1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Synthesis of delafossite CuAlO2 p-type semiconductor with a nanoparticle-based Cu(I) acetate-loaded boehmite precursor

9 156 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 2 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Nanoprecursors have the benefits of both molecular and bulk crystallineprecursors.First,becausenanoprecursorscanbemade intheformsofboth powderanddispersion, theycanbeeasily molded into th

Trang 1

Synthesis of delafossite CuAlO 2 p-type semiconductor with a nanoparticle-based

Tran V Thua, Pham D Thanha, Koichiro Suekunia, Nguyen H Haib, Derrick Motta, Mikio Koyanoa, Shinya Maenosonoa,*

a

School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

b

Center for Materials Science, College of Science, Vietnam National University (VNU), 334 Nguyen Trai, Hanoi, Viet Nam

1 Introduction

Transparentconductingoxides(TCOs)areveryimportantfor

variouskindsofdevicesandarecommonly usedin transparent

electronics.Thecombinationoflowelectricalresistivityandhigh

transparencyinthevisiblelightrangemakesTCOsfascinatingin

various practical applications including liquid crystal displays,

touchscreens, photovoltaicdevices,light emitting diodes, solar

cells,etc.[1–4].Proverbially,mostTCOsaren-type

semiconduc-tors.Forexample,Sn-dopedIn2O3(ITO)[5],F-dopedSnO2(FTO)[6]

andAl-dopedZnO(AZO)[7]arealln-typematerials.Thelackof

reliable preparation methods for p-type TCOs has prevented

furtherdevelopmentsoftransparentelectronics,whichbasically

requirep–njunctions.Cuprousaluminatedelafossite(CuAlO2)has

beenknownasap-typesemiconductorsince1984[8],andasa

promisingp-typeTCOsinceitsdiscoverybyHosonoandcoworkers

in 1997 [9] CuAlO2 belongs to the familyof delafossite TCOs

[10,11].Thisremarkablepropertyisthoughttobecausedbyits

crystal structure, which is identified by alternating layers of

dumbbellO–Cu–Oandparallelplanesofedge-sharedoctahedral

AlO6(Fig.1a)[9].CuAlO2thinfilmshavetypicallybeenpreparedby

high-vacuumphysicalvapourdepositiontechniquessuchaslaser

ablation[9,12],sputtering[13,14],andelectronbeamevaporation

[15].Meanwhile,someothertechniqueshavealsobeenemployed

tofabricateCuAlO2 thin films,suchasspray pyrolysis[16]and chemicalvapourdeposition[17,18].Ifonecandirectlyfabricate CuAlO2patternedthinfilmsusingwetprocesses,suchasink-jet printing,screenprinting,spincoating,dipcoating,spraycoating, roll-to-roll coating, the potential for dynamic development of transparentelectronicsdrasticallyincreases

Towardthisend,chemicalsyntheticroutesofCuAlO2havebeen extensively investigated.For example, a powdercontainingthe CuAlO2phasehasbeenpreparedfroma-LiAlO2byionexchange with CuCl at temperatures below5008C[19].CuAlO2 powders werealsopreparedusingCu2O/CuOandAl2O3powdersinmolten NaOHat3608C[20].ThepolycrystallineCuAlO2waspreparedby heatingthestoichiometricmixtureofhighpurityAl2O3andCu2O

at11008Cfor fourdays inargonatmosphere,pelletizingit and reheatingitat11008Cfortwodays[21].CuAlO2thinfilmswere preparedbythermal decompositionof athin filmcomposed of aluminum isopropoxide [(CH3)2CHO3Al] and copper nitrate [Cu(NO3)25H2O] followed by crystallization at 1000–11008C [21].CuAlO2thinfilmswerealsopreparedbythermal decomposi-tion of a thin film composed of copper acetate monohydrate [Cu(OAc)2H2O] and aluminum nitrate nonahydrate [Al(NO3)39H2O] followed by crystallization at 1000–12508C [22] Moreover, a CuAlO2 thin film was prepared by sol–gel processingusingCu(OAc)2H2Oandalumatrane[Al(OCH2CH2)3N]

asprecursorsandsubsequentthermaltreatmentat9208Cinair [23].Interestingly,CuAlO2nanoparticlescanbesynthesizedwith

A R T I C L E I N F O

Article history:

Received 11 May 2011

Received in revised form 15 June 2011

Accepted 29 July 2011

Available online 5 August 2011

Keywords:

A Electronic materials

A Oxides

B Chemical synthesis

C X-ray diffraction

D Crystal structure

A B S T R A C T

DelafossiteCuAlO2p-typenanostructuredsemiconductorwassynthesizedusingboehmite(g-AlOOH) nanorodsloadedwithcopper(I)acetate[Cu(OAc)]asaprecursor(nanoprecursor).Because Cu(OAc)-loadedg-AlOOHnanorodsarehighlyanisotropic,theytendtoforminherentbunchesconsistingof severalnanorodsduringthecourseofdryingthenanoprecursordispersiondropletonasolidsubstrate

Byannealingthenanoprecursor at11508Cinair,adelafossiteCuAlO2polycrystalwassuccessfully obtained as the dominant phase The CuAlO2 polycrystal is found to exhibit the (110) crystal orientation.ThecrystallineanisotropyofCuAlO2,whichisnotusuallyattainableusingconventional molecularprecursors,ispresumablyoriginatedintheanisotropicmorphologyofthenanoprecursor.The Seebeckcoefficient,resistivityandthermalconductivityoftheCuAlO2polycrystalat300Kwerefoundto

be+560mVK1,1.3Vmand19.4WK1m1,respectively,confirmingthep-typenatureoftheCuAlO2 polycrystal

ß2011ElsevierLtd.Allrightsreserved

* Corresponding author Tel.: +81 761 51 1611; fax: +81 761 51 1625.

E-mail address: shinya@jaist.ac.jp (S Maenosono).

ContentslistsavailableatScienceDirect

j our na l ho me pa g e : w ww e l se v i e r com / l oca t e / m a tr e sbu

0025-5408/$ – see front matter ß 2011 Elsevier Ltd All rights reserved.

Trang 2

Cu(NO3)23H2O and Al(NO3)39H2O precursors using the novel

alkalotolerant and thermophilic fungus as a biocatalyst [24]

Amongthem,themostsuccessfulsyntheticstrategymaybethe

hydrothermalroute[25–28].Shannonandcoworkerssynthesized

CuAlO2 atrelativelylow temperatureof500–7008Cunderhigh

pressure[25–27] CuAlO2 waspolycrystalline andcould notbe

isolatedasapurephase.Shahriarietal.employedaTeflonpouch

techniquetosynthesizeCuAlO2fromamixtureofCuO,Cu2O,Al,

andAl2O3.Afteratwo-stepthermaltreatment(1508Cfor5hand

2108C for 48h), the gray-black CuAlO2 microcrystals were

obtained[28].Despitetheseefforts,itis stilla bigchallengeto

obtainpurephasep-typeCuAlO2viaachemicalsyntheticroute

ThedifficultyofsynthesizingpurephaseCuAlO2ismainlybecause

itisamixedoxideandCu+tendstobeeasilyoxidizedtoCu2+.To

obtain pure phase CuAlO2, an accurate control of reactant

compositionbecomesessential.Inaddition,Cu+isunstable,and

thus, is easily oxidized or reduced to Cu2+ or metallic Cu0

dependingon reaction conditions.Therefore, a strategy for the

design of reactionis quite important tosynthesize pure phase

CuAlO2readilyandreproducibly

Thenanocrystallineprecursor(nanoprecursor)hasanumberof

advantages over other molecular precursors When one uses

molecularprecursorstofabricateCuAlO2thinfilms,thenucleation

andgraingrowthwouldbelefttonatureeventhoughtheycanbe

controlledtoacertaindegreebyvaryingannealingconditions.On

theotherhand,ifonecanmixbulksinglecrystalsofcuprousoxide

(Cu2O)andg-alumina(g-Al2O3)togetherpreservingcrystallinity,

itwillbepossibletoobtainpurephasemonocrystallineCuAlO2

Obviously,however,suchprocessisquitechallengingtorealize

Nanoprecursors have the benefits of both molecular and bulk

crystallineprecursors.First,becausenanoprecursorscanbemade

intheformsofboth powderanddispersion, theycanbeeasily

molded into the forms of bulk or thin film depending on

applications.Second,a relatively uniform CuAlO2 polycrystal in

terms of composition and grain size can be obtained using

nanoprecursorsbecauseofthenano-scalesizeand

monodisper-sity.Third,ifnanoprecursorshaveananisotropicshape,i.e.,

one-dimensionalnanorods,two-dimensionalnanodiscs,etc.,theycan

be spontaneously aligned to form an orientation-controlled

higher-orderstructure during evaporation ofsolvent whenone

usesa nanoprecursordispersion.Becauseanisotropic

nanoparti-cles(NPs)aregrownintoaspecificcrystaldirectionasaresultof

preferentialgrowth,iftheyalignandsinterduringcalcination,the

resulting CuAlO2 polycrystal would have unidirectional grains

This is another interesting and important point of use of

nanoprecursors

Inthisstudy,wesynthesizedapurephaseCuAlO2polycrystal using monodispersed boehmite(g-AlOOH) nanorods (NRs)and copper(I) acetate [Cu(OAc)] as precursors g-AlOOH NRs were synthesizedbyhydrolysisanddehydrationofaluminumdiacetate [Al(OH)(OAc)2] via hydrothermal reaction Then, g-AlOOH NRs weremixedwithCu(OAc)inan appropriatesolventtoformg -AlOOH/Cu(OAc)compositeNRs.Byannealingthenanoprecursorat

11508C, a pure phase CuAlO2 polycrystal was successfully synthesized By pelletizing the nanoprecursor followed by annealingat11508C,weobtainedagray-colouredCuAlO2pellet andconfirmedthatithasp-typecarriers

2 Experimental 2.1 Materials Aluminumacetate,basic[Al(OH)(OAc)2]andcopper(I)acetate [Cu(OAc)]werepurchasedfromSigma–AldrichCorp.,andsolvents werepurchasedfromKantoChemicalCorp.Allwereusedwithout furtherpurification

2.2 Synthesisofg-AlOOHnanorods

Inatypicalsynthesis,3.5mmolofAl(OH)(OAc)2wasdissolved

in70mLof distilledwater,andthen theresultingsolutionwas transferred to an autoclave The hydrothermal reaction was performed at 2008C for 12h After which the autoclave was cooleddowntoroomtemperature,thereactionmixturewastaken out, centrifuged and repeatedly washed several times with distilledwater.Theas-preparedproductwasdriedinanovenat

608Covernighttogivewhitepowdersofg-AlOOH(boehmite)NRs Thereactionyieldwasaround74%

2.3 Preparationofg-AlOOH/Cu(OAc)compositeNRs(nanoprecursor)

g-AlOOH(0.12g,ca.2mmol)wasmixedwithCu(OAc)(0.245g,

ca.2mmol)in2mLofpyridine.Pyridinewaschosenbecauseitis capable of dissolving both g-AlOOH NRs and Cu(OAc) to form uniform dispersion We call the dispersion as a nanoprecursor dispersionhereafter.Themixturewasstirredfor6hunderinert environmentwiththeassistanceofsonication.Themixturewas thenevaporatedunderlowpressure(102bar)togivealightgreen solid

2.4 Thermaltreatmentofnanoprecursor

Alightgreensolidwasobtainedbydryingthenanoprecursor dispersiononasolidsubstrate.Thenitwasthermallytreatedfor

2hatdifferenttemperatures(400,600,800,1000,and11508C) Thermal treatment of samplesin reducing atmosphere (Ar/H2) resultedin metallic Cu (asconfirmedfromXRD) Therefore, all thermaltreatmentswereconductedinair.Forthemeasurements

of the Seebeck coefficient, thermal conductivity, and electrical conductivity,thedriednanoprecursor waspelletized at40MPa followedbyannealingat11508Cfor4h.Agraypelletwith12mm diameter was uni-axially pressed once again at 40MPa and subsequentlysinteredat11508Cfor4hinairinordertoobtaina densepellet

2.5 Characterization The samples were characterized by X-ray diffraction (XRD), transmission electronmicroscopy (TEM), selected-area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (SEM), diffuse reflectance Fourier transform infrared spectroscopy (FT-IR),

Fig 1 Crystal structures of (a) delafossite CuAlO 2 and (b) boehmite (g-AlOOH) Red,

blue and pink spheres represent O, Cu and Al atoms, respectively (For

interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Trang 3

surface area analyzer XRD data were obtained using a Rigaku

RINT2500diffractometerwithCuKaradiation(l=1.542A˚;40kV,

100mA).MorphologyofsampleswascharacterizedusingTEMand

SEM.TEMsampleswerepreparedbycastingseveralmicrolitresof

NRdispersionontoacarbon-coatedMogridfollowedbydryingin

air.TEMimageswereobtainedusingHitachiH-7100andH-7650

transmission electron microscopes both operated at 100kV

Elemental analyses were carried out using a Hitachi H-7650

transmissionelectronmicroscopeequippedwithanEDSdetector

SAEDpatternswererecordedonanHitachiH-9000NAR

transmis-sionelectronmicroscopeoperatedat300kV SEMimages were

obtainedusinganHitachiS4100scanningelectronmicroscope

FT-IRspectrawererecordedonaPerkinElmerSpectrum100.TG/DTG

datawereobtainedinairusingaSeikoTG/DTA6200(heatingrate

108Cmin1).Thenitrogenadsorptionanddesorptionisothermof

g-AlOOHNRsweremeasuredat77KusingaBELSORP-maxsurface

areaanalyzer(BELJapan,Inc.).BeforetheBETmeasurement,the

samplesweredegassedanddehydratedinvacuumat2008Cfor

2h.TheSeebeckcoefficient,thermalconductivity,andelectrical

conductivityoftheCuAlO2 pellet weremeasured ona physical

propertymeasurementsystem(QuantumDesign,PPMS)usingthe

thermaltransportoption(TTO)package

3 Resultsanddiscussion

3.1 Synthesisandcharacterizationofg-AlOOHNRs

Fig.2aandbshowshigh-andlow-magnificationTEMimagesof

g-AlOOHNRs,respectively.AsseeninFig.2aandb,theNRshavea

diameterofabout10–30nmandalengthofabout60–400nm Theg-AlOOHNRsarereadilydispersed inwaterorotherpolar solvents athighconcentrationwithexcellentcolloidalstability TheinsetofFig.2ashowsaphotographofaNRdispersiontaken2 weeksafterthepreparation.Noprecipitationoraggregationwas observedby visualinspection.Evenafterseveral months,there wasnosignificantchangeintheappearance.Theexcellentstability

of NRsoccurspresumablybecausethesurfacesof NRsarewell hydrated.Fig.2cshowsanSEMimageofg-AlOOHNRs.Theytend

toforminherentbunchesconsistingofseveralNRs.Thealignment

ofthesehighlyanisotropicNRsispresumablyachievedduringthe courseofdryingthenanoprecursordispersiondropletonasolid substrate Fig 2 shows the XRD pattern of g-AlOOH NRs indicating that the NRs have an orthorhombic g-AlOOH single phase(Fig.1b).TheprimarypeakintheXRDpatterncorresponds the(200)planeasindicatedbytheg-AlOOHreferencepattern Thisindicatesthattheg-AlOOHNRsgrewalongthea-axis.This structural feature did not change even when the reaction conditions were varied In general, chemically synthesized g -AlOOH NPs tend to have one-dimensional morphologies, e.g nanowires[29],nanofibers[30,31]andnanorods[32–42],whichis similartoourresult.Thechemicalequationsofthereactioncanbe expressedas:

Dehydrationreaction(Eq.(2))mightbeinitiatedwithincreasein temperatureordecreaseinpH[43,44].Theas-producedCH3COOH might act as a shape directing agent adsorbing onto specific

Fig 2 High- (a) and low-magnification (b) TEM, and (c) SEM images ofg-AlOOH NRs The inset of panel a shows a photograph of an aqueous dispersion ofg-AlOOH NRs taken

Trang 4

-AlOOH,andthus,g-AlOOHNRswereselectivelyformed.Finally,

the surface area of g-AlOOH NRs was determined by the BET

(Brunauer–Emmett–Teller)surfaceareaanalyzer.Asaresult,the

specificBETsurface area wasestimatedtobe38m2g1.Ifone

assumesthatag-AlOOHNRhasacylindricalshapewithdiameter

of30nmandlengthof400nm,thetheoreticalvalueiscalculated

tobe45.7m2g1,whichiscomparabletotheBETsurfacearea.This

result suggests that the surfaces of g-AlOOH NRs are smooth

withoutmesopores

3.2 Phasetransformationbehaviourofg-AlOOHNRs

Because g-AlOOH NRs will be used as a precursor and be

calcinedtogetherwithcopperprecursortoformCuAlO2inthenext

step, thethermal behaviourof g-AlOOH NRs was analyzed by

thermogravimetry(TG/DTG).Fig.3showsa TG/DTGresultwith

respecttotheg-AlOOHNRs.Theslightmasslossobservedbelow

2008C(4%)isattributedtodesorptionofphysisorbedwater.The

masslossobservedbetween3008Cand5008Cisassignedtothe

phase transformation from g-AlOOH to Al2O3 The observed

amount of the mass loss was 16% which agrees well to the

theoreticalmasslossof15%calculatedaccordingtoEq.(3)

In order to examine this further, we carried out structural

characterizationsforthesampleobtainedbythermaltreatmentof

g-AlOOHNRsat6008Cfor1hinair.Afterthethermaltreatment,a

whitesolidmaterialwasobtained.Fig.4aandbshowshigh-and

low-magnification TEM images of the product,respectively As

seeninFig.4aandb,theNRshaveadiameterofabout10–20nm andalengthofabout40–300nm.Comparingthesedimensions with those of g-AlOOH NRs, the NRs have almost the same diameterasg-AlOOHNRs,buthaveashorterlengththang-AlOOH NRs.Fig.4cshowstheSAEDpatternoftheNRs,whichcorresponds

totheg-Al2O3phase.TheXRDpatternoftheNRs(Fig.4d)agrees wellwithcubicg-Al2O3.Thethermaldecompositionofg-AlOOH startswiththeremovalofthestructuralwatermoleculesfollowed

by thecrystallizationof g-Al2O3.The primarypeak in theXRD patterncorrespondsthe(400)planeasindicatedbytheg-Al2O3

referencepattern These results clearly indicate that thephase transformationfromg-AlOOHNRstog-Al2O3NRswascompleted withoutasignificantarchitecturalchange,whichisconsistentwith previous reports [45,46].Surprisingly, theg-Al2O3 NRs arestill

Fig 3 TG and DTG curves ofg-AlOOH NRs.

Fig 4 High- (a) and low-magnification (b) TEM images, and (c) SAED pattern ofg-Al 2 O 3 NRs (d) XRD pattern ofg-Al 2 O 3 NRs Bars indicate reference peaks ofg-Al 2 O 3 (JCPDS

Trang 5

readily-dispersible in water or other polar solvents at high

concentrationwithexcellentcolloidalstability

Tofurtherconfirmthephasetransformationfromg-AlOOHto

g-Al2O3,andtoinspectthepurity,weconductedFT-IR

measure-mentsforg-AlOOHandg-Al2O3NRs.Fig.5showstheFT-IRspectra

ofbothNRs.Inthecaseofg-AlOOHNRs,theintensebandsat3300

and 3112cm1 correspond to asymmetric nas(Al)O–H and

symmetric ns(Al)O–H stretching vibrations, respectively These

two strong and well-separated bands are indicative of a good

crystallinity of g-AlOOH NRs [38] The peaks at 1556 and

1651cm1 represent bending modes of adsorbed water Two

peaksat1147and1062cm1areascribedtoasymmetricdasAl–O–

HandsymmetricdsAl–O–Hbendingvibrationinthecrystallattice

Thebroadpeakat620cm1correspondstothevibrationmodeof

AlO6octahedra.Inthecaseofg-Al2O3NRs,twopeaksat3468cm1

(broad) and 1647cm1 (sharp) are observed corresponding to

stretchingvibrationsof–OHgrouponthesurfaceofg-Al2O3NRs

andbendingmodeofadsorbedwater,respectively.Thebroadpeak

at576cm1correspondstothevibrationmodeofAlO6octahedra

Inconsequence,itisverifiedthattheas-synthesizedg-AlOOHNRs

andg-Al2O3NRsarepurephasewithoutimpurities

3.3 Preparationandcharacterizationofg-AlOOH/Cu(OAc)composite

nanoprecursor

To prepare the nanoprecursor for the CuAlO2 synthesis, g

-AlOOH NRs and Cu(OAc) were simultaneously dissolved in

pyridine at a Cu/Al atomic ratio of 1:1 (Scheme 1 TEM and

SEMimagesofthesample(Fig.6aandb)confirmedthatCu(OAc)

werehomogeneously deposited onto all thesurfaces of theg

-AlOOH NRs Fig 6c shows a photograph of the nanoprecursor

dispersion The well-dispersedstable dispersion is a promising

materialforwetprocessing.IfonetakesacloselookatFig.6aandb, Cu(OAc) is found to be homogeneously attached on the NR surfaces.ThehomogeneousattachmentofCu(OAc)on g-AlOOH NRs is thoughtto bea good sign for thesynthesis of uniform CuAlO2polycrystal.Inaddition,thehydrophobicinteraction[47] between Cu(OAc) may facilitate a self-assembly of NRs This structureisquitebeneficialforthesubsequentsolidstatereaction becauseofthehugenumberdensityofreactivespots,wherethe reactiontakesplace,andthequite-shortdiffusionlengththanksto thenano-scaledimension

Tofurther confirmtheformationofg-AlOOH/Cu(OAc) nano-composite,theelementalcompositionofasmallareacontaining just afewNRs wasanalyzed usingTEM-EDS.Fig.6 showsthe TEM-EDSspectrum confirmingthepresenceofCu(26.6at%),Al (26.5at%)andO(46.9at%)inthenanocompositeevidencingthe homogeneousdistributionofCu(OAc)intheNRframework.Note thatMoandCpeaksseenintheEDSspectrumarefromthe carbon-coatedMogrid

3.4 Phasetransformationbehaviourofg-AlOOH/Cu(OAc)composite nanoprecursor

Fig 7 shows TEM and SEM images of g-AlOOH/Cu(OAc) nanocompositeannealedfor 2hatdifferenttemperatures:400,

600,1000,and11508C.AsseeninFig.7a,themorphologyofNRs didnotchangemuchafterannealingat4008C.However,smallNPs (blackspotsintheTEMimage)seemtohaveaggregated.Fig.8a shows an XRD pattern of g-AlOOH/Cu(OAc) nanocomposite annealed at 4008C TheXRD pattern clearlyshows coexistence

of g-AlOOH and CuO phases This indicates that Cu(OAc) is oxidizedtoformCuOaccordingtothefollowingreaction:

Ontheotherhand,thephasetransformationfromg-AlOOHtog

-Al2O3hadnotproceededmuch,andthus,nog-Al2O3wasobserved Whentheannealingtemperaturewasincreasedto6008C,NPs becomesinteredtoformlargerNPsasshowninFig.7b.However, themorphologyoftheNRsremainsunchanged.Fig.8 showsan XRD pattern of g-AlOOH/Cu(OAc) nanocomposite annealed at

6008C.TheXRDpatternshowsthedisappearanceoftheg-AlOOH phaseandacoexistenceofg-Al2O3andCuOphases.Thisresultis reasonablebecausethephasetransformationfromg-AlOOHtog

-Al2O3wasfoundtobecompletedwhenitwasannealedat6008C for1hinair(seeFig.4

Whentheg-AlOOH/Cu(OAc)nanocompositewasannealedat

10008C,bothNRsandNPsbecomesinteredtogethertoformbigger crystalsasshowninFig.7c.Fig.8 showsanXRDpatternofthe sample Itis evidenced that CuO and copper aluminate spinel (CuAl2O4)phasesdominantlycoexist.Thisphase transformation reactioncanbeexpressedas

Atthistemperature,thereactionbetweenCuONPsandg-Al2O3 NRseventuallytakesplace.Todeterminethethreshold tempera-ture forthe solid statereaction between CuOand g-Al2O3, we annealedtheg-AlOOH/Cu(OAc)nanocompositeat8008C.Fig.8c showsanXRDpatternofthesampleannealedat8008C.Inthis case,thecoexistenceofCuOandCuAl2O4phasesisalsoobserved, while the relative intensity of peakscorresponding toCuAl2O4

phase ismuchlowerthanthoseofFig.8d Thismeansthatthe thresholdtemperatureforthesolidstatereactionbetweenCuO andg-Al2O3mightbeinbetween600and8008C

Finallytheannealingtemperaturewasfurtherincreasedupto

11508C As shownin Fig 7d, all nanoparticulatemorphologies disappearedandlargecrystalsemerged.However,thelargecrystal

Fig 5 Diffuse reflectance IR spectra ofg-AlOOH (bottom) andg-Al 2 O 3 NRs (top).

Scheme 1 From preparation ofg-AlOOH/Cu(OAc) composite nanoprecursor to the

synthesis of CuAlO polycrystal.

Trang 6

still retains some remnants of NR morphology in its internal

structure.Fig.8eshowsanXRDpatternofthesampleannealedat

11508C.Inthiscase,CuAlO2isthedominantphasewithsomevery

minorpeakscorrespondingtotheCuAl2O4phase.Reflectingthe

largegrainsize,theXRDpeaksaremuchsharper thanthoseof

samplesannealedatlowertemperatures.Thisphase

transforma-tionreactioncanbeexpressedas

Wealsofoundthat,iftheCu/Alatomicratiowaslessthan1,the

relativeintensityofCuAl2O4peaksincreasedatthistemperature

WhentheCu/Al atomicratio was0.5, thedominantphase was

switched toCuAl2O4 The average grain size of CuAl2O4 phase

estimatedbytheScherrerformulausingthe(311)primarypeak

alsodramaticallyincreasedwithdecreasingtheCu/Alatomicratio

Thisphenomenoncanbeelucidatedbytwodifferentmechanisms

First,CuOphaseisconsumedfasterthanAl2O3phaseaccordingto

Eq.(5)preventingthereactionexpressedbyEq.(6),becauseofthe

Al-rich composition Second, CuAlO2 phase once formed might

returntoCuAl2O4phaseaccordingtoEq.(7)

AsseeninFig.8e,therelative(110)peakintensityoftheCuAlO2

polycrystal synthesized using a nanoprecursor followed by

annealingat 11508Cis significantlyenhanced compared tothe

standardpatternforCuAlO2bulkcrystal.Thisresultindicatesthat

ourCuAlO2polycrystalhasanorientationalongthe(110)lattice

planes.Thecrystal structureof CuAlO2can bedescribedas the

alternatestackingofedgesharedAlO6octahedrallayersandCu+

ionlayersperpendiculartothec-axis.EachoftheCu+ionlayersis

linearlycoordinatedbytwoO2anions.TheenergylevelsofCu+

andO2poverlap,givingrisetoincreasedmobilityofholes,which makes them suitable for p-type conduction Because of this structural anisotropy,electrical conductivityalongtheab plane wasreportedtobeover25-foldhigherthanthatalongthecaxis [48], indicating that the main conduction path of the CuAlO2

polycrystalisclosed-packedCu+layers(seeFig.1a).Forthisreason, the(110)-orientedCuAlO2polycrystalsynthesizedinthepresent study is quite promising, because such a structure is usually unattainableusingsolidstatechemicalsynthesis

3.5 Assessmentoftheelectrical/thermalpropertiesofCuAlO2

synthesizedusingg-AlOOH/Cu(OAc)nanoprecursor For the measurements of the Seebeck coefficient, thermal conductivity,andelectricalconductivity,thedriednanoprecursor waspelletizedat40MPafollowedbyannealingat11508Cfor4h

A gray pellet of 12mm diameterwas uni-axiallypressed once againat40MPaandsubsequentlysinteredat11508Cfor4hinair

inordertoobtainadensepellet.Fig.9showsaphotographofa pieceofthepellet(massof33.04mg,areaof3.6mm3.4mmand thicknessof0.6mm).Thedensityofthepelletwas4.4gcm3,87%

ofthetheoreticalvalue.Then,twosidesurfacesofthepelletwere coatedwithgoldpastetocontactwiththeelectrodesofthesample holder.AsseeninFig.9,thecolouroftheCuAlO2pelletisblue-gray

orgray-black.Similarresultshavebeenreportedintheliterature Forexample,thecolourofCuAlO2fibrousmatsappearedtobegray [49],whereasCuAlO2samplessynthesizedbysolidstatereaction hydrothermal processing were correspondingly blue-gray and gray-black[50].InthecaseofCuAlO2synthesizedviaionexchange [19],alargeamountofdeepstatesintheforbiddenbandgapof

Fig 6 (a) TEM and (b) SEM images ofg-AlOOH/Cu(OAc) composite nanoprecursor (c) A photograph of a pyridine dispersion of the nanoprecursor (d) TEM-EDS spectrum of

g-AlOOH/Cu(OAc) composite nanoprecursor.

Trang 7

observationagreeswellwiththepreviousreports.Interestingly,as

seeninFig 8 therelative (110)peakintensityoftheCuAlO2

pellet dramatically decreased compared to that of CuAlO2

polycrystalbeforepelletizing(Fig.8e),andtherelativeintensities

ofallpeaksarealmostidenticaltothestandardpatternforCuAlO2

bulkcrystal.Thisresultsuggeststhatthe(110)crystalorientation

was destroyed during pelletizing Note that the weak peaks

observed at 31.3, 36.0, 38.8, 59.6 and 66.3 degrees in Fig 8f

correspond to CuAl2O4(220), CuO( ¯111)/(002), CuO(111)/

(200),CuAl O(511)andCuO(022)/( ¯311),respectively

The Seebeck coefficient (S), resistivity (r), and thermal conductivity (k) of the CuAlO2 pellet were measured using a physicalpropertymeasurementsystem(QuantumDesign,PPMS) using the thermal transport option (TTO) package with two electrodes.Asaresult,thevaluesofS,r,andkat300Karefoundto

be 560mVK1, 1.3Vm, and 19.4WK1m1, respectively The signofSispositiveconfirmingp-typeconductivity.Themagnitude

of theSeebeckcoefficientis fairlylarge (indicative of semicon-ducting behaviour) comparedtothat ofa CuAlO2single crystal (300mVK1at300K)[51].Ontheotherhand,theresistivityisan orderofmagnitudelargerthanthatofsinglecrystal(0.15Vmat

Fig 7 TEM (left) and SEM (right) images of samples after annealing at (a) 400;(b) 600; (c) 1000; and (d) 1150 8C.

Trang 8

300K)[51].Thethermalconductivity,k,ofCuAlO2isreportedtobe stronglydependingongrainsize.Forexample,inthecaseofbulk crystal, k is 20WK1m1 at 300K, while it decreases to

2WK1m1at300KinthecasesofnanocrystallineCuAlO2and disorderedCuAlO2crystal[52].Thismeansthatourpelletsample hasalmostthesamethermalconductivityasbulkCuAlO2crystal

4 Conclusions DelafossiteCuAlO2wassynthesizedusingg-AlOOHNRsloaded withCu(OAc)asaprecursor.Theg-AlOOHNRsweresynthesized

bya facilehydrothermaltechnique andtheresultingNRs were foundtogrowalongthea-axis.TheNRsweremonodispersedand readilydispersibleinwaterathighconcentration.Bymixingthe NRswithCu(OAc)inpyridine,g-AlOOH/Cu(OAc)compositeNRs (nanoprecursor) were obtained Cu(OAc) was homogeneously loaded onto all the NR surfaces The nanoprecursor was then annealed at different temperatures As a result, the phase transformation of the nanoprecursor was found to go through thefollowingpath:(1)Cu(OAc)becomeCuONPswhileg-AlOOH NRs remain unchanged at T4008C, where T denotes the annealingtemperature.(2)When T=6008C, g-AlOOHNRsstart

tobetransformedintog-Al2O3NRs.Simultaneously,CuONPsreact with g-Al2O3 NRs to form copper aluminate spinel (CuAl2O4) phase.(3)WhenT iselevatedfurtherto10008C,thefractionof CuAl2O4phaseincreasesasaresultofreactionbetweenCuOandg

-Al2O3 phases (4) When T=11508C, delafossite CuAlO2 phase appears as the dominant phase Interestingly, the CuAlO2

polycrystal exhibits the (110) orientation presumably due to the crystalline anisotropy of the nanoprecursor The Seebeck measurementfortheCuAlO2polycrystalconfirmedthatatroom temperaturetheprimarychargecarriersareholeswitharelatively largeSeebeckcoefficientof560mVK1

Acknowledgements TranV.ThuacknowledgestheVietnamesegovernmentfora

322 scholarship and financial support from the Cooperation Independent Research Foundation (JAIST) The authors wish to thank Prof Tatsuya Shimoda and Kazuhiro Fukada for their generoussupportfortheTG/DTAmeasurements

References

[1] B.G Lewis, D.C Paine, MRS Bull (2000) 22.

[2] Y Yang, L Wang, H Yan, S Jin, T.J Marks, S.Y Li, Appl Phys Lett 89 (2006) 051116.

[3] M Emziane, K Durose, D.P Halliday, A Bosio, N Romeo, Appl Phys Lett 87 (2005) 251913.

[4] D Ginley, T Coutts, J Perkins, D Young, X Li, P Parilla, MRS Proc (2001) 668 [5] C.G Granqvist, A Hultaker, Thin Solid Films 411 (2002) 1.

[6] K.L Chopra, S Major, D.K Pandya, Thin Solid Films 102 (1983) 1.

[7] T.V Thu, S Maenosono, J Appl Phys 107 (2010) 014308.

[8] F.A Benko, F.P Koffyberg, J Phys Chem Solids 45 (1984) 57.

[9] H Kawazoe, M Yasukawa, H Hyodo, M Kurita, H Yanagi, H Hosono, Nature 389 (1997) 939.

[10] R.D Shannon, Acta Crystallogr A 32 (1976) 751.

[11] T Ishiguro, N Ishizawa, N Mizutani, M Kato, Acta Crystallogr B 39 (1983) 564 [12] H Yanagi, S Inoue, K Ueda, H Kawazoe, H Hosono, N Hamada, J Appl Phys 88 (2000) 4159.

[13] N Tsuboi, T Moriya, S Kobayashi, H Shimizu, K Kato, F Kaneko, Jpn J Appl Phys.

47 (2008) 592.

[14] A.N Banerjee, K.K Chattopadhyay, J Appl Phys 97 (2005) 084308.

[15] D.S Kim, S.J Park, E.K Jeong, H.K Lee, S.Y Choi, Thin Solid Films 515 (2007) 5103 [16] C Bouzidi, H Bouzouita, A Timoumi, B Rezig, Mater Sci Eng B 118 (2006) 259 [17] H Gong, Y Wang, Y Luo, Appl Phys Lett 76 (2000) 3959.

[18] Y Wang, H Gong, Chem Vap Deposition 6 (2000) 285.

[19] L Dloczik, Y Tomm, R Konenkamp, M.C Lux-Steiner, Th Dittrich, Thin Solid Films 451–452 (2004) 116.

[20] B Saha, R Thapa, K.K Chattopadhyay, Mater Lett 63 (2009) 394.

[21] X.G Zheng, K Taniguchi, A Takahashi, Y Liu, C.N Xu, Appl Phys Lett 85 (2004)

Fig 8 XRD patterns of samples after annealing at (a) 400; (b) 600; (c) 800; (d) 1000;

and (e) 1150 8C The indexed peaks are marked by the symbols open triangle (~) for

g-AlOOH (JCPDS card no 01-072-0359), filled squares (&) for CuO (JCPDS card no.

01-070-6827), open circles (*) for CuAl 2 O 4 (JCPDS card no 01-071-0966), and open

diamond (^) forg-Al 2 O 3 (JCPDS card no 01-079-1558) (f) XRD pattern of the

CuAlO 2 pellet Bars indicate reference peaks of CuAlO 2 (JCPDS card no

01-075-2359).

Fig 9 Photograph of the CuAlO 2 pellet (mass of 33.04 mg, area of 3.6 mm  3.4 mm

and thickness of 0.6 mm) used for the PPMS-TTO measurement.

Trang 9

[22] G Li, X Zhu, H Lei, H Jiang, W Song, Z Yang, J Dai, Y Sun, X Pan, S Dai, J Sol–Gel

Sci Technol 53 (2010) 641.

[23] S Gotzendorfer, C Polenzky, S Ulrich, P Lobmann, Thin Solid Films 518 (2009)

1153.

[24] A Ahmad, T Jagadale, V Dhas, S Khan, S Patil, R Pasricha, V Ravi, S Ogale, Adv.

Mater 19 (2007) 3295.

[25] R.D Shannon, D.B Rogers, C.T Prewitt, Inorg Chem 10 (1971) 713.

[26] C.T Prewitt, R.D Shannon, D.B Rogers, Inorg Chem 10 (1971) 719.

[27] D.B Rogers, R.D Shannon, C.T Prewitt, J.L Gillson, Inorg Chem 10 (1971)

723.

[28] D.Y Shahriari, A Barnabe`, T.O Mason, K.R Poeppelmeier, Inorg Chem 40 (2001)

5734.

[29] J Zhang, S Wei, J Lin, J Luo, S Liu, H Song, E Elawad, X Ding, J Gao, S Qi, C Tang,

J Phys Chem B 110 (2006) 21680.

[30] S.C Kuiry, E Megen, S.D Patil, S.A Deshpande, S Seal, J Phys Chem B 109 (2005)

3868.

[31] Y Mathieu, B Lebeau, V Valtchev, Langmuir 23 (2007) 9435.

[32] H.C Lee, H.J Kim, S.H Chung, K.H Lee, H.C Lee, J.S Lee, J Am Chem Soc 125

(2003) 2882.

[33] J Zhang, S Liu, J Lin, H Song, J Luo, E.M Elssfah, E Ammar, Y Huang, X Ding, J.

Gao, S Qi, C Tang, J Phys Chem B 110 (2006) 14249.

[34] Y Zhao, R.L Frost, W.N Martens, H.Y Zhu, Langmuir 23 (2007) 9850.

[35] T He, L Xiang, S Zhu, Cryst Eng Commun 11 (2009) 1338.

[36] J Zhang, F Shi, J Lin, S.Y Wei, D Chen, J.M Gao, Z Huang, X.X Ding, C Tang, Mater Res Bull 43 (2008) 1709.

[37] M.G Ma, Y.J Zhu, Z.L Xu, Mater Lett 67 (2007) 1812.

[38] T He, L Xiang, S Zhu, Langmuir 24 (2008) 8284.

[39] X.Y Chen, Z.J Zhang, X.L Li, S.W Lee, Solid State Commun 145 (2008) 368 [40] T.S Chang, J.H Na, C.Y Jung, S.M Koo, J Ceram Process Res 10 (2009) 832 [41] Y Deng, Q Yang, G Lu, W Hu, Ceram Inter 36 (2010) 1773.

[42] S.C Shen, Q Chen, P.S Chow, G.H Tan, X.T Zeng, Z Wang, R.B.H Tan, J Phys Chem C 111 (2007) 700.

[43] T Tamura, M.L Jackson, Science 117 (1953) 381.

[44] W.O Milligan, J Phys Chem 55 (1951) 497.

[45] S.J Wilson, J Solid State Chem 30 (1979) 247.

[46] G Paglia, E.S Bozˇin, S.J.L Billinge, Chem Mater 18 (2006) 3242.

[47] D Chandler, Nature 437 (2005) 640.

[48] M.S Lee, T.Y Kim, D Kim, Appl Phys Lett 79 (2001) 2028.

[49] S Zhao, M Li, X Liu, G Han, Mater Chem Phys 116 (2009) 615.

[50] D.Y Shahriari, A Barnabe, D Ko, K.R Poeppelmeier, Chem Mater 16 (2004) 5616 [51] J Tate, H.L Ju, J.C Moon, A Zakutayev, A.P Richard, J Russell, D.H McIntyre, Phys Rev B 80 (2009) 165206.

[52] O.J Dura´, R Boada, A Rivera-Calzada, C Leo´n, E Bauer, M.A Lo´pez de la Torre, J Chaboy, Phys Rev B 83 (2011) 045202.

Ngày đăng: 16/12/2017, 02:53

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm