1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Integrating community structure and stable isotope analysis to assess a heavily exploited coastal marine ecosystem off Central Vietnam

9 105 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 619,7 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Superscript letters denote hauls that were used for community C and stable isotope S analysis.. Benthic substrate type follow notation of: sand S, gravelly mud gM, slightly gravelly mud

Trang 1

jo u r n al h om ep a ge :w w w e l s e v i e r c o m / l o c a t e / f i s h r e s

a Faculty of Biology, Hanoi University of Science, Vietnam National University, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam

b Global Center of Excellence, Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan

a r t i c l e i n f o

Article history:

Received 15 February 2011

Received in revised form 18 April 2011

Accepted 19 April 2011

Keywords:

Community structure

Vietnam

Fisheries

Trophic structure

Stable isotopes

Benthic–pelagic coupling

Food web

Phan Thi ´ˆet

Shelf

Marine

a b s t r a c t

Weexaminedthecommunityandtrophicstructureoftheheavilyexploitedbenthic-demersal commu-nityoffPhanThi ´ˆetBay,CentralVietnam.Usingclusteranalysisandnon-metricmultidimensionalscaling (NMS)ofcatchdatafromatrawlsurvey,weexaminedthenektoncommunitystructurepertainingto bottomsubstratetypeanddepth.Fordominantfishandinvertebratetaxaweappliedstableisotope analysis,using␦15Ntoexaminetrophiclevel(TL)andsize-specificontogeneticshifts,and␦13Casa mea-sureofcontributionbybenthicsecondaryproduction.Basedontrawldatasmallfishesandcephalopods werethenumericallyandbiomass-dominanttaxa.Communitystructureanalysisshowedmanyofthe samplesitessharedthesamespeciescomposition,butthattherewassignificantheterogeneityrelated

tosubstratetypesofsandandgravellymuddysand.Resultsfrom␦15Nshowed70%ofthespecieswere betweenTL3.3and3.8,withnospeciesindicatingtruepiscivory(TL4);highestTLwasfromthesquid Loligojaponica(TL3.8).Size-specific␦15N-basedtrophicshiftwasexpressedintaxawhenthe propor-tionalsizerange(Lmax)obtainedforanalysiswasatleast40%ofthelargestreportedsizeforthespecies (Lmax).From␦13C,nektonexpressedbetween35and77%dependenceonbenthicsecondaryproduction Evidenceofover-exploitationfromourstudyincludedtherelativelylowTL’sofdominanttaxa,small sizedistributionofspecimenscollected,andthedominanceoftaxawithveryhighgrowthratessuchas cephalopods(juvenileOctopussp.andcuttlefish)andsmallfishes.Theeffectivenessofstableisotopesas

anindicatorofover-exploitationisdiscussed

© 2011 Elsevier B.V All rights reserved

1 Introduction

About65%ofVietnam’s fisheriesproduction is derivedfrom

itscoastal waters <50mdepth, with intensivefishingover the

last 30 yrs resulting in precipitous declines in fisheries

catch-per-unit-effort (CPUE,vanZwietenet al.,2002; Pomeroy etal.,

2009).Thecoastalregionof Vietnamis alsoexperiencing

mas-sive growth in both industry and tourism, increasing demand

for fisheries productswhile increasingthepotential forcoastal

eutrophication.VulnerabilitiesofVietnam’scoastalecosystemsto

over-exploitationandhabitatdegradationunderscorethe

impor-tanceofimplementing amore adaptivemanagement approach,

one which appliesmultipleindicators of ecosystem health and

functioning(Raakjaeretal.,2007),andnotbasedsolelyon

fisheries-basedcensusdata

The fisheries of Vietnam have been reviewed in a

num-berofstudiesinvolvingover-exploitationandmanagement(van

Zwieten et al., 2002; Raakjaer et al., 2007; Pomeroy et al.,

∗ Corresponding author Tel.: +81 089 927 9643; fax: +81 089 927 9643.

E-mail address: toddomiller@gmail.com (T.W Miller).

2009),andestablishmentofmarineprotectedareas(Dung,2009; Svensson et al., 2009) Yet, almost no ecological information

is available on exploited fish or invertebrate species, informa-tion of which is essential for ecosystem-based management

of Vietnam’s waters (Raakjaer et al., 2007) and a more func-tional perspective ontheflow of energy throughtheexploited ecosystem Over-exploitation can be reflected in a lowering of average trophic level (Pauly et al., 1998), biomass size spectra (Jenningsetal.,2001),ashifttosmallermoreproductivespecies (Myers, 1993; Jennings et al., 2001), shifts in benthic produc-tion (Jennings et al., 2001; Hiddink et al., 2008)and potential shifts through trophic cascades(Frank etal., 2005).How these are measuredcanbeaccomplishedin-part fromfisheries catch data;however theadditionofotheranalytical methodssuchas stableisotopeanalysisofcarbonandnitrogen,whichcanmeasure sourceproductionandtrophicstructure,showparticularpromise Stable isotopesof carbon and nitrogenhave beenshown as time-averaged measuresofrelative trophic positionand source production ofan organism(Petersonand Fry, 1987)and there-foreameasureoffoodwebtrophicstructure(VanderZandenand Rasmussen,1999),degreeofbenthic–pelagiccoupling(Takaietal., 2002;Mincksetal.,2008;Votieretal.,2010),ontogeneticshifts 0165-7836/$ – see front matter © 2011 Elsevier B.V All rights reserved.

Trang 2

(Coleetal.,2004;Milleretal.,2010).Stableisotopesaremeasured

asaratiooftheheavytolightformrelativetoastandardusingthe

followingequation:␦X=[(Rsample/Rstandard)−1]×103,whereXis

theisotopevalueinpartspermil(‰)andRistheratiooftheheavy

tothelightisotopeofthesample(Rsample)toananalyticalstandard

(Rstandard).StandardsarecalibratedtoatmosphericN2fornitrogen

andViennaPeeDeeBelemniteforcarbon(PetersonandFry,1987)

Fornitrogen,theheavier(15N)isotopeisretainedatahigherrate

overthelighterisotope(14N),andthisdifferenceisexpressedasan

approximateenrichmentof3.4‰in␦15Nofanorganismrelativeto

itsdiet(Post,2002).Thisallowsfor␦15Ntobeusedasaneffective

measureofrelativetrophicpositionofanorganism.Differences

in␦15Ncanalsooccuratthebaseofthefoodweb

(phytoplank-ton)and bereflected inhighertrophic levels,where thesource

ofnitrogentoprimaryproducersmayoccurmorefromN-fixing

cyanobacteria(low␦15N)orarefromrecyclednitrate(O’Reillyand

Hecky,2002).Extremelyelevatedlevelscanindicatesomedegree

ofeutrophicationanddenitrification,whichmayoccurnaturally

orfromanthropogenicloading.Carbonstableisotopes(␦13C)are

appliedmoreasarelativemeasureofsourceproduction,because

thedifferencesin␦13Coccurmorebetweenthedifferentsourcesof

carbonfixationatthelevelofprimaryproduction(Fry,2006).For

aquaticsystemsdifferencesin␦13Coccurmorebetweennearshore

(moreenrichedin13C)andoffshorewaters(Milleretal.,2008),

andwithdepth(Bosleyetal.,2004).Measuresof␦15Nand␦13C

thereforeprovidearespectivemeasureofTLandspatialproperties

ofthecoastalcommunity,suchasfrombenthic–pelagiccoupling

orbetweennearshoreandoffshoresystems.Usingstableisotope

analysisinconcertwithcommunitystructuredata,suchascatch

surveyswithquantitativeassessmentofbiomasscanalsoprovide

greaterinsightastothepotentialrelativestrengthsoftrophiclinks

intermsofnearshore-offshoresystemsandalsothebasic

function-ingoftheecosystem

OneofthreemajorcoastalzonesofVietnam,thecentralregion

between10and15◦Nexhibitsstrongsummerupwellingduring

thesouthwestmonsoonmonthsbetweenMayandAugust(Kuo

etal.,2004),contributingnutrientsandmuchoftheprimaryand

highertrophiclevelproductiontotheregion(AnandThu,2007)

PhanThi ´ˆetBay(BìnhThuˆa.nProvince)isjustsouthofthecentral

upwellingcellandisconsideredamajorfisheriesregionofVietnam,

consistingoflocalbottomdraggers,gillnetting,andhook-and-line

fishers.TheshelfregionistypicalofmostofVietnam’scoastline

withdepthsof<50masfaras50kmoffshore,andarelativelyflat

reliefwithbottomsubstratesofsand,mud,andcobble.Asaresult,

thecoastalwatersareeasilyfishedbyuseoftrawlorpushnetsthat

oftenhavesmallmeshsizesthatindiscriminatelytakealmostall

sizesofmacro-organisms(Pomeroyetal.,2009)

Over-exploitation in marine ecosystems can favor smaller,

fastergrowingspecies(Blanchardetal.,2004)butalsoreducedsize

withinaspecies (BevertonandHolt,1957),anda lowertrophic

levelofexploitablebiomass(Paulyetal.,1998).Inthisstudy,by

useofa limitedtrawlsurveyweexaminedthecommunity and

trophicstructureofexploitedbenthic-demersalfishesand

inver-tebratesoffPhanThi ´ˆetBay,Vietnam.Weusedcatchdataandsize

measuresofthemostabundanttaxaandtrophiclevelassignments

from␦15Ntotestthehypothesisthat:(1)theexploitedbiomass

offPhanThi ´ˆetBayisdominatedbysmallernektonwithrelatively

highgrowthrates,and(2)thatTLofthenektoncommunitywould

berelativelylow(TL<3.5).Wealsoapplied␦13Ctodeterminethe

degreeto which benthic and pelagicproduction are

contribut-ingto theproduction of dominant targetspecies Results from

thisstudyprovidethefirstassessmentofVietnam’scoastal

fish-eriesbyintegrationofstableisotopeanalysiswithfisheriescatch

data

2 Methods

2.1 Fieldsampling

Atotalofninebenthic-demersalhaulswereperformedbetween

20and25August,2010forquantifyingthedemersalnektontaxa offPhanThi ´ˆetBay(Fig.1andTable1 andtoobtainsamplesfor stableisotopeanalysis.Thetimeofthisstudywaschosentocapture communitycharacteristicsandisotopic-basedtrophicdynamicsof thesummermonsoonupwellingseason,which typicallyoccurs betweenMayandAugust(Kuoetal.,2004).Benthic-demersalhauls weredoneusingabenthicottertrawlconsistentwithregular fish-inggearbylocalfishers,withamaximummouthopeningof17m wideby15minheight,andanetlengthof30m.Meshsizeatthe mouthwas6cm,taperingdownto1cmtowardthecodend.The trawlwastowedatapproximately3knotswithdurationofhauls varyingduetogearsaturation,inwhichhaulswerediscontinued whenhaul speedwasnotablyreduced Oftheninehauls,eight wereusedforquantifyingspeciescatchesandmeasurementsof fishes,andfourwereusedforstableisotopeanalysis(Fig.1).Upon retrievalofthenet,thecatchwasrandomlydispersedinto40L con-tainers,withthetotalnumberofcontainersconsistingofthetotal catch.Onecontainerwasrandomlyselectedasasubsample,with allmajornektontaxaidentified,enumerated,andupto30 individ-ualsofeachtaxarandomlyselectedandmeasuredinmm(±0.1) forlengthastotal lengthfor fishes,dorsalmantle length(DML) forcephalopods,shelldiameterforgastropodsandshellheightfor bivalvescallops(Pectinidae).Totalcatch,includingspeciescounts andweightsforeachhaulwereestimatedbyusingthe40L sub-sample andmultiplying bythe total numberof 40L containers consistingofthehaulcatch.Weightofeach40Lsubsamplewasalso usedtoestimatethetotalbiomassofcatchforeachhaulusingthe samemethod.Thetotalbiomassofindividualtaxafromeachhaul wasestimatedbytakingthesizedistributionoftheindividuals sub-sampledandusingthelength-weightrelationshipfromFishBase (FroeseandPauly,2010)toobtainanestimateofthe40L subsam-plebiomass,thenmultiplyingbythetotalnumberof40Lcontainers consistingofthetotalhaul.Thelogisticsofcountingandmeasuring everyspecieswasproblematicduetotheveryhighdiversity(>100 speciesoffish)andinmanyinstancesthecryptogenictaxonomyof somegroups.Wethereforefocusedon18dominantfishand inver-tebratetaxawhichtogetherconsistedofover50%ofthecollective totalofnethaulsbybiomassandnumber.Fromeachhaul,nekton communitydatawasthenusedforcommunitystructureanalysis 2.2 Communitystructureanalysis

CommunitystructureanalyseswereperformedusingPC-ORD v4.25(McCuneandMefford,1999)inwhichaninitialmatrixwas establishedbasedonthecatchperuniteffort(CPUE)of individ-ualnektonfrom8hauls(rows)and64taxa(columns).TheCPUE wascalculatedforeachhaulasthenumberofindividualswithin eachtaxadividedbythearea(m2)coveredbythehaul Agglom-erativehierarchicalclusteranalysis(AHCA)usingSørensen(Brae Curtis)distanceandflexiblebeta(ˇ=−0.25)linkagefunctionwas applied toarrange hauls into nekton community-based cluster groups.PriortotheAHCAthematrixwastransformedusing gen-eralrelativizationtoallowfor clustergroupingsbasedmore on speciesassociationsandtoavoidclusteringbasedonhighand low-abundantspecies(McCuneandMefford,1999).Optimumnumber

ofclustergroupsfromAHCAwerebasedonacombinationof sev-eralcriteria: (1) biological meaning; (2) significance and effect size(A)ofgroupsusingamulti-responsepermutationprocedure (MRPP,Sørensendistance),frombothaboveandbelowthe opti-mumdendrogramcutofflevel;and(3)thenumberofsignificant

Trang 3

Fig 1.Location of hauls (H-1 to H-9) off Phan Thi ´ˆet Bay (Vietnam) during August 2010 Diamond and arrows denote start and finish of each haul path, respectively Superscript letters denote hauls that were used for community (C) and stable isotope (S) analysis Bathyclines are in m.

Table 1

Summary haul data from off Phan Thi ´ˆet Bay (Vietnam), 20–25 August, 2010 Benthic substrate type follow ) notation of: sand (S), gravelly mud (gM), slightly gravelly muddy sand ((g)mS), gravelly muddy sand (gmS), and gravelly sand (gS) Percent substrate denotes the percent area of the benthic haul consisting of the specific sediment type.

Haul Distance (km) Start lat lon Finish lat lon Average depth (m) Substrate (%)

108◦2043.4E 108◦2413.0E

108 ◦ 23  44.3  E 108 ◦ 20  53.1  E gmS (20)

108 ◦ 20  53.1  E 108 ◦ 24  31.8  E

108◦0934.6E 108◦0752.9E gmS (30)

108 ◦ 07  52.5  E 108 ◦ 02  38.6  E gmS (30)

gS (10)

108 ◦ 02  38.1  E 108 ◦ 03  06.3  E

108◦0306.5E 108◦0410.5E

108 ◦ 04  07.9  E 108 ◦ 13  17.4  E S (40)

gM (10)

◦   ◦  

Trang 4

indicatorspecies withineach groupbyuseof IndicatorSpecies

procedure,MRPPcomparestheAHCA-basedapriorigroupingsto

a randomizedmatrix and tests thehypothesis of nodifference

betweentwoormoregroups(McCuneandGrace,2002).TheISA

assistedinfurtherbalancingtheimportanceofagroupby

indicat-ingcutofflevelsthatresultinhighestspeciesfidelitytoaparticular

group.Thestatisticalsignificanceofaspeciestoaparticulargroup

inISAisexaminedbyaMonteCarlomethodinwhichsampleunits

arerandomlyreassignedn-timestotestiftheindicatorspecies

val-uesarehigherthanwouldbebychance.Forourstudy,1000runs

wereappliedtoeachMonteCarlosimulation

Ordinationofsampleunits(hauls)inspeciesspacewas

per-formedusingnon-metricmultidimensionalscaling(NMS;Kruskal,

1964)andtocomparetheAHCA-basedclustergroupingsto

envi-ronmentalgradients.Thiswasdonebyincludinganenvironmental

matrixoftheeighthauls(rows)withcolumnsrepresentingthe

fol-lowingenvironmentalvariables:haultimeofday(h),haulduration

(h),depth(m),percentareaofhaulconsistingofsedimenttype,and

theclustergroupcutofflevel.Benthicsedimentinformationwas

providedfromTienandNghi(2006)basedonadetailed

geolog-icalsurveyoftheentireshelf regionofthestudyarea.Foreach

haul,thepercentareaofeach sedimenttype wascharacterized

byoverlayingthehaulpathoverthesedimentmapbyTienand

Nghi(2006),whichwasthenusedintheenvironmentalmatrixas

apercentareaofthehaulpathconsistingofsedimentsubstrate

types(Table1).ThesedimentsubstratetypedescribedbyTienand

Nghi(2006)followedstandardizedmethodofFolk(1954)which

characterizessedimentsbytheproportionalmixturesofdifferent

sedimentgrainsizesofsand,mudandgravel.Thefollowing

sedi-menttypeswerefromthestudyareawithabbreviationsfollowing

Folk’s(1954)notation:sand(S),gravellymud(gM),slightlygravelly

muddysand((g)mS),gravellymuddysand(gmS),andgravellysand

(gS).UsingPC-ORD,wechosetheSørensendistancemeasureand

the‘slowandthorough’optionforNMS,whichwere500iterations

foratwo-dimensionalsolution

2.3 Stableisotopeanalysis

Samplesobtainedforstableisotopeanalysiswerecollectedfrom

each ofthe 18 majorspecies fromfour separatehauls(Fig.1)

Attemptsweremadetoobtainisotopesamplesfromabroadsize

gradienttodetectpotentialontogeneticshiftsin␦13Cand␦15N

Uponcollection,fishandinvertebratesweremeasuredforsize

fol-lowingthedescriptionabove,withpaenidshrimpalsocollectedfor

stableisotopeanalysis;shrimpweremeasuredfromtheendofthe

telsontotheorbitinmm(±0.1).Tissueforstableisotope

analy-sisdependedonthetaxonomicgroup,withanterior-dorsalmuscle

usedforfishes,dorsalmantleforcephalopods,adductormusclein

bivalves,abdominalmuscleinshrimp,andaportionofthe

muscu-larfootingastropods.Extractionofalltissueswasperformedusing

distilled-watercleanedscalpelandforceps.Uponextractionall

tis-sueswereplacedinindividuallylabeledpolyethyleneeppendorf

tubesandplacedundericeforlaterprocessing.Allsampleswere

broughttothelabwithin72hofextractionandshowedno

indi-cationoflossinbiologicalintegrity.Sampleswerethenplacedin

adryingovenat60◦Cfor48h.Afterdrying,sampleswere

pulver-izedtoafinepowderusingamortarandpestlethenapproximately

1mg(±0.1)wasweighedandencapsulatedinatincapsule.Stable

isotopeanalysisofallsampleswereperformedattheCenterfor

MarineEnvironmentalStudies(CMES),Ehime University,Japan,

usingaCarloErbaElementalAnalyzer2500coupledtoa

Finni-ganMATDeltaPlusstableisotoperatiomassspectrometerviaa

ConFlo-IIIcontinuousflowinterface(measurementerrorforboth

carbonandnitrogen±0.3‰).Becausecarbonisotoperatioscanbe

alteredbychangesinlipidsirrespectiveofthecarbonsource,we

usedinitialisotopeanalysestoexaminetheC:Nratioofallsamples, andthoseexceeding3.5werereanalyzedfor␦13Cfollowinglipid removalbytheBlighandDyer(1959)method.SampleswithC:N values<3.5havebeenshowntohavelittleimpactonthedilution

oflipidson␦13Cvalues(Postetal.,2007)

Comparison of ␦13C and ␦15N values between taxa, when applied,wasperformedusinga t-test(˛=0.05).Examinationof size-specificshifts in␦13C and ␦15Nwithineach taxa was per-formedusinglinearregressionanalysis.Toexaminetheimportance

ofsizerangeindetectingsize-specificshiftsin␦13Cand␦15N,from themaximumsize(Lmax)reportedforeachspeciesfromFishBase (FroeseandPauly,2010)wecalculatedtheproportionalsizerange (Lmax)ofindividualsmeasuredinourstudy.Finally,we exam-inedtrophiclevelassignmentsofeachtaxabyuseof␦15NofPOM (valuesfromLoicketal., 2007)asTL 1.0,byzooplanktonasTL 2.0(valuesfromLoicketal.,2007),andbyuseofthebivalve Pla-copectensp.asTL2.0(thisstudy)asthefoodweb␦15Nbasevalue;a pairedtaxat-testwasperformedforcomparisonbetweeneachof thetaxa-specificTLassignments,andalsocomparedtoTLpositions fromestimatedvaluesobtainedfromFishBase(FroeseandPauly,

2010).The␦15Nbasevalueforthefoodwebwasbasedonthe equal-ity(pairedt-testwithnon-significantdifference)oftheprimaryor secondaryproducer-basedTLwiththeFishBase-derivedvaluefrom eitherfooditemsordietanalyses

Assessment of therelative dependence of a species to ben-thicproductionwasobtainedusing␦13Cvaluesofobligatepelagic zooplanktonand benthic inhabitantsas end-member ␦13C val-ues of their respected habitats The percent contribution of benthic production calculated for each nekton was doneusing the following formula from Vander Zanden and Vadeboncoeur (2002)for percentage of contributionoflittoral secondary pro-duction=(␦13Cc−␦13Cp)/(␦13C1−␦13Cp),where␦13Cc,␦13Cp,and

␦13C1denotethemeanvaluesoftheconsumer(nekton),pelagic baseline(zooplankton,valuesfromLoicketal.(2007),ofthesame region),andbenthicbaseline(snailPhaliumglaucum,Family Cas-sidae) As with Vander Zanden and Vadeboncoeur (2002), the baselines were primary consumers (TL 2)and we assumed no trophicfractionationin␦13C

3 Results

3.1 Catchdata Fromtheeightbenthichaulsatotalof1150kgoffish,squid,and otherinvertebrateswerecollected(Table2).Themostnumerically abundanttaxawerethefishblotchfindragonet(Callionymus fila-mentosus),juvenileOctopussp.,andBerberponyfish(Leiognathus berbis),whichaccountedfor9.6,3.2,and2.2%ofthetotalbiomass, respectively.ThehighestintermsofoverallbiomasswereC fil-amentosus,squidLoligojaponicas,andsnakefishTrachinocephalus myopsrepresenting9.6,8.0,and7.8%ofthetotalbiomass(25.4%

oftotal),respectively.Fromallsamplestherewasatotalabsence

ofwhatcouldbecategorizedaslargepredatoryfishes,oreventhe juvenilestages

3.2 Communitystructureanalysis Agglomerativehierarchicalclusteranalysis(AHCA)ofstations resultedinadendrogramwithtwomaingroupsthatwere sepa-ratedatthecutofflevelof44%informationremaining.Thecutoff levelwasbasedonthebiologicalreasoningofthegroupings,while retainingthehighestlevelofpercentinformationremainingand obtainingthehighestwithin-groupagreement(MRPP,A-valueof 0.03).Theonlyotherreasonablecutoffwasat3groupsat approx-imately60%informationremainingwitha slightlyhigherMRPP

Trang 5

Table 2

Summary catch data of major fish and invertebrate taxa collected between 20 and 25 August, 2010 off Phan Thi ´ˆet Bay (Vietnam) Catch data is presented as catch-per-unit-effort (CPUE) of individuals per m 2

Invertebrates

Octopus sp., juv 1.2 × 10 −3 2.6 × 10 −3 1.8 × 10 −2 4.8 × 10 −4 1.1 × 10 −3 2.2 × 10 −2 4.5 × 10 −3 3.5 × 10 −3

Cuttlefish 1.0 × 10 −3 1.6 × 10 −3 2.9 × 10 −4 4.5 × 10 −4 4.1 × 10 −3 4.5 × 10 −3 1.3 × 10 −3

Loligo japonica 1.7 × 10 −3 5.3 × 10 −3 1.1 × 10 −3 1.4 × 10 −3 6.9 × 10 −4

Argopecten sp 6.2 × 10 −1 5.0 × 10 −1 1.4 × 10 −1 4.1 × 10 −1 2.3 × 10 −1

Pandalid shrimp 2.1 × 10−1 4.9 × 10−1 1.4 × 10−1 2.8 × 10−1 5.9 × 10−1 6.9 × 10−1 Decapod crabs 9.3 × 10 −1 5.0 × 10 −1 1.2 × 10 −1 2.5 × 10 −1 9.0 × 10 −1 1.9 × 10 −1 1.1 × 10 −1 1.5 × 10 −1

Rajiformes

Anguilliformes

Gymnothorax sp 5.4 × 10 −1 1.2 × 10 −1 6.8 × 10 −1 2.4 × 10 −1 1.3 × 10 −1

Dysomma sp 7.0 × 10−1 1.3 × 10−1 1.9 × 10−1 4.5 × 10−1 2.4 × 10−1 5.8 × 10−1 3.8 × 10−1 Siluriformes

Aulopiformes

Saurida tumbil 1.3 × 10 −1 1.0 × 10 0 1.2 × 10 −1 4.8 × 10 −1 1.9 × 10 −1 1.2 × 10 −1 1.8 × 10 −1 9.8 × 10 −1

Trachinocephalus myops 4.5 × 10−1 2.0 × 10−1 2.9 × 10−1 2.4 × 10−1 2.4 × 10−1 1.2 × 10−1 7.4 × 10−1 4.6 × 10−1 Lophiiformes

Lophiomus setigerus 7.7 × 10 −1

Syngnathiformes

Scorpaeniformes

Scorpaenidae sp 1.5 × 10−1 1.0 × 10 0 2.3 × 10−1 4.5 × 10−1 4.1 × 10−1 9.9 × 10−1 1.4 × 10−1

Inegocia japonica 4.6 × 10 −1 1.6 × 10 −1 2.5 × 10 −1 2.7 × 10 −1 1.8 × 10 −1 5.9 × 10 −1 2.5 × 10 −1 2.8 × 10 −1

Perciformes

Mene maculata 7.7 × 10 −1

Leiognathus berbis 1.5 × 10 −1 1.3 × 10 −1 4.8 × 10 −1 5.7 × 10 −1 6.7 × 10 −1 2.9 × 10 −1 1.1 × 10 −1 9.1 × 10 −1

Apogon spp 6.9 × 10−1 4.3 × 10−1 1.4 × 10−1 1.1 × 10−1 7.8 × 10−1 7.6 × 10−1 3.4 × 10−1 9.4 × 10−1

Alectis ciliaris 2.3 × 10 −1

Selaroides leptolepis 2.3 × 10 −1 5.0 × 10 −1 6.8 × 10 −1 1.2 × 10 −1 2.8 × 10 −1 3.5 × 10 −1

Perciformes

Siganus spp 7.7 × 10 −1

Nemipterus spp 7.7 × 10 −1 4.0 × 10 −1 4.2 × 10 −1 3.9 × 10 −1 1.5 × 10 −1 1.2 × 10 −1 3.2 × 10 −1 8.3 × 10 −1

Lutjanus sp 2.3 × 10−1

Paracaesio sp 7.7 × 10 −1 4.0 × 10 −1 6.8 × 10−1 1.9 × 10−1 1.2 × 10−1 1.1 × 10−1

Opistognathus nigromarginatus 3.9 × 10 −1 4.0 × 10 −1 3.4 × 10 −1 2.3 × 10 −1 2.2 × 10 −1 1.2 × 10 −1 2.8 × 10 −1 3.5 × 10 −1

Priacanthus macracanthus 7.7 × 10 −1 6.8 × 10 −1 9.5 × 10 −1 5.6 × 10 −1 2.9 × 10 −1 5.6 × 10 −1 2.8 × 10 −1

Sillago sihama 7.1 × 10 −1 6.8 × 10 −1 1.5 × 10 −1 5.9 × 10 −1 5.6 × 10 −1 6.9 × 10 −1

Callionymus filamentosus 4.5 × 10 −1 1.9 × 10 −1 1.5 × 10 −1 6.9 × 10 −1 5.3 × 10 −1 4.1 × 10 −1 1.5 × 10 −1 2.8 × 10 −1

Synchiropus sp 2.7 × 10−1 9.5 × 10−1 9.0 × 10−1 1.6 × 10−1 4.0 × 10−1 1.4 × 10−1

Pristotis obtusirostris 3.9 × 10 −1 8.0 × 10 −1 1.4 × 10 −1 1.9 × 10 −1 3.4 × 10 −1 1.2 × 10 −1 4.2 × 10 −1

Eleotridae spp 2.5 × 10 −1 4.0 × 10 −1 2.5 × 10 −1 4.8 × 10 −1

Pleuronectiformes

Pseudorhombus arsius 7.0 × 10 −1 5.0 × 10 −1 1.3 × 10 −1 9.5 × 10 −1 3.4 × 10 −1 9.4 × 10 −1 1.5 × 10 −1 1.4 × 10 −1

Cynoglossus puncticeps 5.4 × 10−1 3.0 × 10−1 1.9 × 10−1 4.8 × 10−1 1.3 × 10−1 1.6 × 10−1

Tetraodontiformes

Paramonacanthus japonicas 2.1 × 10 −1 1.0 × 10 0 2.1 × 10 −1 5.7 × 10 −1 1.4 × 10 −1 7.6 × 10 −1 1.5 × 10 −1 2.3 × 10 −1

× 0

Trang 6

Fig 2.Ordination plots of stations in species space from a two-dimensional solution.

Filled and open circles represent the two major cluster groups Most significant

vec-tors shown denote bottom substrate types sand (S) and gravelly muddy sand (gmS)

following Folk’s (1954) notation Species locations are based on species-specific

centroids; species abbreviations are in Table 3

A-value(A=0.07),howeverISAresultsindicatedonlysignificant

indicatorspeciesfromtwoofthethreegroups.Indicatorspecies

analysisusingtwogroupsshowedonegroupwiththree

indica-torspecies(Trypauchenvagina,Decapterussp.,Carangoidessp.)and

anotherwithtwo(Sauridatumbil,Pristotis obtusirostris).Results

fromNMSshowedatwo-dimensionalsolution(stress=3.2)with

thetwoclustergroupsbeingmostseparatedbybottomsediment

typesofsandandgravellymuddysand(Fig.2).TheNMSalongaxes

1and2wereabletoexplain85%ofthevariation,with75%explained

alongaxis1(Fig.2).IndicatorspeciesofT.vagina,Decapterussp.,

andCarangoides sp.weremost associatedwithgravellymuddy

sandwhereasS.tumbilandP.obtusirostrisweremostassociated withsand(Fig.2).Otherenvironmentalparametersoftimeofday, durationofhaul,anddepthwerefoundnon-significant

3.3 Stableisotopeanalysis 3.3.1 Trophicstructure Fromthetaxameasuredforstableisotopes,thebivalvescallop Placopectensp.expressedthelowestaverage␦15N,followedbythe scallopArgopectensp.andfishInegociajaponica(mean␦15N=6.4 and7.7‰,respectively);highest␦15NwereexpressedinL.japonica (mean␦15N=11.1),followedbyT.myopsandCynoglossuspuncticeps (␦15N=10.8and10.6‰,respectively)(Table3andFig.3) Compar-isonofthedifferenttrophiclevelestimatesforeachspeciesbased

onFishBase’sestimatesandthosefrom␦15NbasevaluesfromLoick

etal.(2007)usingPOM(primaryproducer,TL=1)andzooplankton (primaryconsumer,TL=2),andfromourstudyusingPlacopecten

sp.(our study,primary consumer), showed␦15Nbase from POM wassignificantlydifferentfromallothermethods(pairedt-test,

p<0.001),withbothzooplanktonandPlacopecten-based␦15Nbase

TLestimatesbeingnon-significantlydifferentfromFishBase’s val-ues(bothp-values>0.10)andbetweeneachother(p=0.36).Using thePlacopecten-basedTLestimates,ofthe19speciesoffishand invertebratesanalyzed,15werebetweenTL3.0and3.8;thefish InegociajaponicawastheonlyfishtoexhibitaTLbelow3.0(mean 2.8),andtheoverallhighestwasthesquidL.japonica(TL3.8),with highestOsteichthyesbeingT.myopsandC.puncticepsbothatTL3.7 (Fig.3)

Of19taxaanalyzedforsize-specificontogeneticshiftsin␦15N, nineshowedasignificantpositiverelationship.Fishtaxa express-ingthistrend hada greaterproportionalsizerange oftheLmax measured(meanandmaximumLmax=52and40%,respectively) comparedtothosethatfailedtoshowatrend(meanLmax=33%) Withtheexceptionofpandalidshrimpandtheturbinesnail,all taxawhich displayedsignificantsize-specificshiftsin ␦15Nalso expressedshiftsin␦13C(Table4).Therelationshipbetween␦13C and␦15Nwassignificantin11ofthe19taxa(Table4);ofthese, withtheexceptionofshrimp,allhadsignificantontogeneticshifts

in␦15N

Table 3

Summary results from stable isotope analysis and estimated trophic positions of fish and invertebrate species off Phan Thi ´ˆet Bay (Vietnam) Trophic position was based on the mean ␦ 15 N of Placopecten sp (placo) as trophic position 2, with subsequent trophic positions every 3.4‰ increase in ␦ 15 N Zooplankton (zoo) values are from Loick et al (2007) Species abbreviations are in Table 3

Taxa ( Figs 2 and 3 label) n ␦ 15 N Ave (SD) ␦ 13 C Ave (SD) C:N Ave (SD) Length Ave (cm) TL Lmax (cm) Invertebrates

Fishes

Trang 7

Fig 3.Mean (SD) values of benthic-demersal fish (filled circles), pelagic fish (open circles), benthic invertebrates (filled triangles), and demersal-pelagic invertebrates (open triangles) Trophic position was based on the mean ␦ 15 N of Placopecten sp (placo) as trophic position 2, with subsequent trophic positions every 3.4% increase in ␦ 15 N Zooplankton (zoo) values are from Loick et al (2007) Species abbreviations are in Table 3

Table 4

Regression results of within-species ␦ 15 N and ␦ 13 C and length, and between ␦ 15 N and ␦ 13 C (␦ 15 N − ␦ 13 C) Significant linear relationships (p < 0.05) are in bold.

fromLoicketal.(2007)usedforthepelagiccontributionof

sec-ondaryproduction,thebivalvePlacopectensp.expressedthelowest

overalldependenceonbenthicsecondaryproduction,witha con-tributionof34%.Comparisonofthespecies␦13Cvaluestowhether theywasdesignatedasbenthicordemersal-pelagicfishor inver-tebratesshowednoparticulartrend(Fig.3)

4 Discussion

4.1 Catchandcommunitystructure Ourstudyisthefirsttoexaminethecommunitystructureand trophic dynamicsof thebenthic-dermersal shelf ecosystem off Vietnam’scoastalwaters.Theresultsfromcommunitystructure analysis showed differences in species composition as related

to sediment type (Fig 2 indicating community heterogeneity

inshelf watersthathavelowbenthic relief.IndicatorspeciesT vagina,Decapterussp.,andCarangoidessp.showedanassociation

Trang 8

with gravelly muddy sand substrate, whereas S tumbil and P.

obtusirostrisweremostassociatedwithsand.BothDecapterussp

andCarangoidessp.areinthejackfamilyCarangidae,andaremore

demersal-pelagicopportunists,notwhatwewouldexpecttobe

closelyassociatedwitha particularsediment type.Itispossible

itsoccurrencemaybeduetopreferentialforagingoversand-mud

substrate at the time of this study or an artifact of sampling

froma relativelylargesamplesize.ThegobyT.vaginahowever

is a known burrower and possibly maybe more connected to

a sand–mud substrate The two species associated with more

sandsubstrate,S.tumbiland P.obtusirostrisareboth commonly

associated with flat-relief trawling grounds (Froese and Pauly,

2010),andP.obtusirostrisisinparticularknowntoexistoversandy

substrate(Allen,1991).Althoughindicatorspecieswerefoundin

ouranalysis,thegreatmajority oftaxaweresharedamongthe

samplehauls(Table2)indicatingthat manyspecies arewidely

distributed across substrate types The relatively weak

within-groupagreementmeasuresfromourMRPP analyses(A=0.03to

0.07)maybeduein-parttothisandcautionshouldbemadeinthe

interpretationoftheclustergroups.Formanagementoftheregion

itwouldappearthatregionsofsandandmudcouldreasonablybe

managedinthesame‘zone’habitattype

4.2 Stableisotopeanalysis

4.2.1 Trophicanalysis

Theoveralltrophicstructureobservedshowednotruepiscivory

(TL4)withalmostallspeciesatorabovesecondaryconsumer(TL

3).Thiswassimilarlyobservedintermsofbiomass,with

approxi-mately40%ofthetotalbiomassfromsixnektontaxawithamean

TLof3.3.ThesquidL.japonica(8.0%oftotalbiomass)wasthe

high-estTLof3.8,followedcloselybyT.myops(7.8%ofbiomass)andC

puncticeps(<1.0%ofbiomass).Formosttaxathereislittledietary

informationtoconfirmtheirobservedtrophiclevels.Loligosquid

havebeenobservedtoconsumeavarietyofpreyfrom

zooplank-tontofishprey(MillerandBrodeur,2007)indicatingaTLbetween

3and4.Thiswassimilarlybeenobservedindietanalysisofthe

snakefishT.myops,inwhichdominantpreyaresmallfishesand

crustaceans(Fischeretal.,1990;SadovyandCornish,2000).Itis

apparentfromthissurveythattherewasanabsenceoftrue

picivo-rouspredators(TL4),eitherbecausethetrophicpotentialofsome

speciesoffisheshasbeenreducedduetotheabsenceoflarge

indi-vidualsorduetotheneareliminationofpredatoryspeciesfrom

overharvest.Ineithercasethisissuggestiveofafished-downfood

webasdefinedbyPaulyetal.(1998).Sharksandotherroaming

pelagicspeciesmayrepresenthighertrophic levelshoweverwe

madenosuchcollectionsofthesetaxa,andtheywereevenabsent

fromlocalmarketsinPhanThi ´ˆet.Furthermore,theproportional

maximumsizeofspeciesinoursamples(Lmax)tothemaximum

sizereportedforeachspecies(Lmax)wereonaverage64%ofthe

LmaxforeachspeciesasreportedinFishBase(Froeseand Pauly,

2010),indicatingsmallerindividuals

Atthetimeofthisstudyanumberofspeciesdisplayed

posi-tiveontogeneticshiftsin␦15Nindicativeofincreasingtrophiclevel

withbodysize(Table4).Significant␦15N-dependentontogenetic

shiftswereobservedwhenthesizerangeofindividualswereon

average52%ofthemaximumlengthrange(Lmax),whereas

non-significantrelationshipswereassociatedonaveragewith33%ofthe

proportionofLmaxexamined.ThismatchesfairlycloselytoGalván

etal.’s(2010)findingsthatontogeneticstudiesshouldaimfor>40%

ofLmax.Itisthereforelikelythatinsometaxaaninsufficientsize

rangewasobtainedtocaptureontogeneticshift,possiblyduetoa

lackoflargeindividualsduetooverharvest.Withtheexceptionof

snailandshrimp,allspecieswhichexhibiteda␦15Nshiftinsizealso

hadasimilardirectionalshiftin␦13C.Itislikelythisshiftin␦13C

wasanontogeneticshiftfromfeedingonmoresmall

zooplank-tivorouspreytohighertrophiclevelpreythataremorelinkedto

13C-enrichedbenthicproduction.Supportingthisisthefactthatthe greybonnetgastropod,P.glaucum,showednosuchshiftin␦13C, likelyduetoitsinabilitytoswimandaccessothercarbonsources whereasthenektonweredisplayingthischange

4.2.2 Benthiccontribution For most nekton taxa, at the time of this study 34–77%

of production was derived from secondary benthic production Understandably,mostofthebenthic-orientedinvertebratetaxaof juvenileOctopussp.,cuttlefish,Argopectensp.,andpandalidshrimp expressedthehighestlevelsofbenthic-dependence(≥60%).More demersalnektonwithagreatercapacitytoswimdisplayed rela-tivelylowerdependenceofbetween38and58%,suggestingthere

isahighdegreeofbenthic–pelagiccouplingwithinthissystem Fur-thermore,theabsenceofaclearseparationin␦13Cbetweennekton consideredbenthicandthosemoredemersal-pelagic(Fig.3) indi-catessignificantexchangebetweensurfaceandbenthicproduction Thehighbenthic–pelagiccouplingobservedisunderstandable giventhattheshelfzoneofourstudyisrelativelyshallow(≤40m) anditispartofthecentralupwellingzoneofVietnam.Theextentto whichfisheriesactivitiesmayinfluencebenthicproductioninthis systemisdifficulttoascertain.FromtheNorthSea,Heath(2005) observedhighexploitationofbenthicfisheswhichdecreased pre-dationpressureonbenthicinvertebratesandthereforeincreased theirproduction.Mostofthebottom-fishingvesselsof Vietnam usesmall-meshnetsthatretainallbutthesmallestoffishesand invertebrates(Pomeroyetal.,2009),whichmayexplainthatmost

of thebiomass wasassociated withcephalopods, smallshrimp andfishes,whichweregenerallystronglytiedtobenthic produc-tion.Thesetaxaalsoexhibitahighcapacityforreproductionand growth,whichmayallowforthemtoquicklyexploitopenniches

byfisheries-relatedreleasefrompredationandcompetition

5 Conclusions

Nearlyallofthetaxacollectedatthetimeofthisstudy com-monlyoccurinregionsthroughouttropicalandsubtropicalwaters

ofSoutheastAsia,andtheyarerepresentativeofmanyofthe har-vested taxa fromcoastal fisheries Despite their ecological and economicimportancewefoundverylittlebiologicalinformation

ontheseorganismsthroughouttheirrange,andvirtuallyno infor-mationfromVietnam

Ourapproach ofcombiningstableisotopeanalysistosurvey catchdata provided a very powerfulmethod in examiningnot only the trophic dynamics of individual species, but alsofrom muchoftheexploitedproductionofthesystem.Inparticular,our resultsindicatedarelativelytruncatedfoodwebwithabiomass dominatedbysmallfishesandcephalopods.Fromheavilytrawled waters of the Bay of Biscay (Atlantic), Blanchard et al (2004) testedthe‘dynamicequilibriummodel’byHuston(1994),which states in-partthat heavilyexploitedsystemswould favor more scavenger-typespeciesthat caneffectivelygrowand reproduce betweendisturbanceevents(trawls),whereasless-exploited sys-temswouldallowformorelargerandslower-growingspecies.In thecontextofthe‘dynamicequilibriummodel’,theimportanceof smallscavengers(octopus,cuttlefishandshrimp),aswellassmall fisheswithhighgrowthand reproductiveratesfromourstudy stronglysuggestsaheavilyexploitedsystem

The results from our study provide a benchmark by which futurestudiescanassesschangesinrelativetrophiclevelofspecies withchangesinfisheries management.Expansionof stable iso-topestudiestootherregionsofSoutheastAsiawouldprovidea morecomprehensivepictureastowhatdrivestrophicstructurein exploitedandrelativelyunexploitedecosystems,andwouldhelp revealtheimportanceofover-exploitationinshapingfoodwebs

Trang 9

We wish tothank Nguyen Tai Tue, H Hamaoka and J

Shi-bata for assistance in this research, and special thanks to two

anonymousreviewersofthemanuscript.Thisprojectwasfunded

throughtheTRIGAProjectofHanoiUniversityofScience,Vietnam

NationalUniversity (VNU),Hanoi,Vietnam,andtheGlobal

Cen-terofExcellence(GCOE),fromEhimeUniversity,CenterforMarine

EnvironmentalStudies,Matsuyama,Japan

References

Allen, G.R., 1991 Damselfishes of the World Mergus Pub., Melle, Germany, 271 pp.

An, N.T., Thu, P.M., 2007 Biogeochemical variability of Vietnamese coastal waters

influenced by natural and anthropogenic processes Asian J Water Environ

Pol-lut 4 (1), 37–46.

Beverton, R.J.H., Holt, S.J., 1957 On the Dynamics of Exploited Fish Populations Fish

and Fisheries Series II Chapman & Hall, London, 533 pp.

Blanchard, F., LeLoc’h, F., Hily, C., Boucher, J., 2004 Fishing effects on diversity, size

and community structure of the benthic invertebrate and fish megafauna on the

Bay of Biscay coast of France Mar Ecol Prog Ser 280, 249–260.

Bligh, E.G., Dyer, W.J., 1959 A rapid method of total lipid extraction and purification.

Can J Biochem Physiol 37, 911–917.

Bosley, K.L., Lavelle, J.W., Brodeur, R.D., Wakefield, W.W., Emmett, R.L., Baker, E.T.,

Rehmke, K.M., 2004 Biological and physical processes in and around Astoria

submarine Canyon, Oregon, USA J Mar Syst 50 (1–2), 21–37.

Cole, M.L., Valiela, I., Kroeger, K.D., Tomasky, G.L., Cebrian, J., Wigand, C.,

McK-inney, R.A., Grady, S.P., Carvalho da Silva, M.H., 2004 Assessment of a ␦ 15 N

isotopic method to indicate anthropogenic eutrophication J Environ Qual 33,

124–132.

Dufrêne, M., Legendre, P., 1997 Species assemblages and indicator species: the need

for a flexible asymmetrical approach Ecol Monogr 67, 345–366.

Dung, L.D., 2009 Nha Trang Bay marine protected area Vietnam: initial trends in

coral structure and some preliminary linkages between these trends and human

activities (2002–2005) J Aquat Ecosyst Health Manage 12 (3), 249–257.

Fischer, W., Sousa, I., Silva, C., de Freitas, A., Poutiers, J.M., Schneider, W., Borges, T.C.,

Feral, J.P., Massinga, A., 1990 Fichas FAO de identificac¸ ao de espécies para

activi-dades de pesca Guia de campo das espécies comerciais marinhas e de águas

salobras de Moc¸ ambique Publicac¸ ao preparada em collaborac¸ ao com o

Insti-tuto de Investigac¸ ao Pesquiera de Moc¸ ambique, com financiamento do Projecto.

FAO, Roma, 424 pp (in French).

Folk, R.L., 1954 The distinction between grain size and mineral composition in

sedimentary rock nomenclature J Geol 62 (4), 344–359.

Frank, K.T., Petrie, B., Choi, J.S., Leggett, W.C., 2005 Trophic cascades in a formerly

cod-dominated ecosystem Science 308, 1621–1623.

Froese, R Pauly, D (Eds.), 2010 FishBase World Wide Web Electronic Publication.

www.fishbase.org , version.

Fry, B., 2006 Stable Isotope Ecology Springer, New York, 308 pp.

Galván, D.E., Sweeting, C.J., Reid, W.D.K., 2010 Power of stable isotope techniques

to detect size-based feeding in marine fishes Mar Ecol Prog Ser 407, 271–278.

Heath, M.R., 2005 Changes in the structure and function of North Sea fish food

web, 1973–2000, and the impacts of fishing and climate ICES J Mar Sci 62 (5),

847–868.

Hiddink, G.H., Rijnsdorp, A.D., Piet, G., 2008 Can bottom trawling disturbance

increase food production for a commercial fish species? Can J Fish Aquat Sci.

65, 1393–1401.

Huston, M.A., 1994 Biological Diversity The Coexistence of Species on Changing

Landscapes Cambridge University Press, Cambridge.

Jennings, S., Dinmore, T.A., Duplisea, D.E., Warr, K.J., Lancaster, J.E., 2001

Trawl-ing disturbance can modify benthic production processes J Anim Ecol 70 (3),

459–475.

Kruskal, J.B., 1964 Nonmetric multidimensional scaling: a numerical method Psy-chometrika 29, 1–27.

Kuo, N.-J., Zheng, Q., Ho, C.-R., 2004 Response of Vietnam coastal upwelling to the 1997–1998-ENSO event observed by multisensor data Remote Sens Environ.

89 (1), 106–115.

Loick, N., Dippner, J., Doan, H.N., Liskow, I., Voss, M., 2007 Pelagic nitrogen dynam-ics in the Vietnamese upwelling area according to stable nitrogen and carbon isotope data Deep-Sea Res Pt I 54 (4), 596–607.

McCune, B., Grace, J.B., 2002 Analysis of Ecological Communities MjM Software Design, Gleneden Beach, Oregon, 300 pp.

McCune, B., Mefford, M.J., 1999 PC-ORD, Multivariate Analysis of Ecological Data, Users Guide MjM Software Design, Gleneden Beach, Oregon, 237 pp Miller, T.W., Brodeur, R.D., 2007 Diets of and trophic relationships among dominant marine nekton within the northern California Current ecosystem Fish Bull 105 (4), 548–559.

Miller, T.W., Brodeur, R.D., Rau, G.H., 2008 Carbon stable isotopes reveal relative contribution of shelf-slope production to the Northern California Current pelagic community Limnol Oceanogr 53 (4), 1493–1503.

Miller, T.W., Omori, K., Hamaoka, H., Shibata, J., Hidejiro, O., 2010 Tracing anthro-pogenic inputs to production in the Seto Inland Sea, Japan – a stable isotope approach Mar Pollut Bull 60 (10), 1803–1809.

Mincks, S.L., Smith, C.R., Jeffreys, R.M., Sumida, P.Y.G., 2008 Trophic structure on the West Antarctic Peninsula shelf: detritivory and benthic inertia revealed by ␦ 13 C and ␦ 15 N analysis Deep-Sea Res Pt II 55, 2502–2514.

Myers, R.F., 1993 Guam’s small-boat-based fisheries Mar Fish Rev 55 (2), 117–128 O’Reilly, C.M., Hecky, R.E., 2002 Interpreting stable isotopes in food webs: recogniz-ing the role of time averaging at different trophic levels Limnol Oceanogr 47 (1), 306–309.

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres, F., 1998 Fishing down marine food webs Science 279 (5352), 860–863.

Peterson, B.J., Fry, B., 1987 Stable isotopes in ecosystem studies Ann Rev Ecol Syst.

18, 293–320.

Pomeroy, R., Nguyen, K.A.T., Thong, H.X., 2009 Small-scale marine fisheries policy

in Vietnam Mar Policy 33 (2), 419–428.

Post, D.M., 2002 Using stable isotopes to estimate trophic position: models, meth-ods, and assumptions Ecology 83 (3), 703–718.

Post, D.M., Layman, C.A., Arrington, D.A., Takimoto, G., Quattrochi, J., Montana, C.G.,

2007 Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses Oecologia 152, 179–189 Raakjaer, J., Son, D.M., Staehr, K.-J., Hovgaard, H., Nguyen, T.D.T., Ellegaard, K., Riget, F., Van Thi, D.H., Phung, G., 2007 Adaptive fisheries management in Vietnam the use of indicators and the introduction of a multi-disciplinary marine fisheries specialist team to support implementation Mar Policy 31 (2), 143–152 Sadovy, Y., Cornish, A.S., 2000 Reef Fishes of Hong Kong Hong Kong University Press, Hong Kong, 321 pp.

Svensson, P., Rodwell, L.D., Attrill, M.J., 2009 Privately managed marine reserves as

a mechanism for the conservation of coral reef ecosystems: a case study from Vietnam Ambio 38 (2), 72–78.

Takai, N., Mishima, Y., Yorozu, A., Hoshika, A., 2002 Carbon sources for demersal fish in the western Seto Inland Sea Japan, examined by ␦ 13 C and ␦ 15 N analyses Limnol Oceanogr 47 (3), 730–741.

Tien, D.M., Nghi, T., 2006 Report on Project ‘Geological and Mineral Survey, and Geoenvironmental and Geo-hazard Characteristics of the Coastal Sea (0–30 m in depth) of Central Vietnam’ Achieved in Marine Geology Union, Hanoi, Vietnam (in Vietnamese).

Votier, S.C., Bearhop, S., Witt, M.J., Inger, R., Thompson, D., Newton, J., 2010 Individ-ual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems J Appl Ecol 47, 487–497 Vander Zanden, M.J., Vadeboncoeur, Y., 2002 Fishes as integrators of benthic and pelagic food webs in lakes Ecology 83 (8), 2152–2161.

Vander Zanden, M.J., Rasmussen, J.B., 1999 Primary consumer ␦ 13 C and ␦ 15 N and the trophic position of aquatic consumers Ecology 80 (4), 1395–1404 van Zwieten, P.A.M., Van Densen, W.L.T., Van Thi, D., 2002 Improving the usage of fisheries statistics in Vietnam for production planning, fisheries management and nature conservation Mar Policy 26 (1), 13–34.

Ngày đăng: 16/12/2017, 02:48

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm