHApnanoparticles
For a typicalexperiment and in theabsence of P123,2.53g
CaCl2·2H2Owasdissolvedin86mLdeionizedwaterandbrought
toa pHrangingfrom9.5to11 byaddinga 0.4weightpercent
(wt%)NaOHsolution.0.2MNa2HPO4wasaddedintothesolution
bydropstoaCa/Pmolarratioof1.67.Theresultingmixturewas
vigorouslystirredat40◦Cfor4htoformwhitesuspension.The
suspensionwasthentransferredtoa200mLteflon-linedstainless
steelautoclave,andthesuspensionwasmaintainedat180◦Cfor
24h Whiteprecipitatewascollectedandwashedseveraltimes
withdeionizedwaterbeforebeingdriedat60◦Covernightand,
finally,calcinatedat500◦Cfor1h.Inatypicalreactioninthe
pres-enceofP123,amixtureofaspecificamountofP123(either1,2,or
3g)and2.53gCaCl2·2H2Oweredissolvedin86mLdeionizedwater
bystirringfor30mintoproducecleargel.Thefollowingstepsare
thesameasthoseforthesynthesiswithoutP123.Finally,aseries
ofsampleswasproducedanddenoted0P123,1P123,2P123,and
3P123basedontheamountofP123used
PowderX-raydiffractionpatternsofsynthesizedsampleswere
recordedonaSiemensD5005diffractometerthroughCuK␣
radi-ation (=0.15406nm) Powder morphology was examined by
fieldemission scanningmicroscopy(S4800,Hitachi, Japan).The
scanning electronmicroscopic (SEM) images Fourier transform infrared spectra (FTIR) were recorded ona Nicolet 6700 spec-trometerbyKBrpellettechniqueintherangeof4000–400cm−1 witha resolutionof 4cm−1.Allmeasurementswereconducted
at room temperature The chemical composition of HAp parti-cleswasdeterminedwithaJEOLJED-2300AnalysisStationwitha ZAF(atomicnumberabsorptionfluorescence)quantitativeanalysis program Nitrogen adsorption–desorptionisotherms were mea-suredat−196◦CwithaMicromeriticsASAP2020apparatus.The
totalsurfaceareaswerecalculatedbytheBrunauer–Emmett–Teller (BET)method,whereasporesizedistributionsweredeterminedby theBarrett–Joyner–Halenda(BJH)method
2.3 ProductionandcharacterizationofHAp/PDLLAfilms ThepreparationofHAp/PDLLAfilmswasdescribedinour pre-viousreport[24].To preparePDLLAfilms, we cast0.3g PDLLA dissolvedin3mLCHCl3 ona55mmaluminum plate.Thefilms wereair-driedunderachemicalhoodfor3handvacuum-dried for24htoremoveallsolvent.AsuspensionofC2H5OHwith30mg
ofHApnanorodswasdispersedontheresultingPDLLAfilms.After beingplacedat55–60◦Cfor2h,thecompositefilmsofHAp/PDLLA werevacuum-driedforanother3handstoredinadesiccatoruntil used.ThreedifferentsamplesofHApnanorods(0P123,1P123,and 2P123)wereused,which resultedinthreedifferentHAp/PDLLA filmsdenotedasF0P123,F1P123,andF2P123.The morpholo-giesofresultingfilmsandthepresenceofHApnanorodsonthe substratewerecheckedbyFE-SEMimagingatlowandhigh mag-nifications
2.4 Invitrobioactivitytests SBFwithionconcentrationssimilartothoseinhumanblood plasmawaspreparedaccordingtothemethodreportedinother studies[33]andfilteredbya0.22mMilliporefiltersystemto eliminatebacterialcontamination.TheSBFwaspreservedina plas-ticbottle ina refrigeratorat 4◦C Priortoinvitroexperiments, allfilmsofHAp/PDLLAwerecutintodiskswith5mmdiameter, sterilizedin70%ethanolat4◦Covernight,anddriedundera lami-narairflowhood.Twospecimensforeachkindoffilm(F0P123,
F1P123, and F2P123) were soaked in 10mL of SBF in closed polyethylenecontainersat37◦C TheSBFsolutionwasreplaced every2.5 days.After1,3,and7daysof soaking,thespecimens wereremovedfromtheSBF,rinsedwithdeionizedwater,anddried
inwarmflowingair.Alloperationswereconductedinalaminar airflowhoodtoavoidmicroorganismcontamination.Theapatite mineralizationofHAp/PDLLAfilmswasassessedthroughFE-SEM andenergy-dispersiveX-rayspectroscopy(EDXS)
3 Results and discussion
3.1 CharacterizationofHApnanoparticles FoursamplesweresynthesizedwithdifferentP123 concentra-tions(one,non-assisted-P123andtheotherthree,assisted-P123 samples).Themaincharacteristicsofrepresentativesamplesare summarizedinTable1.TheXRDpatternsofrepresentative sam-plesarepresentedinFig.1.Thediffractionpeakscanbeindexedto thehexagonallatticeofHAp(JCPDSNo.9-432),whereasthe char-acteristicpeaksareat(002),(102),(210),(211),(112),(300), (202),and (301) No characteristic peak of other phases (e.g., tricalciumphosphateandtetracalciumphosphate)wasobserved, whichwouldconfirmthatapureHApphasewasproducedforall samples.ThemorphologyoftheHApsampleswasthenidentified
byFE-SEMimages.Rod-shaped particleswithasmooth surface
Trang 3N.K Nga et al / Colloids and Surfaces B: Biointerfacesxxx (2013) xxx– xxx 3
Table 1
Characteristics of representative HAp samples.
SD: standard deviation; n = 50.
Fig 1.XRD patterns of HAp samples at different concentrations of P123: (a) 0P123,
(b) 1P123, and (c) 2P123 calcinated at 500◦C for 1 h.
wereproducedforthesynthesizedsamples,independentofP123 concentration(Fig.2andFig.S1,Supportingmaterial).According
toFig.2aandTable1,largeandirregularrod-shapedHApparticles (meanwidthof103nmandmeanlengthof585nm)wereobtained fornon-assistedP123samples(0P123samples).Obtainedassisted P123sampleswithincreasingP123concentrationscanresultina significantdecreaseinthesizeofHApnanoparticles.1P123 sam-ple(Fig.2b)showsconsiderablysmallerrod-shapedparticlesthan 0P123samples;themeandiameteris74nmandthemeanlength
is383nm.Furthermore,theFE-SEMimage(Fig.2c)andparticle sizedistributionsof2P123demonstratethatthesesampleshave thesmallestand mostuniformrod-shapedparticles(theirsizes aremainlyintherangeof25–30nminwidthand100nm–130nm
inlength)amongtheassistedP123samples.However,afurther increaseofP123concentrationproducedlargerandirregular rod-shapedHAp.AsshowninFig.S1,irregularHApparticleswithmean widthof82nmandmeanlengthof365nmwereformedfor3P123 samples.Theseobservationsconfirmthatthesynthesisinthe pres-enceofP123doesnotaffectthefinalmorphologyofnanorodsbut significantlyaffectstheirsizes.2gofP123shouldbeoptimalforthe
Fig 2.FE-SEM images of representative HAp samples synthesized at different concentrations of P123: (a) 0P123, (b) 1P123, and (c) 2P123 calcinated at 500 ◦ C for 1 h The inset shows particle size distribution of 2P123.
Trang 4Fig 3.(A) FTIR spectra of representative HAp samples synthesized at different
con-centrations of P123: (a) 0P123, (b) 1P123, and (c) 2P123 calcinated at 500◦C for 1 h.
(B) EDXS spectrum of an HAp sample (2P123).
productionofthemostuniformrod-shapedHApwithsizessimilar
tothoseofnaturalHAp.Table1presentsCa/Pratiosforthe
rep-resentativeHApsampleswithanupwardtendencybyincreasing
theP123concentration.Inouropinion,P123concentrationcould
notaffectthechemicalcompositionofHAp(e.g.,Ca/Pratio)because
P123wasusedastemplatetocontrolthesizesofHApnanorods,and
P123waseasilyremovedthroughsolventextraction/calcination
Ca/PratiosshowninTable1aretheaveragevaluesofthree
mea-surements Thetheoretical Ca/P ratiosfor all thesamples(e.g.,
0P123,1P123,and2P123) are1.67 However,theexperimental
Ca/Pvaluesof0P123,1P123,and2P123are1.55,1.61,and1.66,
respectively
Fig.3ApresentstheFTIRspectraofrepresentativeHAp
sam-plespreparedwithdifferentconcentrationsofP123.Thespectra
ofsamplesdonotshowsignificantdifferences,whichrevealthe
presence of characteristic groups onHAp samples Indeed, the
mainvibrationsof PO4 − groups forHAp samplesaredetected
at 1095cm−1, 1032cm−1, 960cm−1, 605cm−1, 567cm−1, and
474cm−1 Thepeaks at 1095cm−1 and 1032cm−1 characterize
adegenerateasymmetric-stretchingvibration mode,3,ofP O
bonds,whereastheweakpeakat960cm−1isassignedtoa
non-degenerate symmetric-stretching mode, 1 [24] The bands at
605cm−1and567cm−1areattributedtoadoubledegenerate
bend-ingmode, 4, of O P O bonds,and thebandat 474cm−1 is a
symmetricalbendingmode,2.Apartfromthesecharacteristics,
thebandat 3570cm−1 canbeassigned tothestretching
vibra-tionof OH groups of HAp [34], and the broad stretching peak
Fig 4. (A) Nitrogen adsorption–desorption isotherms of HAp samples synthesized
at different concentrations of P123: (a) 0P123, (b) 1P123, and (c) 2P123 (B) Pore size distributions of HAp samples.
at3433cm−1,aswellasthebendingpeakat1636cm−1,canbe assignedtoadsorbedwater
TheelementalcompositionoftheHApsampleswasdetermined
byEDXSanalysis.TheEDXSspectrumandcomponentsfora rep-resentativesample(sample2P123) arepresentedinFig.3Band TableS1.The resultsrevealedthat elementsO,P,and Cawere themajorconstituentsoftheHApsampleswith44.17±4.52wt%, 16.14±1.23wt%,and34.64±3.05wt%,respectively.AtraceofCl wasdetected,whichcouldbeattributedtoaresidueofthesynthesis reaction,andincompletelyremovedfromthesamplebywashing
Inaddition,thepresenceofCinHApsamplesispossiblyduetothe useofcarbontapetomountthesamples.Moreover,theCa/Pratios
oftheHApsamples(Table1)rangefrom1.55to1.66,whichisclose
tothestoichiometricvalueof1.67.Therefore,stoichiometricHAp wassuccessfullyproducedwiththesesamples
The surface characteristics of HAp samples were continu-ouslystudiedbyN2adsorption–desorptionmeasurements.TheN2 adsorption–desorptionisothermsoftheHApsamplesareshown
inFig.4A.AllsamplesexhibitatypeIIIisothermwithanH3 hys-teresisloopintheP/Po(0.9–1)[35],whichsuggesttheformationof slit-shapedporesassecondaryporesintheaggregatesof nanoparti-cleswithlargepores[30,36].Poresizedistributionsofthesamples werecalculatedfromdesorptioncurvesthroughtheBJHmethod (Fig.4B).Thesurfaceareas,porevolumes,andporesizesarelisted
in Table 2 These HAp samples do not demonstrate significant discrepanciesintheirBETsurfaceareaswithvaryingP123 con-centrations.TheBETsurfaceareasofallsamplesare14–27m2g−1,
Trang 5N.K Nga et al / Colloids and Surfaces B: Biointerfacesxxx (2013) xxx– xxx 5
Table 2
Surface characteristics of representative HAp samples.
Sample codes S BETa(m 2 g−1) V BJHb(cm 3 g−1) D pc(nm)
a BET surface area.
b Total pore volume determined using desorption branch of the isotherms.
c Peak pore sizes from the pore size distributions.
butthesamplesdifferinthestructuresoftheirpores.Amongthree
samplesstudied,sample2P123hasnarrowporesizedistribution
withamaximumpeakof12nm,whereassample0P123showsa
disorderedporesizedistributionwiththreemaximumpeaksof
approximately3,10,and31nm.Sample1P123hasabroadporesize
distribution,whichrangesfrom20nmto80nmandconcentrated
atapproximately42nm
3.2 PossiblemechanismforHApparticleformation
ApossiblemechanismfortheformationofHApnanorodsmay
beproposedbasedontheresultsobtained(Fig.5).WithoutP123
(Fig.5A)andathighpH,thereactionbetweenthesolutionsofCaCl2
andNa2HPO4yieldsHApviathefollowingreaction:
10Ca2++6PO4 −+2OH−→ Ca10(PO4)6(OH)2
TheresultingHApwashydrothermallytreatedat180◦C,calcinated
at500◦C,andproduced largeirregularlyrod-shapedHAp
parti-cles(withmeanwidthof103nmandmeanlengthof585nm)as
showninFig.2aandTable1.Withouthydrothermaltreatmentafter
calcinationat500◦C,theaggregatedsphericalHApparticleswith
averagediameters of350nmwereobtainedinsteadof the
rod-shapedparticles(Fig.S2).Theseresultsconfirmthathydrothermal
treatmentat180◦CprovidesenergyfortheHApnucleitogrow
andproduceelongatedHApcrystals.Thiscrystalgrowthispossibly
duetotheintrinsiccrystalhabitcausedbythedifferenceinlattice
energybetweenthedifferentcrystalplanesofHAp[37].Without
anycontrol,theobtainedHApcrystalsareextremelylongandhave
irregularsize
Theoretically, P123, a non-ionic surfactant can be
self-assembledintopolymericmicelleswithvariousmorphologies(e.g.,
spherical,cylindrical, or lamellarstructures) athigh
concentra-tionsabovethecriticalmicelleconcentration[36].Thesizeand
shapeofmicellesdeterminethemorphologyof thesynthesized
HApparticles.Inaqueoussolution,P123formsnano-sized
cylin-dricalmicellesthatfunctionas“nanoreactors”.Ca2+canpreferably
bindfirstwiththehydrophilicheadgroupsontheinnersurface
oftheresultingmicellesthroughhydrogenbondsandthen,with
PO4 −/OH−toformtheP123-HApcomplexthatprovidesthe
nec-essarytopologythatinturnsdirectsmineralgrowthandleadsto
theformationofelongatedHApnanocrystals(Fig.5B).Atlow
con-centrationsofP123(e.g.,1P123samples),anumberofHApnuclei
thatareunboundtomicelles,latergrowuncontrollablytoproduce
irregularlyshapedandlargeHApcrystals.Meanwhile,thesizesof
micellesincreaseastheP123concentrationincreases.Theincrease
inthesizeofmicellesresultsinanincreaseinthesizesofHAp
par-ticles.ThemostuniformHApparticlesthatresembleboneminerals
wereobtainedwiththesuitableconcentrationof2g
3.3 InvitrobioactivityofsynthesizedHAp/PDLLAfilmsinSBF
Anessentialcharacteristicofbiomaterialsistheirabilitytobind
tolivingbonebyformingabone-likeapatitelayeronitssurface
bothinvitroandinvivo.Thepowderformof theHApparticles
is unfavorablewhen workingwithSBF Thus, thebioactivityof
theHApsamples wasevaluatedthroughinvitro testsby soak-ingfilmsofHAp/PDLLAinSBF.Fig.S3representstheSEMimages
ofHAp/PDLLAcompositefilmswithlowandhighmagnifications beforeimmersionintoSBF.Generally,thesurfacesofthe compos-itefilmsarerough.Theimageswithhighmagnificationconfirma fullcoverofrod-shapedHApparticleswithsmoothmorphologyon thesurfaceofthesubstrate
Theformationofabone-likeapatitelayerontheHAp/PDLLA filmswasinvestigatedthroughFE-SEMmeasurementsafter1,3, and7daysofsoakinginSBF.Fig.S4showsrepresentativeFE-SEM imagesofF0P123filmsaftersoakinginSBFfor1and7daysand thatofF1P123filmsaftersoakinginSBFfor3and7days Com-paredwithfilmsexaminedbeforesoaking,thesecompositefilms didnotshowsignificantchangesintheirmorphologiesduringthe initialstageofsoaking(1–3days).However,afewbundlesofHAp particleswerefoundbecauseoftheaggregationofsuchparticles
onthesurfaceofthecompositefilmsaftertheinitial(1–3days) immersioninSBF(e.g.,after1dayfortheF0P123filmandafter
3daysfortheF1P123film),asshowninFig.S4(a)and(d).After
7daysofsoakinginSBF,bothcompositesamplesexhibited mor-phologicalchanges,whicharedifferentfromthosebeforesoaking
Asshowninhigh-resolutionFE-SEMimagesinFig.S4(c)and(f), theirmorphologieswererougherwithscantdepositionof needle-likemineralcrystals(160nminlengthand20nmindiameterfor
F0P123;120nminlengthand20nmindiameterforF1P123).Such
anobservationrevealedtheinductionofamineralphaseonthe sur-faceofthesefilmsafter7daysinSBF.FE-SEMimagesofF2P123 filmsafter1,3,and7daysoftreatmentinSBFarepresentedin Fig.6.DuringincubationinSBF,themorphologyofF2P123 com-positefilmsdrasticallychangedwiththeappearanceofabundant deposits.Inparticular,theintenseformationofsphericalmineral particles(meandiameterof2m)composedoftinyneedle-like crystalswas already observed after1 dayof immersion in SBF (Fig.6aandb).Thesametendencywasseenafter3days(Fig.6c andd),butthesizeofthesphericalparticleswithneedle-like crys-tallitesincreasedwithlongersoakingtime(theirmeandiameter increasedto3m).Thereafter(beyond3days),themineralphase waslargelyspreadonthesurfaceofF2P123films.FE-SEMimages withdifferentmagnifications(Fig.6 andf)revealthatacoral-like minerallayerofnumeroustinyneedle-likecrystalswasdeposited
ontheentiresurfaceofF2P123filmsafter7daysinSBF.FE-SEM imageswithhigherresolution(Fig.6 andh)indicatetheformation
ofaflower-likeminerallayercomposedoftinyneedle-like crystal-litesontheentiresurfaceofF2P123.Thisinterestingmorphology
oftheminerallayeristypicalinbone-likeapatite[33].Thegiven resultsrevealthecompleteformationoftheminerallayeronthe surfaceofF2P123evenforshortsoakingperiods,whichindicates itshighestinvitrobioactiveresponseamongthethreecomposite filmsstudied.Asreportedinpaststudies,mineralizationinvolves thenucleationandgrowthofbone-likeapatiteontobiomaterialsin SBF[38],whichismainlyassociatedwiththeuptakeofcalciumand phosphateionsfromtheSBFsolution.Thecompositefilm(F2P123) composedofHApnanoparticles(2P123)withthesmallestsizes andthehighestBETsurfaceareaamongthestudiedHApsamples (Tables1and2)certainlyresultedinitshighuptakeforcalciumand phosphateions,therebyexhibitingthehighestbioactivity Conse-quently,thecompositefilms(F0P123andF1P123)consistedof theHApnanoparticleswithlargedimensionsandlowBETsurface areas(bothagainsttheiruptakecapacityofcalciumandphosphate ions)showconsiderablylowerbioactivity
TheCa/Pratioisakeycharacteristicusedtoidentifythemineral phaseamongbiologicallyrelevantminerals.Tofurtheranalyzethe chemicalcompositionofthereleasedminerallayer,EDXSanalysis wasconductedforthetypicalcompositefilmsafterSBFtreatment Theresultsindicatedthatthemainelements(i.e.,Ca,P,and O) werefoundintheminerallayerandCwasalsodetectedasatrace
Trang 6Fig 5. Possible mechanism for the formation of (A) HAp nanoparticles in the absence of P123 and (B) HAp nanorods in the presence of P123.
element(notshown).TableS2presentstheCa/Pratiosofthe
com-positefilmsafter7daysof soakinginSBF fortheF0P123film
andafter1,3,and7daysforF2P123films.AsshowninTableS2,
theCa/PratioforF0P123after7daysoftreatmentis1.55,which
revealstheformationofanewapatitephaseonthesurfaceofthe
F0P123inSBF.However,theintensityofthecarbonpeakonEDXS
patternsofF0P123beforeandaftertreatmentinSBFincreased,
therebysuggestingthattheapatiteproducedwascarbonated.For
F2P123 films, the Ca/P ratio showed an increasingtrend with
increasingsoakingtime;theCa/Pratiowas1.36,1.47,and1.57for1,
3,and7daysofSBF,respectively.Asshownintheliterature,a
num-berofothercalciumphosphateminerals(e.g.,amorphouscalcium
phosphateCax(PO4)y·zH2O(ACP),dicalciumphosphatedihydrate
CaHPO4·2H2O(DCPD),octacalciumphosphateCa8H2(PO4)6·5H2O
(OCP),tricalciumphosphate␣-and-Ca3·(PO4)2 (TCP),and
Mg-substituted tricalcium phosphate (Ca,Mg)3(PO4)2·(Mg-TCP)) can
alsobeproducedunderconditionssimilartothosethatformapatite
in vitro These minerals can be transformed from one type to
anotherdependingonthepHandcompositionofthebiological
micro-environmentandcanbedistinguishedthroughtheirCa/P
ratiothroughEDXS[37].Therefore,basedonEDXSanalysesand
Ca/Pratios(TableS2),OCPandTCPwereprobablyreleasedonthe
surfacesofF2P123filmsafter1and3daysofsoaking,respectively
Thehighestvalueof1.57canbeassignedtoabone-likeapatitelayer producedinF2P123after7days.Consideringtheincreaseinthe intensityofthecarbonpeakforEDXSpatternsbeforeandafter7 daysofimmersioninSBFforF2P123,wefindthatthecarbonated apatitelayerwasalreadyproducedonthesurfaceofF2P123after
7daysofimmersioninSBF
TableS3comparestheinvitrobioactivityofHApnanorodsas preparedinthisstudywiththosereportedinpreviousstudies[39] Theformationofnewbone-likemineralwasalreadydetectedafter
1dayofincubationinSBFforthepreparedHApnanorodsinthis study;itwasdetectedonlyafter45daysforHApnanorods,HAp nanospheres,andHApfibrousmicroparticlesinpaststudies[39] Moreover,afteraquickperiodofincubationinSBF(7days),ahighly interestinganddistinctivemorphologyofbone-likeapatite resem-blingtheflower-likeapatitewasexclusivelyobservedfortheHAp nanorodspreparedinthisstudy(Fig.6 andh).Theinvitro bioactiv-ityofthepreparedHApnanorodsinthisstudythatismoreefficient thantheotherHApparticlesshouldbeattributedtotheirclose morphology(e.g.,sizeandshape)tonaturalHAp
AsshowninTableS3,theHApnanoparticlespreparedinthis studyhaveameanwidthof28nmandameanlengthof120nm, whichisextremelysimilartothoseofboneminerals.Theother HApparticlespossessmorphologiesthatareconsiderablydifferent
Trang 7N.K Nga et al / Colloids and Surfaces B: Biointerfacesxxx (2013) xxx– xxx 7
Fig 6.SEM images of HAp/PDLLA composite film (F 2P123) after soaking in SBF for (a and b) 1 day, (c and d) 3 days and (e–h) 7 days.
fromthoseofthepreparedHApnanorodsandthemineralpartof
bone.Forinstance,thebestHApparticlesinthepreviousstudyhave
sphericalandnear-sphericalshape(approximately50nminsize)
orextremelyshortnanorods(averagewidthof60nmandaverage
lengthof110nm)[39].Basedonthecomparisonoftheresultsofthe
presentandpreviousstudy,thesizeandshapeofHApparticleshave
acrucialfunctionintheirbioactivityandbiocompatibilityin
pro-motingthebone-likeapatitephase.Themorphologicalsimilarityof
syntheticHApparticlescanfacilitateboththeirinvitroandinvivo bioactivity
4 Conclusion
Thisstudydemonstratesthatrod-shapedhydroxyapatite par-ticles resembling bone minerals are easily synthesized with controllablesizes witha suitable concentrationof thepluronic
Trang 8andmeanlengthof120nm),Ca/Pof1.66,andstoichiometricHAp
InvitrobioactivitytestsshowedthattheHApnanorodsinducerapid
formationofbone-like apatiteafteranextremely shortsoaking
timeinSBF,whichmakesthemexcellentcandidatesforbonerepair
andreconstruction.Thisstudycanprovideanefficientprotocolfor
thecontrolledsynthesisofHApnanorodssimilartoboneminerals
inviewofdevelopingbiocompatiblecompositescaffoldsforbone
tissueengineering
Acknowledgments
Thisstudy wasfunded by theVietnamNational Foundation
forScienceandTechnologyDevelopment(NAFOSTED)undergrant
number104.02-2012.42
TheauthorswouldliketothankDr.Anne-LiseHaenni,
Insti-tutJaquesMonodInstitute/CNRS–UniversitéParisDiderot–Paris
7, France, for English correctionand helpfulcomments onthe
manuscript
Appendix A Supplementary data
Supplementary data associated with this article can be
found,intheonlineversion,athttp://dx.doi.org/10.1016/j.colsurfb
2013.11.001
References
[1] K.E Healy, R.E Guldberg, J Musculoskelet Neuronal Interact 7 (2007) 328.
[2] D Puppi, F Chiellini, A.M Piras, E Chiellini, Prog Polym Sci 35 (2010) 403.
[3] Z Ma, Z Mao, C Gao, Colloids Surf B: Biointerfaces 60 (2007) 137.
[4] X Wen, P.A Tresco, Biomaterials 27 (2006) 3800.
[5] Y.C Kuo, C.F Yeh, Colloids Surf B: Biointerfaces 82 (2011) 624.
[6] H.R Pant, P Risal, C.H Park, L.D Tijing, Y.J Jeong, C.S Kim, Colloids Surf B:
Biointerfaces 102 (2013) 152.
2391.
[8] S.Y Shin, H.N Park, K.H Kim, M.H Lee, Y.S Choi, Y.J Park, Y.M Lee, I.C Rhyu, S.B Han, S.J Lee, C.P Chung, J Periodontol 76 (2005) 1778.
[9] Y.C Kuo, C.C Wang, Colloids Surf B: Biointerfaces 84 (2011) 63.
[10] Q Fu, E Saiz, M.N Rahaman, A.P Tomsia, Mater Eng C 31 (2011) 1245 [11] R.Z LeGeros, Chem Rev 108 (2008) 4742.
[12] Y.M Ha, T Amna, M.H Kim, H.C Kim, M.S Hassan, M.S Khil, Colloids Surf B: Biointerfaces 102 (2013) 795.
[13] R Zhang, P.X Ma, Macromol Biosci 4 (2004) 100.
[14] H Wang, Y Li, Y Zuo, J Li, et al., Biomaterials 28 (2007) 3338.
[15] H.W Kim, J Biomed Mater Res 83 (2007) 169.
[16] Y Zhang, K.E Tanner, J Mater Sci Mater Med 19 (2008) 761.
[17] J.P Chen, Y.S Chang, Colloids Surf B: Biointerfaces 86 (2011) 169.
[18] Z Li, L Yubao, Y Aiping, P Xuelin, W Xuejiang, et al., J Mater Sci Mater Med.
16 (2005) 213.
[19] C Du, F.Z Cui, Q.L Feng, X.D Zhu, J Biomed Mater Res 42 (1998) 540 [20] Y Zhang, J.R Venugopal, A El-Turki, S Ramakrishna, B Su, C.T Lim, Biomaterials
29 (2008) 4314.
[21] H Zhou, J Lee, Acta Biomater 7 (2011) 2769.
[22] A Wang, D Liu, H Yin, et al., Mater Sci Eng C 27 (2007) 865.
[23] G.J Wu, L.Z Zhou, K.W Wang, F Chen, Y Sun, Y.R Duan, Y.J Zhu, H.C Gu, J Colloid Interface Sci 345 (2010) 427.
[24] N.K Nguyen, M Leoni, D Maniglio, C Migliaresi, J Biomater Appl 28 (1) (2013) 49.
[25] S Mollazadeh, J Javadpour, A Khavandi, Ceram Int 33 (2007) 1579 [26] Y Liu, D Hou, G Wang, Mater Chem Phys 86 (2004) 69.
[27] K Lin, J Chang, R Cheng, M Ruan, Mater Lett 61 (2007) 1683.
[28] X Yao, H Yao, G Li, Y Li, J Mater Sci 45 (2010) 1930.
[29] S Gay, S Arostegui, J Lemaitre, Mater Sci Eng C 29 (2009) 172.
[30] N.K Nga, P.T Hong, T.D Lam, T.Q Huy, J Colloid Interface Sci 398 (2013) 210.
[31] A Banerjee, A Bandyopadhyay, S Bose, Mater Sci Eng C 27 (2007) 729 [32] Y Li, D Li, Z Xu, J Mater Sci 44 (2009) 1258.
[33] T Kokubo, H Takadama, Biomaterials 27 (2006) 2907.
[34] C Li, L Zhao, J Han, R Wang, C Xiong, X Xie, J Colloid Interface Sci 360 (2011) 341.
[35] S.J Gregg, K.S.W Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London, 1982.
[36] E.S Lee, Y.T Oh, Y.S Youn, M Nam, B Park, J Yun, J.H Kim, H.T Song, K.T Oh, Colloids Surf B: Biointerfaces 82 (2011) 190.
[37] L.C Palmer, C.J Newcomb, S.R Kaltz, E.D Spoerke, S.I Stupp, Chem Rev 108 (2008) 4754.
[38] F Sun, H Zhou, J Lee, Acta Biomater 7 (2011) 3813.
[39] M Sadat-Shojai, M.T Khorasani, A Jamshidi, J Cryst Growth 361 (2012) 73.