1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Gamma irradiation of cotton fabrics in AgNO3 solution for preparation of antibacterial fabrics

6 135 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 1,1 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Introduction The synthesis and functionalization of silver nanoparticles AgNPshavebeenextensivelyinvestigatedinpastdecadesdueto theirremarkablepropertiesandpotentialapplications.Anumber

Trang 1

j ou rn a l h o m e pa g e : w w w e l s e v i e r c o m / l o c a t e / c a r b p o l

Do Nu Bich Duyenb, Nguyen Quoc Hiena

a Research and Development Center for Radiation Technology, VINATOM 202A, Street 11, Linh Xuan Ward, Thu Duc District, Ho Chi Minh City, Vietnam

b Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, Ward 14, District 10, Ho Chi Minh City, Vietnam

a r t i c l e i n f o

Article history:

Received 21 March 2013

Received in revised form 17 October 2013

Accepted 20 October 2013

Available online 26 October 2013

Keywords:

Silver nanoparticles

Cotton fabrics

Chitosan

Antibacterial

␥- irradiation

a b s t r a c t

Silvernanoparticles(AgNPs)withdiameterabout12nmwereimmobilizedonthesurfaceofcotton fabricsby␥-irradiationoffabricsintheAgNO3chitosansolution.Effectsofabsorbeddose,concentration

ofAgNO3solutiononimmobilizationoftheAgNPsonfabricswereinvestigated.Theoptimaldosewas selectedtobe13.8kGyandthesuitableconcentrationofAgNO3was1.5mMin1%chitosansolution.The contentofAgNPsonfabricswasof1696±80mg/kgfortheseconditions.ThepresenceofAgNPsonfabrics wasconfirmedfromscanningelectronmicroscopy(SEM)imagesandXraydiffraction(XRD)patterns TheantibacterialactivityofAgNPs/cottonfabricsafter40washingsagainstStaphylococcusaureusand Escherichiacoliwasfoundtobe99.99%.Inaddition,theAgNPsfabricswereinnoxioustotheskin(k=0) after1,5,10,20,30and40washingsbyskin-irritationtestingtoanimal(rabbit)

© 2013 Elsevier Ltd All rights reserved

1 Introduction

The synthesis and functionalization of silver nanoparticles

(AgNPs)havebeenextensivelyinvestigatedinpastdecadesdueto

theirremarkablepropertiesandpotentialapplications.Anumber

ofreportsareavailableonthesynthesisofmetalnanoparticlesin

solutionbydifferentmethods(Hannan&Subbalaxmi,2011;Sáez

&Mason,2009;Szczepanowics,Stefanska,Socha,&Warszynski,

2010).Bolge,Dhole,andBhoraskar(2006)describedthe

synthe-sisofdispersed nanoparticulatesilverusing gamma-irradiation

Chen,Song,Liu,andFang(2007)alsosynthesizedsilver

nanopar-ticlesby␥-ray irradiationinacetic aqueoussolutioncontaining

chitosan.Thebroad-spectrumofantimicrobialpropertiesofAgNPs

encourageitsuseinbiomedicine,waterandairpurification,food

production, cosmetics, numerous household products (Li et al.,

2008;Mritunjai,Shinjini,Prasad,&Gambhir,2008).Becauseoftheir

effectiveantimicrobialpropertiesandlowtoxicitytoward

mam-maliancells,AgNPshavebecomeoneofthemostcommonlyused

nanomaterialsin consumerproducts(Choietal., 2008).Kokura

etal.(2010)provedthatsilvernanoparticleswereabletobeused

forpreservation ofcosmeticsagainstmixed bacteriaandmixed

fungi.AgNPscanbeimmobilizedonthefibers,bringingnew

prop-ertiestothefinaltextileproduct,especiallyforantibacterialeffect

Theantibacterialfabricscanbeusedtomakebandage,gauze,bed

∗ Corresponding author Tel.: +84 8 62829159; fax: +84 8 38975921.

E-mail address: truongthihanh05@yahoo.com (T.T Hanh).

sheets, surgicalclothes (Dubas, Kimlangdudsana,&Potiyaraj, 2006;Gupta,Bajpai,&Bajpai,2008).TheAgNPsinteractwiththe bacterialmembraneandareabletopenetrateinsidethecell.The mechanismsofinteractioninvolvedAgNPsattachedtobacterial cellmembranesincreasepermeabilityanddisturbrespiration.The AgNPs may catalyze reactionswith oxygen leading to reactive oxygenspecies(ROS)productionwhichcancauseDNAdamage, protein andcell membranebreakdown Thecatalytic silvercan destroybacteria’sdisulfidebondstocounteractthesynthesisof bacterialcell.AgNPsareoxidizedgeneratingsilverionsthatcan disrupt ATP production (adenosine triphosphate) to inhibit the adsorptionofphosphateofprotein(Jone&Hoek,2010)

TheAgNPsintheenvironmentaswastewatertreatmentplant effluentwereassociatedwithreducedsulfurfromorganicthiols groupsandinorganicsulfidestoAg2S.Sulfideexhibitsamuchlower toxicitythanotherformofAg(Kaegietal.,2011)

Inthisstudy,AgNPsimmobilizedoncottonfabricsbyinsitu synthesis.Silverionswerereducedtosilveratomsby␥-irradiation andsimultaneouslyimmobilizedonthefabrics.Thedurabilityof AgNPslinkedwithcottonfabricsandantibacterialeffectsaswellas skinirritationtestwerealsoinvestigatedafterrepeatedwashings

2 Experimental

2.1 Materials Cotton fabrics (100%) were provided by VICOTEX Company (Vietnam)withweighing120g/m2.Theywerewashedtoremove 0144-8617/$ – see front matter © 2013 Elsevier Ltd All rights reserved.

Trang 2

0.5m×0.5m,beforeusing.Shrimpshellchitinwassuppliedbya

factoryinVungTauprovince,Vietnam.Chitinwastreatedin3%

sodiumhydroxide(w/v)at100◦Cfor3hfordeproteinizationand

in3%hydrochloricacid(v/v)fordecalcification.Chitosanwitha

degreeofdeacetylation(DD%)about80%waspreparedby

deacety-lationofchitinin50%sodiumhydroxideat100◦Cfor1h.Thisvalue

wasdeterminedbasedonFT-IRspectraaccordingtothefollowing

equation(Brugnerottoetal.,2001):

A1320

A1420=0.3822+0.0313(100−DD%) (1)

where A1320, A1420 are absorbance of chitosan at 1320 and

1420cm−1,respectively

TheMwofchitosan(7.63×104)wasmeasuredbyanAgilent

1100 gel permeation chromatography (GPC; Agilent

Technolo-gies,USA)withdetectorRIG1362Aandthecolumnultrahydrogel

model250fromWaters(USA).Thestandardsforcalibrationofthe

columnswerepullulan(Mw780–380×103).Allotherchemicals,

includingsilver nitrate(AgNO3), (S)– lactic acid(90%),sodium

hydroxide(NaOH)wereofreagentgrade.Distiledwaterwasused

inallexperiments

2.2 PreparationofAgNPs/cottonfabricsby-irradiationof

cottonfabricsinAgNO3solution

Cottonfabricsabout60gafterwashingwereirradiatedin500ml

of0.5to5.0mMAgNO3solutionusingthestabilizerof1.0%chitosan

inthedoserangefrom5to20kGy.Thegamma-irradiationdosewas

determinedbyusingtheethanol-chlorobenzene(ECB)dosimetry

systemfrommeanvalueofabsorbeddosesofthreedosimetersat

30◦C.TheAgNPs/cottonfabricswerewashedaccordingtoa

mod-ifiedPN-ENISO105-C06:2010(AS1)(MarekKozEl ˙zbietaetal.,

2013)in ordertoassessresistancetothewashing process.The

maximumnumberofwashingwas40cycles Anapproximately

3gweightsamplewasplacedin150cm3 ofwashingliquorand

waswashedat40◦Cfor30min(onecycle).Theconcentrationof

theactivesurfaceagentwasequalto1g/dm3.Afterwards,samples

wererinsedwithwateranddried at40◦C for40min.Asimilar

procedurewasapplied for40 repeated washes Thecontent of

AgNPswasevaluatedbyinductivelycoupledplasmaatomic

emis-sionspectroscopy(ICP-AES),modelOptima5300DV(PerkinElmer)

after1,5,10,20,30and40washings

Allcollecteddatawereexpressedasmean±SE–standarderror,

inthisstudy.Thedifferencesbetweensamplevalueswereassessed

using two-tailed unpairedStudent’s t-tests The standard error

shouldbe<±5%ata95%confidencelevel,numberofsamplesthat

wereanalyzedperconditiontobethree(N=3)

2.3 CharacterizationoftheAgNPs/cottonfabrics

ThepresenceofAgNPsonfabricswasconfirmedbySEMimage,

usingaJSM-6480LVscanningelectronmicroscopywasoperated

at10kVandusedat1,300and5,500magnifications.Xray

diffrac-tionpatternsweremeasuredonaShimadzu5Adiffractometerwith

CuK␣radiation(35kVand25mA),scanningataspeedof0.5◦/min

from5–80◦(2).Thecrystallinesilvernanoparticlehasbeen

esti-matedbyusingDebye–Scherrerformula:

D=K· 

whereK=0.89,isthewavelengthofX-ray(1.5405 ˚A),ˇisthefull

widthathalfmaximum(FWHM),isthediffractionangle(Bragg)

andDistheparticlediametersize(Baker,Pradhan,Pakstis,Pochan,

&Shah,2005)

ThemechanicalpropertiesweredeterminedusingaStrograph V10-C (Toyoseiki Co., Japan) testing instrument at a constant crossheadspeedof50mm/min.Fivespecimenswithadumbbells shapewerepreparedaccordingtoASTMD1882-Landwereused forthemeasurement

2.4 Antibacterialefficacyandskinirritationtestofthe AgNPs/cottonfabrics

Antibacterial properties of resultant fabrics were verified accordingtoAATCCTestMethod100–2004 against Staphylococ-cusaureus No 6538, a Gram-positive organismand Escherichia coliNo.10229,aGram-negativeorganism(AATCCTestmethod: 100–2004) The inoculum concentration of bacteria in a germ containingnutrientsolutionwas1×107 to2×107CFU/ml Test specimenswerecutin4.8±0.1cmdiametersandabsorbed1ml

ofinoculuminsterilePetriplates.Then,specimenswereplacedin thejarcontained100mlneutralizingsolution.Jarswereshaken vigorously for 1min, serial dilutionswere made From each of threesuitabledilutions,0.1mlliquidwasdrawnandtransferred

tonutrientagar,thenincubatedallplatesfor48hat37◦C.Percent reductionofbacteriawascalculatedfromthenumberof bacte-riarecoveredinthejarimmediatelyafterinoculationandthejar incubatedoverdesiredperiod

SkinirritationtestwascarriedoutbyInstituteofDrug Test-ingfollowingISO10993-10(2002).Thistestwascarriedouton grown and healthy rabbits weighing at least 2kg The rabbits usingfortheirritationtest wererearedat25◦C, withhumidity

of30–70%.TheAgNPs/cottonfabricswereappliedtoshavedskin about10cm×15cminthebackofrabbit.Theskinsituationofthe rabbitswasobservedafter12,24,48and72h

3 Results and discussion

3.1 PreparationofAgNPs/cottonfabrics TheAgNPs/cottonfabricswerepreparedby␥-irradiationof cot-tonfabricsinsilvernitratesolution.Theinfluentialfactorssuch

astheinitialAg+concentrationandabsorbeddoseonthe immobi-lizationofAgNPsontofabricswereinvestigatedbyICP-AES.During

␥-irradiationofcottonfabricsintheAgNO3solution,thehydrated electron(eaq −)and radicalofH• that weregeneratedby water radiolysiscanreduceAg+toAgasshowninEqs.(3)–(5)(Long,Wu,

&Chen,2007).Continuousreductionof theAg+ solutioncauses theaggregationofclustersintoAgNPs.In chitosansolution,the

•OHgroupscanreactwithchitosantoabstracthydrogenandform macromoleculefreeradicalsasEq.(6).Theseradicalscanreducethe clusterofAg+ionsformingtheclusterofAgatomsonfabric sur-face(Eq.(7)).Thebindingofsilverclustersbychitosanisachieved throughtheAg Obond(Chen,Wu,&Zeng,2005).Thereactions canbeproposedasfollows:

H2O(␥-rays)→•OH+e aq+•H+H2O2+H2+ (3)

[C6H11O4N]n(chitosan)+•OH

→[C6H11O4N]n−1[C6H10O4N]• +H2O (6)

Ag++[C6H11O4N]n−1[C6H10O4N]•

→Ag0-[C6H11O4N]n−1[C6H9O4N]+H+ (7)

Trang 3

400

800

1200

1600

2000

20 15

10 5

0

Dose (kGy)

Fig 1. Relationship between the content of AgNPs on the cotton fabrics and

irradi-ation dose.

Theabsorbeddoseplaysanimportantrolein formationand

growthofAgNPsbyreductionofAg+toAg0atomby␥-irradiation

Atalowdose,nanoparticleshavenotappearedyet,while

nanopar-ticleswillbeformedatahigherdose.Inthisstudy,thepreparation

oftheAgNPs/cottonfabricsbyinsitusynthesisinwhichAg+ions

werereducedtoAgatomsandsimultaneouslydepositedoncotton

fabrics.TheinteractionbetweenfibersandmetallicAgNPswhich

werestabilized by chitosan resultsfromformation of chemical

bondbetweensilverandalcoholicgroupsofcottonandphysical

adsorptionofAgNPsonthefabricsurface(Perelshtein,Applerot,&

Perkas,2008).Fig.1clearlyindicatesthatthecontentofAgNPson

0 1000 2000 3000 4000 5000

6 5 4 3 2 1 0

AgNO3 Conc (mM)

Fig 2. Effect of AgNO 3 concentration on the content of AgNPs on the cotton fabrics.

thecottonfabricshaschangedinsignificantlyintherangeoflow dosesfrom4to10kGy,butincreasedathigherdoses.Amaximal valueoftheAgNPscontentonfabricswasfoundtobe1696mg/kg forthecottonfabricsin1.5mMAgNO3solutionirradiatedatthe doseof13.8±0.6kGy

TheeffectofAg+ concentrationonthecontentoftheAgNPs whenirradiationofthecottonfabricsinAgNO3solutionwasalso investigated.InFig.2,thecontentofAgNPsonthefabricsincreased

asusingtheinitialAg+ concentrations from0.5to5mMat the doseof13.8kGy.Inordertocontrolthereleaseofsilver nanoparti-clesintoenvironmentbutkeepingtheantibacterialpurposeafter washings,thecottonfabricswhichwereimmobilizedwithAgNPs

atthecontentof1696±80mg/kgcorrespondingtoAg+salt con-centrationof1.5mMwasselectedforfurtherinvestigation

Fig 3.SEM images of: original cotton fabrics (a) ×1300 and (c) ×5500; AgNPs cotton fabrics (b) ×1300 and (d) ×5500.

Trang 4

Table 1

The tensile strength and elongation at break of cotton fibers against irradiation

doses.

Fig 4.UV–vis spectra of colloidal AgNPs from 1.5 mM AgNO 3 solution

correspond-ing to irradiation doses of: (a) 4.3 kGy, (b) 7.5 kGy, (c) 10.6 kGy, (d) 13.8 kGy, (e)

17.0 kGy, and (f) 20.3 kGy.

3.2 CharacterizationofAgNPs/cottonfabrics

Thepresenceofsilvernanoparticlesontofabricscanbeseen

bySEM images (Fig 3).The images in Fig.3a and c showthe

smoothstructureoftheoriginalcottonfabricsbeforecoatingwith

silvernanoparticles.Aftergamma-irradiationofcottonfabricsin

AgNO3solution,thenanoparticlesthatweredispersedonthe

sur-faceoftheAgNPs/fabricsdemonstratedtheimmobilizationofsilver

nanoparticlesonthefabrics(Fig.3b).Thehomogeneousdeposition

isobservedinahighermagnificationimage(Fig.3d).UV–vis

spec-trawererecordedforthecolloidalAgNPsfrom1.5mMAgNO3in

1.0%chitosansolutionirradiatedbygamma-irradiationwith

cot-tonfabrics,inthedoserangefrom4to20kGy(Fig.4).Thechitosan

concentrationwasmaintainedat1%solutionasthisprovided

suffi-cientchitosanforstabilizationoftheAgNPsandalsoallowedforan

acceptablesolutionviscosityat30◦C.TheUV–visabsorbance

spec-traofAgNPsdepictpeakmaximaintherangefrom416–420nm

withrespectiveincreaseinopticaldensity (OD)ingammadose

from4to13.8kGy.Theseresultsdemonstrateaproportionalyield

increaseofAgNPswithgamma-irradiationdosebelow13.8kGy

Above13.8kGy(17.0and20.3kGy),theopticaldensitychanged

insignificantly.Therefore,thedoseof13.8kGyisoptimalfor con-versionofthe1.5mMAgNO3toAgNPsin1%chitosansolutionat

30◦C

Mechanical properties of cotton fabrics were determined in thedoserange from0 to20kGy Theresultsshowed that ten-sile strength () and elongation at break (ε) of cotton fabrics slightly lower atthe dosesbelow 13.8kGy in comparison with non-irradiatedcottonfabrics(Table1).However,thesevalueswere muchlowerthanatthehigherdoses,sothattheirradiationdose wasselectedtobe13.8kGyforirradiationofcottonfabrics TheXRDpatternsinFig.5ashowspeaksat12◦and21◦,which can beattributed to thecrystalline structure of cellulose Four peaksat38.25◦,43.28◦,62.46◦ and76.32◦ inFig.5 assignedto diffractionsfromthe(111),(200),(220)and(311)planesof face-centeredcubicsilver,respectively.Thisresultisinagreementwith reportsfromotherauthorswhousedpolysaccharidesfor stabiliz-ingAgNPs(Phuet al.,2010;Staszewski,Kopyto,BeckerWrona, Dworak,&Kwarcinski,2008).Thefullwidthathalf-maximumof diffractionpeaks (111)in Fig.6 is employedtodeterminethe averagecrystallinesizeusingDebye–Scherrerasformula(2).The crystallinesizeofAgNPswascalculatedtobeabout12nm

3.3 Antibacterialeffectandskinirritationtest Thedurabilityofantibacterialsubstancelinkedwithfabricsis alsoanimportantfactorforusing.TheAgNPsmaybeimmobilized

onfabricsbythebondsoftheatomicsilverwithalcoholicgroups

incellulosestructureandchitosancappedAgNPs.Accordingtothe resultinTable2,theAgNPscontentonfabricsdecreasedafterthe firstwashingcyclebutchangedinsignificantlyfornextwashings ThesignsofAg/CF0,Ag/CF1,Ag/CF5,Ag/CF10,Ag/CF20,Ag/CF30and Ag/CF40weretheabbreviationsoftheAgNPs/cottonfabricsbefore washingandwashing1,5,10,20,30and40cycles,respectively Thelayer-by-layerlinksofthestabilizermoleculescoatingoutside wereformedfromelectrostaticsforce,sothattheywerebroken easilybyphysicalimpactordetergent.However,thebondsfrom thereactivecenterofcellulosetoAgNPscappingbychitosanmay

bedurable

ResultsinTable2alsodemonstratedthatantibacterialactivity wasinfluencedbythecontentofAgNPsonthefabrics.After40 washings,anamountofAgNPswasremainedonthefabricsofabout

858mg/kg,whichinhibitedthegrowthofS.aureusandE.colito

be99.95and99.98%,respectively.Guptaetal.(2008)alsoreported thattheAgNPscontentisakeyfactorincontrollingtheantibacterial activity.Inaddition,theAgNPsdiameterisalsoanimportantrole forantibacterialeffect.LeeandJeong(2005)provedthattheAgNPs sizeabout2–3nmhasabetterantibacterialeffectthan30nmone

Inthisstudy,theAgNPsdiameterabout12nmwasalsoeffective forantibacterialactivity

Testing skin-irritation was carried out for the fabric sam-ples, which weresynthesized insitu by ␥-irradiationof fabrics

in the 1.5mM AgNO3 solution at the dose of 13.8kGy The fabrics imbedded AgNPs were washed from 1, 5, 10, 20,

Table 2

Bacterial reduction of AgNPs cotton fabrics and numerical grades for testing skin irritation on the rabbit skin.

Trang 5

Fig 5.XRD patterns of: (a) The cotton fabrics, and (b) AgNPs cotton fabrics.

Fig 6.Diffraction angle and the value FWHM at 2 = 38.25 o

30 and 40 cycles then were applied on the rabbit skin

The noxiousness on skin was determined from observing

the skin situation after contact times for 12, 24, 48 and

72hat25◦C Theerythemaandedemaontherabbit skinwere

recordedatthenumericalgradestobe0duringcoatingAgNPs

fabrics These results confirmed that AgNPs/cotton fabrics are

innoxioustoskinwithcoefficientofk=0(Table2).LeeandJeong

(2005)alsoreportedthattheAgNPsof2–3nmindiameterhavethe

numericalgradingtobe0forerythemaandedema.Theyincluded

AgNPswith2–3nmsizewasskin-innoxious

4 Conclusions

Thesilverionswerereducedeffectivelybygammairradiation and immobilizedonthecottonfabrics byinsitu synthesis.The AgNPscontentdepositedonthefabricswasof1696mg/kg,when thefabricsamplewasirradiatedin1.5mMAgNO3 and1.0% chi-tosansolutionatthedoseof13.8kGyat30◦C.TheAgNPswere confirmedbyUV–visspectraandSEMimages.Theaverage diam-eterofAgNPswasdeterminedbyXRDpatterntobeabout12nm ThepresenceofAgNPsonthefabricswasdepictedbySEMimages

Trang 6

20,30and40cycleswasabout99.99%forS.aureusandE.coli.The

AgNPs/cottonfabricswashingfrom1to40cycleswereinnoxious

toskin(k=0).Theseresultsdemonstratethatgammairradiation

ofcottonfabricsinthepresenceofaqueoussolutionofAgNO3and

chitosanisapromisingapproachforpreparationofstable,safeand

efficaciousantibacterialfabrics

References

Baker, C., Pradhan, A., Pakstis, L., Pochan, D J., & Shah, S I (2005) Synthesis and

antibacterial properties of silver nanoparticles Journal of Nanoscience

Nanotech-nology, 5(2), 244–249.

Bolge, K A., Dhole, S D., & Bhoraskar, V N (2006) Silver nanoparticles: synthesis

and size control by electron – irradiation Nanotechnology, 17, 3204–3208.

Brugnerotto, J., Lizardi, J., Goycoolea, F M., Arguelles-Monal, W., Desbrieres, J., &

Rinaudo, M (2001) An infrared investigation in relation with chitin and chitosan

characterization Polymer, 42, 3569–3580.

Chen, P., Song, L., Liu, Y., & Fang, Y.-e (2007) Synthesis of silver nanoparticles by

␥-ray irradiation in acetic water solution containing chitosan Radiation Physics

and Chemistry, 76(7), 1165–1168.

Chen, S., Wu, G., & Zeng, H (2005) Preparation of high antimicrobial activity thiourea

chitosan-Ag + complex Carbohydrate Polymers, 1, 33–38.

Choi, O., Deng, K K., Kim, N J., Ross, L., Surampalli, R Y., & Hu, Z (2008) The

inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids

on microbial growth Water Research, 42(12), 3066–3074.

Dubas, S T., Kimlangdudsana, P., & Potiyaraj, P (2006) Layer-by-layer

deposition of antimicrobial silver nanoparticles on textile fibers

Col-loids and Surfaces A: Physicochemical and Engineering Aspects, 289(1–3),

105–109.

Gupta, P., Bajpai, M., & Bajpai, S K (2008) Investigation of antibacterial properties

of silver nanoparticle-loaded poly (acrylamide-co-itaconic acid)-grafted cotton

fabric Journal of Cotton Science, 12, 280–286.

Hannan, N., & Subbalaxmi, S (2011) Green synthesis of silver nanoparticles using

Bacillus subtillus IA751 and its antibacterial activity Journal of Nanoscience

Nano-technology, 1(2), 87–94.

ISO 10993-10 (2002) Biological evaluation of medical devices, part 10: Test for

irritation and delayed-type hypersensitivity.

Jone, C M., & Hoek, E M V (2010) A review of the antibacterial effects of silver nano-materials and potential implications for human health and the environment Journal of Nanoparticle Research, 12, 1531–1551.

Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., et al (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant Environmental Science & Technology, 45, 3902–3908.

Kokura, S., Handa, O., Takagu, T., Ishikawa, T., Naito, Y., & Yoshikawa, T (2010) Silver nanoparticles as a safe preservative for use in cosmetics Nanomedicine: Nanotechnology Biology and Medicine, 6, 570–574.

Lee, H J., & Jeong, S H (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics Textile Research Journal, 75(7), 551–556.

Li, Q., Mahendra, S., Lyon, D Y., Brunet, L., Liga, M V., Li, D., et al (2008) Antimi-crobial nanomaterials for water disinfection and microbial control: Potential applications and implications Water Research, 42(18), 4591–4602.

Long, D., Wu, G., & Chen, S (2007) Preparation of oligochitosan stabilized sil-ver nanoparticles by gamma irradiation Radiation Physics and Chemistry, 76(7), 1126–1131.

Marek Koz El ˙zbieta, S., Marek Koł Justyna, K., Agnieszka, A., Waldemar, M., Aleksan-dra, P., Małgorzata, S., et al (2013) Facile and durable antimicrobial finishing

of cotton textiles using a silver salt and UV light Carbohydrate Polymers, 91, 115–127.

Mritunjai, S., Shinjini, S., Prasad, S., & Gambhir, I S (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles Digest Journal of Nano-materials and Biostructures, 3(3), 115–122.

Perelshtein, I., Applerot, G., & Perkas, N (2008) Sonochemical coating of silver nanoparticles on textile fabrics and their antibacterial activity Nanotechnology, 19.

Phu, D V., Lang, V T K., Lan, N T K., Duy, N N., Chau, N D., Du, B D., et al (2010) Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan

by ␥-irradiation Journal of Experimental Nanoscience, 5(2), 169–179.

Sáez, V., & Mason, T J (2009) Sonoelectrochemical synthesis of nanoparticles Molecules, 14(10), 4284–4299.

Staszewski, S., Kopyto, D., Becker Wrona, A., Dworak, J., & Kwarcinski, M (2008) The X-ray activated reduction of silver solutions as a method for nanoparticle man-ufacturing Journal of Achievements in Materials and Manufacturing Engineering, 28(1), 23–26.

Szczepanowics, K., Stefanska, J., Socha, R P., & Warszynski, P (2010) Preparation

of silver nanoparticles via chemical reduction and their antimicrobial activity Physicochemical Problems of Mineral Processing, 45, 85–98.

Ngày đăng: 16/12/2017, 02:57

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm