1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Determination of free and total valproic acid in human plasma by capillary electrophoresis with contactless conductivity detection

5 150 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 450,86 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Introduction Valproic acid 2-propylvaleric acid, VPA is an eight-carbon branched-chainfattyacid.ItsstructureisshowninFig.1together withthat ofcaproic acidwhich wasusedas internal standar

Trang 1

j ou rna l h o me pa g e : w w w e l s e v i e r c o m / l o c a t e / c h r o m b

Thi Thanh Thuy Phama,b, Hong Heng Seea,c,∗, Réjane Morandd, Stephan Krähenbühld,

a Department of Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland

b Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, Nguyen Trai Street 334, Hanoi, Viet Nam

c Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

d Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland

a r t i c l e i n f o

Article history:

Received 10 July 2012

Accepted 29 August 2012

Available online 5 September 2012

Keywords:

Dispersive liquid–liquid microextraction

Capillary electrophoresis

Contactless conductivity detection

Valproic acid

Human plasma

a b s t r a c t

© 2012 Elsevier B.V All rights reserved

1 Introduction

Valproic acid (2-propylvaleric acid, VPA) is an eight-carbon

branched-chainfattyacid.ItsstructureisshowninFig.1together

withthat ofcaproic acidwhich wasusedas internal standard

Valproicacidisusedwidelyasananticonvulsant[1]andasa

mood-stabilizingdruginpatientswithbipolardisorder[2].Althoughthe

mechanismsofactionofvalproicacidinepilepsyandbipolar

dis-orderarecurrentlynotfullyunderstood,themostwidelyaccepted

processesforitsantiepilepticactivityinvolveanincreaseinthe

concentrationoftheinhibitoryneurotransmitter␥-aminobutyric

∗ Corresponding author at: Department of Chemistry, University of Basel,

Spitalstrasse 51, 4056 Basel, Switzerland Tel.: +41 61 267 10 53;

fax: +41 61 267 10 13.

∗∗ Corresponding author Tel.: +41 61 267 10 03; fax: +41 61 267 10 13.

E-mail addresses: hhsee@ibnusina.utm.my (H.H See), Peter.Hauser@unibas.ch

(P.C Hauser).

acid(GABA)incertainbrainregionsandaninhibitionof voltage-dependentsodiumchannels[3]

TakingintoaccountthepKaofVPAof4.6, mostvalproatein serumisdeprotonatedunderphysiologicalconditions.SinceVPA

ishighlyboundtoalbumin(approximately80–95%),onlyasmall fractionofVPA existsinthefree,pharmacologicallyactiveform [4,5].ThetherapeuticrangereportedfortotalVPAinhumanplasma

is50–100␮g/mL[6].Therapeuticdrugmonitoring(TDM)ofVPAis commonlyperformedforguidingtherapyasthereisonlyapoor correlationbetweendoseandsteadystateserumconcentrations betweenpatients[7]andthedifficultytomonitortheclinicaleffect

ofvalproicacid,sinceseizuresareusuallyrareevents.Detailed dis-cussionsareavailableregardingTDMofVPAinthetreatmentof epilepsy[7,8]andbipolardisorders[9]

Severalmethodshavebeenpublishedforthedeterminationof freeandtotalVPAinbiologicalmatrices.Forthedeterminationof thetotalconcentration,VPAisusuallyreleasedfromproteinsby acidification[10–12],whichconvertsitintoitsprotonatedform.An alternativemethodofdestroyingtheprotein-bindingis precipita-tionoftheserumproteins,e.g.byadditionofanorganicsolvent(see 1570-0232/$ – see front matter © 2012 Elsevier B.V All rights reserved.

Trang 2

Fig 1. Structures of valproic acid (VPA) and caproic acid (CPA) used as internal

standard (IS).

forexample[13]).ForthedeterminationoffreeVPAinthepresence

ofserumproteinsandprotein-boundVPA,freeVPAisremovedbya

separationstepsuchasdialysis,ultrafiltration,ultracentrifugation

orgelfiltration[14–16]

Inbothapproachesforthequantificationstepthemost

com-monly used methods are enzyme immunoassays [17,18] This

technique is simple and reliable, but relatively expensive A

numberofchromatographic techniquessuchasgas

chromatog-raphy (GC) [19] and liquid chromatography (LC) [20–23] have

also been reported, and have been used in conjunction with

various sample pretreatment steps Commonly used

pretreat-mentsare,forinstance,liquid–liquidextraction(LLE)[24],solid

phaseextraction(SPE)[10],solid-phasemicroextraction(SPME)

[25], liquid-phase microextraction (LPME) [12] and dispersive

liquid–liquidmicroextraction(DLLME)[11].Amajordrawbackof

thereportedchromatographicapproachesistherequirementof

priorderivatizationofVPAtoeitherrenderitvolatileorsuitable

forUV-detection

Morerecently,capillaryelectrophoresiscoupledwith

contact-less conductivity detection (CE-C4D) has become an attractive

alternativeanalyticalmethodduetoitsuniversalcharacteristicsin

detectinganychargedspecieswithoutrequiringachromophore

Afurtherdistinctadvantageistheabilitytocarryoutananalysis

inverysmallsamplevolumes.Severalrecentgeneralreview

arti-clesonCE-C4Dareavailable[26–28].Aseriesofapplicationsofthe

methodforclinicalanalysisofdiversebiologicalsampleshavebeen

reported[29–40].RecentreviewsontheapplicationsofCE-C4Din

pharmaceuticalanalysis[41,42]canalsobefound

ThepotentialusefulnessofCE-C4DforthedeterminationofVPA

inclinicalsampleshasbeenshownbyBelinetal.[13].However,

intheseinvestigations,nodistinctionbetweenfreeand

protein-boundVPAwasmadeandtheamountofbiologicalsampleusedwas

toohighformonitoringpediatricpatients.Wethereforeimproved

thismethodbyreducingtheplasmasamplesizeneededandby

makingthemethodsuitableforthedeterminationofbothfreeand

totalVPA

2 Experimental

2.1 Reagentsandmaterials

Allchemicalswereatleastofanalyticalgradeandpurchased

fromAldrichorFluka(bothBuchs,Switzerland).Ultrapure

deion-izedwater wasproduced usinga Nano-Pure water purification

system(Barnstead, IA, USA) Separation buffers were prepared

daily.StocksolutionsofVPAsodiumsaltandcaproicacidsodium

salt (CPA) as internal standard (IS) at the concentration of

1000␮g/mL werepreparedindeionizedwater andkeptat4◦C

Workingstandardsolutionsoflowerconcentrationswereprepared

bydilutionwithdeionizedwater

2.2 Plasmasamples

Blank and VPA containing plasma samples were obtained

fromtheClinicalPharmacologyandToxicologyLaboratoryofthe

UniversityHospitalofBasel,Switzerland.Allplasmasampleswere keptat−20◦C inafreezeruntiltheexperiments.Thereference

values for free and total VPA content in the collected plasma samplesweremeasuredusingstandardprotocolsadoptedatthe ClinicalChemistryLaboratoryoftheUniversityHospitalofBasel The total VPA concentration wasdetermined using a homoge-nous enzyme immunoassay in a Cobas 6000 analyzer (Roche Diagnostics, GmbH, Mannheim, Germany) using reagents from RocheDiagnostics(Basel,Switzerland)instrument.ThefreeVPA wasdeterminedbyfirstcarrying outultracentrifugationfor iso-lation of the free VPA followed by a fluorescence polarization immunoassayonaTDxanalyzer(AbbottLaboratories,AbbottPark,

IL,USA)

2.3 Samplepretreatmentprocedure ForthedeterminationoffreeVPA,100␮Lofplasmasamplewas pretreatedbyultracentrifugationusingAmiconultracentrifugal fil-ters(cutoff>10,000Da)(MilliporeCorporation,Billerica,MA,USA) for15minat14,000×g.Afterultrafiltration,40␮Lofthefiltrate, whichcontainedfreeVPA,wasplacedintoa1.5mLconicalbottom polypropylenetube.Subsequently,10␮Lofasolutioncontaining

25␮g/mLCPA(internalstandardresultinginafinalconcentration

of5␮g/mL)wasaddedandthesampleacidifiedwith10␮Lof1M HNO3toprotonateVPA.Themixturewasvortexedfor30sandVPA extractedasdescribedbelow.ForthedeterminationoftotalVPA,

10␮Linternalstandardand10␮L1MHNO3wereaddeddirectly

to40␮Loftherawplasmasample

The optimization of the extraction step was carried out by usingblank plasmasamplesinto which VPA wasspikedatthe same level as theinternal standard For the extractiona mix-ture of extraction and dispersive solvent was rapidly injected intothesample tube,thesolutionvortexedfor 30sand finally centrifuged for 10min at 6000×g at room temperature After centrifugation,thelower(organic)phasewaswithdrawnusinga

100␮Lmicrosyringe and transferredtoa200␮Lpolypropylene bullettiptube.20␮Loftriethylamine(TEA)solutionofdifferent concentrations (seeSection 3)wasthen addedto thecollected organicphase, vortexedfor 30s, and centrifuged for 10min at

6000×g.Thetargetanalytewasback-extractedintothediluted TEAsolutionand thesupernatant wasinjectedintotheCE-C4D system

2.4 CE-C4Danalysis

Thecapillaryelectrophoresisinstrumentwaspurpose-builtand utilized a commercialhigh voltagepower supply module (CZE 2000R,Spellman,Pulborough,UK).TheC4Ddetectorwas built-in-house,detailscanbefoundelsewhere[43].Thedetectorsignals wererecordedwithane-corderdataacquisitionsystem(eDAQ, DenistoneEast,NSW,Australia).A barefused silicacapillary of

50␮m I.D and 363␮m O.D (PolymicroTechnologies, Phoenix,

AZ, USA) with a total length of 50cm and effective length of

45cmwasemployed.Thenewcapillarywasconditionedbyfirst flushingwith0.1MNaOHfor15minand followedbywaterfor

10min.Thepre-conditionedcapillary wasthen rinsedwiththe separation bufferfor30min.Therunningbufferemployed was slightly modifiedfromthepreviouswork[13] and consistedof

10mM 3-(N-morpholino)propanesulphonicacid(MOPS), 10mM histidine(His),and10␮Mhexadecyltrimethylammoniumbromide (CTAB) (pH 6.5) After each injection, the capillary was rinsed with separation buffer for 3min to maintain the reproducibil-ity of the analysis.Injections were performed by siphoning at

18cm heightdifferencefor10s.Theseparation voltagewasset

at−16.5kV

Trang 3

3 Results and discussion

3.1 Optimizationofthedispersiveliquid–liquidmicroextraction

First tests werecarried out using direct injectionof plasma

samplesintothe CEsystemasreportedpreviously [13] Itwas

foundhowever,thatsomesamplesshowedoverlapswithpeaksof

unknownorigin.Thereforeanextractionprocedurewasadopted

inorder toconsistently obtainelectropherogramsfree of

unde-sired matrix elements Dispersive liquid–liquidmicroextraction

(DLLME)allowsefficientextractionofsmallsamples.Inthis

pro-cedureamixtureoftwosolvents,onesolubleinwater,theother

not,israpidlyinjectedintoanaqueoussample.Thisleadstothe

formationoffinelydisperseddropletsintowhichtheextractionof

theanalytesoccurs.Subsequently,phaseseparationisperformed

andtheenrichedanalytecanthenbedeterminedinthesedimented

phase[44,45].Severalfactorsaffectingtheextractionefficiencyof

DLLMEwerecomprehensivelyexaminedtoseekforoptimum

con-ditions.Forthesetests,valproateandcaproateasinternalstandard

wereaddedtoblankplasmasamples(bothatafinalconcentration

of5␮g/mL)andthesewereacidifiedinordertoprotonate,andthus

neutralize,analyteandinternalstandard.Caproicacid(CPA)hasa

molecularstructurewhichisverysimilartothatofvalproicacid

(VPA)(seeFig.1)

3.1.1 Selectionofextractionanddispersivesolvents

AnidealextractionsolventinDLLMEshoulddemonstrate

char-acteristics such as higher density than water, high extraction

capabilityforanalytesofinterest,lowsolubilityinwater,andlow

volatility[44,46].Ontheotherhand,thedispersivesolventshould

bemisciblewiththeextractionsolventaswellasthesample

solu-tiontoenlargethecontactareabetweentheextractionsolventand

thesamplesolution.Basedontheserequirements,3extraction

sol-ventsnamelytetrachloroethylene(C2Cl4),chloroform(CHCl3)and

carbondisulfide(CS2)werestudiedincombinationwith4

disper-sivesolvents,i.e.acetonitrile(MeCN),methanol(MeOH),acetone

(Ace),and2-propanol(IPA).ItwasfoundthatCHCl3hardlyformed

anemulsifiedsolutionwhenaddedtoplasmaregardlessofthe

dis-persivesolventbeingused.WhenCS2 wasemployed,emulsified

solutionswereobserved,butclearphaseseparationcouldnotbe

achievedaftercentrifugation.Nevertheless,mixturesofC2Cl4with

variousdispersivesolventsstudiedwerefoundtobeabletoform

satisfactoryemulsifiedsolutionsandphaseseparationwas

instan-taneouslyachievedafterthevortexandcentrifugationprocesses

Hence,C2Cl4wasselectedasextractionsolventanditsperformance

withvariousdispersivesolventswasevaluated.Inorderto

main-tainconsistency,13␮Lofeach dispersivesolventwith87␮Lof

C2Cl4wasalwaysaddedtothe40␮Loftheblankplasmatowhich

acidaswellasVPAandCPAhadbeenadded.Ascanbeseenin

Fig.2,thehighestVPApeakarearesponsewasobtainedwhenIPA

wasusedasdispersivesolvent.Thesameresultwasobtainedfor

CPA

3.1.2 Effectofextraction/dispersivesolventratioandvolumeof

solventmixture

DifferentratiosofC2Cl4:IPAsolventmixtureswerestudiedto

seekforoptimumextractionconditions.Thevolumeofthesolvent

mixturewasfixedat100␮Landthiswasagainaddedtothe40␮L

oftheblankplasmawhichhadthenbeenacidifiedandspikedwith

VPAandCPA.AscanbeseenfromFig.3,thepeakarearesponse

fortheVPA extractincreasedaccordingtotheincreaseofC2Cl4

percentageinthemixture.AsignificantincreaseofVPAresponses

wasobservedfrom20%ofC2Cl4to50%andultimatelyreachedits

maximumat87%ofC2Cl4.WhenthepercentageofC2Cl4was

fur-therincreased,nosignificantfurtherenhancementofVPAandCPA

Fig 2. Effect of dispersive solvents on the peak area response of VPA (n = 3) Extrac-tion conditions: sample volume, 50 ␮L; extraction solvent, 87 ␮L C 2 Cl 4 ; dispersive solvent, 13 ␮L; concentration of VPA, 5 ␮g/mL.

responsewasobserved.Hence,theC2Cl4:IPAratioof87:13was adopted

Toconsidertheeffectofthesolventvolumeonextraction effi-ciency,differentvolumesofC2Cl4:IPAmixtureswiththeoptimum ratioof87:13weretested.Thevolumesrangedfrom50to175␮L

It was foundthat when even smallervolumes wereemployed (<50␮L),theorganicdropletswerenotproperlyformedandnot well-dispersedintherelativelyviscousplasmasample.Ascanbe seenfromFig.4,theamountofVPA detectedincreased signifi-cantlybyincreasingthesolventvolumefrom50to125␮Landthen reacheda maximumintherangefrom125to175␮L.Although thetotalsolventvolumeusedinthisstudyisrelativelyhigh com-paredtotheamountsusedin mostof thestudiesreported,the

Fig 3.Effect of the volume ratio of C 2 Cl 4 :IPA on the peak area response of VPA (n = 3) Extraction conditions: extraction solvent, C 2 Cl 4 ; dispersive solvent, IPA; total

␮L.

Trang 4

Fig 4.Effect of the volume of solvent mixture on the peak area response of VPA

(n = 3) Extraction conditions: ratio of extraction solvent (C 2 Cl 4 ):dispersive solvent

(IPA), 87:13 Other conditions as for Fig 2

newapproachinvolvesanadditionalback-extractionprocedure

thateffectivelytransferstheanalyteintoonly20␮LofTEA

solu-tionpriortoCE-C4Danalysis.Inordertoensureahighconsistency

ofextractionperformance,thesolventvolumewasfixedto150␮L

forthesubsequentexperiments

3.1.3 Optimizationoftriethylaminepercentageforback

extraction

Asmentionedpreviously,theVPAenrichedintheorganicphase

wasback-extractedintoadilutedaqueoussolutionof TEA[24],

whichwascompatiblewiththesubsequentCE-C4Danalysis.20␮L

ofthissolutionwasusedasthiswastheminimumvolumewhich

couldbehandledreliablywiththeCE-systememployed

Concen-trationsof0.05%,0.1%,0.25%,0.5%,1%and2.5%weretestedfor

theirsuitability.ForTEAsolutionsof0.05%and0.1%,the

extrac-tionrecoveriesforVPAweregenerallyunsatisfactorywithvalues

of47–62%.AnincreaseoftheTEApercentageto0.25%and0.5%

resultedinimprovedextractionrecoveriesof86%.Theresultfor

CPAwasidentical.Forhigherconcentrations,poorbaseline

stabil-itiesresultedintheCE-C4Danalysis.Hence,apercentageof0.5%

ofTEAwasadoptedfortheback-extractionsolutionforthe

subse-quentCE-C4Danalyses

Fig 5.Electropherogram for (a) blank plasma spiked with CPA (5 ␮g/mL, as internal standard, IS) and (b) blank plasma spiked with VPA (5.4 ␮g/mL) and CPA (5 ␮g/mL).

CE conditions: buffer 10 mM MOPS/10 mM His, pH 6.5, CTAB 10 ␮M, siphoning injec-tion at 18 cm height difference for 10 s, separation voltage −16.5 kV.

3.2 Methodvalidation TheoptimumDLLMEparametersfinallyarrivedatwereas fol-lows:40␮Lofplasmasampleacidifiedwith10␮L1MHNO3,10␮L

of25␮g/mLCPAinternalstandardsolution(5␮g/mLfinal concen-tration),150␮Lof87%C2Cl4:13%IPAassolventmixture,and20␮L

of0.5% TEAsolutionasback-extraction medium.Normalization

ofthepeak areasobtainedforVPAwiththepeakareasforCPA resultedinagoodlinearityforVPAwithacorrelationcoefficient

of0.9996intheconcentrationrangefrom0.4to300␮g/mL(note thatthesetestswerecarriedoutforunfilteredplasma).Thislinear rangecoveredtheentiretherapeuticrangeofVPAinhumanplasma whichis5–10␮g/mLforfreeand50–100␮g/mLfortotalvalproate Thelimitofdetection(LOD)andlimitofquantification(LOQ)were determinedas0.08␮g/mLand0.24␮g/mL,respectively(calculated forsignal-to-noiseratiosof3and10fromacomparisonofpeak heightswiththemaximumamplitudeoftheshorttermbaseline deviations).Thereproducibilitiesforpeakareawerefoundtobe between0.7%and3.5%(RSD,n=3)fortheconcentrationrangefrom

1to150␮g/mL.Forillustration,electropherogramsforanextract

ofblankplasmaspikedwithCPAandforanextractofblankplasma spikedwithCPAandVPAareshowninFig.5

Table 1

Quantitative results for free and total VPA in human plasma samples.

a

Trang 5

3.3 Analysisofhumanplasmasamples

Atotal of 6 humanplasma sampleshad beencollectedin a

clinicalstudyconductedattheUniversityHospitalofBasel.The

plasmasampleswerefirsttestedusingstandardprotocolsbasedon

enzymeimmunoassaytechniquesemployedintheClinical

Chem-istryLaboratoryoftheUniversity HospitalofBasel(seeSection

2.3 for details),followed by measurement usingthe developed

DLLME–CE-C4Dapproach.Notethattheappearanceofthe

electro-pherogramsofthesesamplescontainingVPAisverysimilarfrom

thoseofblankplasmatowhichVPAhadbeenspikedasshownin

Fig.5.Theresultsforfree(forthefilteredsample)andtotalVPA(for

thenotfilteredsample)aresummarizedinTable1.Itisobserved

thattheoverallresultsobtainedusingDLLME–CE-C4Dare

com-parabletotheresultsobtainedemployingthestandardenzyme

immunoassay.Thecorrelationcoefficients,r,forthetwopairsof

dataweredeterminedas0.9847forfreeVPAand0.9521fortotal

VPA,indicatinganacceptablerelationship

4 Conclusion

Inthiswork,thedeterminationoffreeandtotalVPAinatotal

volumeofonly 140␮Lofhumanplasmaemploying CE-C4Dfor

quantificationwasdeveloped.Themethodrequiresafiltrationstep

inordertobeabletodistinguishbetweenfreeandboundanalyte

andanextractionproceduretoavoidpotentialpeakoverlaps,but

nochemicalorenzymaticconversionsteps,asneededforthe

estab-lishedmethods, arerequiredtomake theanalyteamenablefor

quantification.Themethodisdeemedsuitablefortheroutine

ther-apeuticdrugmonitoring(TDM),inparticularforpediatricpatients

forwhomtheavailablesamplevolumesarelimited

Acknowledgements

Theauthorswould liketothanktheSwiss Federal

Commis-sionforScholarshipsforForeignStudents(ThiThanhThuyPham),

theUniversitiTeknologiMalaysia(HongHengSee)andtheSwiss

National Science Foundation (grant numbers 200021-129721/1

and200020-137676/1)forfinancialsupport

References

[1] C.U Johannessen, S.I Johannessen, CNS Drug Rev 9 (2003) 199.

[2] D.J Bond, R.W Lam, L.N Yatham, J Affect Disord 124 (2010) 228.

[3] C.U Johannessen, Neurochem Int 37 (2000) 103.

[4] C DeVane, Psychopharmacol Bull 37 (2003) 25.

[5] E Perucca, CNS Drugs 16 (2002) 695.

[6] T Tatsuhara, H Muro, Y Matsuda, Y Imai, J Chromatogr A 399 (1987) 183 [7] E Yukawa, Clin Pharmacokinet 31 (1996) 120.

[8] E Kozer, D Scolnik, W.M Agamata, S.K Weiss, Z.H Verjee, G Koren, Ther Drug Monit 25 (2003) 17.

[9] J Fleming, M Chetty, Clin Neuropharmacol 29 (2006) 350.

[10] S Gao, H Miao, X Tao, B Jiang, Y Xiao, F Cai, Y Yun, J Li, W Chen, J Chromatogr.

B 879 (2011) 1939.

[11] H.R Sobhi, A Kashtiaray, H Farahani, F Abrahimpour, A Esrafili, Drug Test Anal 2 (2010) 362.

[12] P Shahdousti, A Mohammadi, N Alizadeh, J Chromatogr B 850 (2007) 128 [13] G.K Belin, S Krähenbühl, P.C Hauser, J Chromatogr B 847 (2007) 205 [14] H Kurz, H Trunk, B Weitz, Arzneimittelforschung 27 (1977) 1373.

[15] T.C Kwong, Clin Chim Acta 151 (1985) 193.

[16] A.C Metha, TrAC-Trends Anal Chem 8 (1989) 107.

[17] S Cooreman, E Cuypers, M De Doncker, P Van Hee, W Uyttenbroeck, H Neels, Immuno-Anal Biol Spec 23 (2008) 240.

[18] A.A Elyas, V.D Goldberg, N Ratnaraj, P.T Lascelles, Ann Clin Biochem 17 (1980) 307.

[19] J Darius, J Chromatogr B 682 (1996) 67.

[20] C Lucarelli, P Villa, E Lombaradi, P Prandini, A Brega, Chromatographia 33 (1992) 37.

[21] M Nakamura, K Kondo, R Nishioka, S Kawai, J Chromatogr B 310 (1984) 450 [22] J.H Wolf, L Veenma-van der Duin, J Korf, J Chromatogr B 487 (1989) 496 [23] M.-C Lin, H.-S Kou, C.-C Chen, S.-M Wu, H.-L Wu, J Chromatogr B 810 (2004) 169.

[24] H Amini, M Javan, A Ahmadiani, J Chromatogr B 830 (2006) 368.

[25] M Krogh, K Johansen, F Tønnesen, K.E Rasmussen, J Chromatogr B 673 (1995) 299.

[26] W.K.T Coltro, R.S Lima, T.P Segato, E Carrilho, D.P de Jesus, C.L do Lago, J.A.F.

da Silva, Anal Methods 4 (2012) 25.

[27] P Kubá ˇ n, P.C Hauser, Electrophoresis 32 (2011) 30.

[28] P Kubá ˇ n, P.C Hauser, Electrophoresis 30 (2009) 3305.

[29] X.Y Gong, P Kubá ˇ n, A Scholer, P.C Hauser, J Chromatogr A 1213 (2008) 100 [30] P T ˚uma, K Málková, E Samcová, K ˇStulík, J Sep Sci 33 (2010) 2394 [31] P T ˚uma, K Málková, Z Wedellová, E Samcová, K ˇStulík, Electrophoresis 31 (2010) 2037.

[32] P T ˚uma, E Samcová, Chem Listy 101 (2007) 200.

[33] P T ˚uma, E Samcová, F Duˇska, J Sep Sci 31 (2008) 2260.

[34] P T ˚uma, E Samcová, K ˇStulík, Anal Chim Acta 685 (2011) 84.

[35] Q.J Wan, P Kubá ˇ n, J Tanyanyiwa, A Rainelli, P.C Hauser, Anal Chim Acta 525 (2004) 11.

[36] P Kubá ˇ n, P.C Hauser, Lab Chip 8 (2008) 1829.

[37] W.S Law, P Kubá ˇ n, L.L Yuan, J.H Zhao, S.F.Y Li, P.C Hauser, Electrophoresis 27 (2006) 1932.

[38] W Pormsila, S Krähenbühl, P.C Hauser, Anal Chim Acta 636 (2009) 224 [39] W Pormsila, R Morand, S Krähenbühl, P.C Hauser, J Chromatogr B 879 (2011) 921.

[40] W Pormsila, R Morand, S Krähenbühl, P.C Hauser, Electrophoresis 32 (2011) 884.

[41] L Suntornsuk, Anal Bioanal Chem 398 (2010) 29.

[42] A.A Elbashir, H.Y Aboul-Enein, Biomed Chromatogr 24 (2010) 1038 [43] L Zhang, S.S Khaloo, P Kubá ˇ n, P.C Hauser, Meas Sci Technol 17 (2006) 3317 [44] X.-H Zang, Q.-H Wu, M.-Y Zhang, G.-H Xi, Z Wang, Chin J Anal Chem 37 (2009) 161.

[45] M Rezaee, Y Yamini, M Faraji, J Chromatogr A 1217 (2010) 2342.

[46] A.R Zarei, F Gholamian, Anal Biochem 412 (2011) 224.

Ngày đăng: 16/12/2017, 02:41

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm