1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Physical properties and in vivo bioavailability in human volunteers of isradipine using controlled release matrix tablet containing self-emulsifying solid dispersion

8 74 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 2,89 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

c o m / l o c a t e / i j p h a r m Phuong Ha-Lien Trana,1, Thao Truong-Dinh Trana,∗, Zong Zhu Piaob,1, Toi Van Voa, Q1 Jun Bom Parkb, Jisung Limc, Kyung Teak Ohd, Yun-Seok Rheee, Beom-J

Trang 1

International Journal of Pharmaceutics xxx (2013) xxx– xxx

ContentslistsavailableatSciVerseScienceDirect

jou rn a l h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / i j p h a r m

Phuong Ha-Lien Trana,1, Thao Truong-Dinh Trana,∗, Zong Zhu Piaob,1, Toi Van Voa,

Q1

Jun Bom Parkb, Jisung Limc, Kyung Teak Ohd, Yun-Seok Rheee, Beom-Jin Leeb,∗

a International University, Vietnam National University, Ho Chi Minh City, Viet Nam

b College of Pharmacy, Ajou University, Suwon 443-749, Republic of Korea

c College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea

d College of Pharmacy, Chung-Ang University, Seoul 155-756, Republic of Korea

e College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 660-751, Republic of Korea

Article history:

Received 11 November 2012

Received in revised form 24 February 2013

Accepted 8 April 2013

Available online xxx

Keywords:

Self-emulsifying solid dispersion

Enhanced dissolution

Controlled release tablet

Physicochemical properties

In vivo bioavailability

Poorlywater-solubledrugwithashorthalf-lifesuchasisradipine(IDP)offerchallengesinthecontrolled releaseformulationbecauseoflowdissolutionrateandpoorbioavailability.Self-emulsifyingsolid dis-persions(SESD)ofIDPconsistedofsurfactantandfattyacidinpoloxamer407(POX407)asacarrierand weremanufacturedbythemeltingmethod.Then,controlledreleaseHPMCmatrixtabletcontainingSESD werepreparedviadirectcompression.Thedissolutionbehaviorsandinvivobioavailabilityofcontrolled releasematrixtabletinhealthyhumanvolunteerswereinvestigated.Thephysicalpropertiesofsolid dispersionwerealsoexaminedusingdifferentialscanningcalorimetry(DSC),powderX-raydiffraction (PXRD)andscanningelectronmicroscopy(SEM).ItwasshownthatstructureofIDPwasamorphousin thesoliddispersion.ThedissolutionrateofIDPfromSESDwasmarkedlyenhancedbecauseofincreased solubilityandwettingeffect.ControlledreleaseHPMCmatrixtabletscontainingSESDreleaseddrugin

acontrolledmannerandwerestableduringstorageover3monthsat40◦C/75%RH.Furthermore,the tabletcontaining5mgIDPSESDshowedsignificantlyincreasedoralbioavailabilityandextendedplasma concentrationcomparedwiththemarketed5mgDynacirc®capsule.Acombinedmethodofsolid disper-sionandcontrolledreleasetechnologycouldprovideversatiledosageformulationscontainingIDPwith poorwatersolubilityandshorthalf-life

© 2013 Published by Elsevier B.V

1 Introduction

Solubilizationofpoorlywater-solubledrugsisveryimportant

toovercomerate-limiting dissolution,slow absorptionand low

bioavailabilityofthisdrugtype.Varioussolubilizationstrategies

therefore,havebeendevelopedsuchascomplexation,cosolvents,

micelles,microemulsions,self-microemulsifyingdrugdelivery

sys-tems or self-nanoemulsifying drug delivery systems, or solid

dispersion(SD)techniques(WongandYuen,2001;Pouton,2006;

Tranetal.,2009).SDamongthosestrategieshasbeenconsideredas

oneofcommonmethodstoenhancesolubility,dissolutionrateand

bioavailabilityofvariouspoorlywater-solubledrugs(Vasconcelos

Q2

etal.,2007;Tranetal.,2011a)

∗ Corresponding authors Tel.: +82 31 219 3442; fax: +82 31 212 3653.

E-mail addresses: ttdthao@hcmiu.edu.vn (T.T.-D Tran), beomjinlee@gmail.com

(B.-J Lee).

1 Equally contributed.

However,therearemanydifficultiesassociatedwiththe prepa-rationofSDdosageformsasfollows:theuseofunwantedorganic solvent related to the environment in the solvent evaporation method,or theproblem ofdrug stability related withelevated temperatures, and the soft and tacky physical state of the SD product to be hardly pulverized, leading to the use of more pharmaceutical excipients as well as complicated manufactur-ing procedures to compensate the poor flowing characteristics (Serajuddin,1999)

Self-emulsifyingdrugdeliverysystems,especiallyinthesolid stateobtainedbytheadditionofsomefree-flowingadsorbentsas oneofpreferablemethods,areincurrenttrendstobeinvestigated duetotheiradvantagesovertheliquidformulationforimproving thebioavailabilityofhydrophobicdrugsandgood manufacturabil-ity(Serajuddin,1999;Tangetal.,2008).Itwasrecentlyreported thataSDutilizingaself-emulsifyingcarrierlikeGelucire44/14as exposedtoaqueousmediacouldreadilymodifydrugcrystallinity andhence,improvedrugdissolutionrateofpoorlywater-soluble drug,aceclofenac(Tranetal.,2009)

0378-5173/$ – see front matter © 2013 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.ijpharm.2013.04.022

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Trang 2

2 P.H.-L Tran et al / International Journal of Pharmaceuticsxxx (2013) xxx– xxx

Table 1

Formulation compositions (weight basis) of SDs containing IDP (unit: mg).

Code Drug PEG 6000 PVP K30 GUC 50/13 POX 407 Brij 98 OA Triacetin Aerosil 200 BHT

a w/w percent value based on OA.

Werecentlypublishedthatcontrolledreleasedosageforms

con-tainingself-emulsifyingornonself-emulsifyingSDsofmanypoorly

water-solubledrugswithshorteliminationhalf-lifehavebeen

con-sidered aseffective drugdeliverysystems for the treatmentof

diseasesover a longerperiod oftime (Tranetal., 2010,2011a,

2011b).AdvancedcontrolledreleaseofSDscanbeachievedbya

pertinentcombinationofpharmaceuticalpolymers(Wangetal.,

1993).Mostofall,HPMC-basedhydrophilicmatrixtabletsoffer

severaladvantagesinthedevelopmentoforalsustained-release

formulationssuchasflexibilityofreleasemodulation,simplicity

ofpreparation,lowproductioncostsandeasetoscalability(Cao

etal.,2005).Thereleasebehaviorofbothwater-solubleand

water-insolubledrugsisvariablewiththenatureoftheHPMCmatrices

asaconsequenceofthedrug–polymerinteractionviaswelling,

dif-fusionanderosionprocesses(Colomboetal.,1995;Velascoetal.,

1999)

Inthisstudy,isradipine(IDP),acalciumantagonistfortreating

hypertensionwaschosenasamodeldrug(ChrysantandCohen,

1997).IDPisknowntobepoorlywater-solubleinaqueous

solu-tion(lessthan10␮g/mL)(Vergeretal.,1998).Moreover,IDPis

alsoagoodcandidateforcontrolledreleasedosageformdueto

theshorteliminationhalf-life(Hafizullahetal.,2000).SESDofIDP

waspreparedusingmeltingmethodandthenloadedinto

HPMC-basedhydrophilicmatrixtabletforcontrolledreleaseofIDP.Here,

poloxamer407(POX407),atri-block copolymerconsistingof a

centralhydrophobicblockofpolypropyleneglycolflankedbythe

twohydrophilicblocksofpolyethyleneglycol,wasusedasa

car-riertoprepareSESDduetoitslowmeltingpoint,goodphysical

propertiesoffacilitatingthesolubilizationofmanypoorly

water-soluble drugs as well as its stabilization (Shin and Cho, 1997;

Chutimaworapanetal.,2000).Thesurfacemorphologyand

crys-talstructure of SESD were characterizedusing DSC, PXRD and

SEM.Thereafter,releasecharacteristicsofdrugfromSESDsandthe

HPMCmatrixtabletswerethenevaluatedinenzyme-free

simu-latedintestinalfluid(pH6.8).ThestabilityofHPMCmatrixtablets

containingSESDwasalsoinvestigatedundervariousstorage

con-ditions.Finally,thecontrolledreleasedHPMCmatrixtablet and

thecommerciallyavailableDynacirc®capsuleasareferencewere

comparedforinvivobioavailabilitystudies

2 Materials and methods

2.1 Materials

IDPasapowderformwasobtainedfromDaewoong

Pharmaceu-ticalCorp.(Seoul,Korea).Oleicacid(OA),Brij-98,microcrystalline

cellulose (Avicel® PH102), hydroxypropylmethylcellulose 4000

(HPMC-4000),polyvinylpyrrolidone(PVPK30,Kollidon®30)and

poloxamer407(POX407)wereobtainedfromSeoul

Pharmaceuti-calCorp.(Seoul,Korea).Aerosil®200waspurchasedfromEvonik

(Seoul,Korea).Butylatedhydroxyltoluene(BHT)waspurchased from Sigma (Germany) Dynacirc®CR 5mg capsule (Daewoong Pharma,Korea)waschosenasareferenceIDPformulation.Allother reagentswereofreagentgradeandusedwithoutfurther purifica-tion

2.2 Method 2.2.1 Solubilitystudy ThesolubilityofIDPwasdeterminedinvarioussolvents, surfac-tants,co-surfactantsandoils.AnexcessamountofIDPwasaddedto 1.5mLsnap-capEppendorftube(Hamburg,Germany)containing variousadditives.Theresultingmixturewassufficientlymixedand thenplacedinaconstanttemperaturewaterbathat37◦Cfor3days Aliquotswerecentrifugedat13,000rpmfor10min(Hanil,Korea) Thesupernatantlayerwascarefullycollectedandthenadjusted withaproperdilution.TheconcentrationofIDPwasanalyzedbya HPLCsystemasdescribedbelow

2.2.2 PreparationofSESDs SESDsof IDPusing various carriers wereprepared by melt-ingmethod.ThedetailedformulationcompositionsofSESDsare showninTable1(Code:SD1-SD11).IDP,surfactantandfattyacid were homogenously mixed together based on the formulation compositions.Theresultingmixtureswereslightlyheatedat var-ioustemperaturesandsufficientlystirred.Thereafter,themelted solutionwasaddedtoadsorbent(Aerosil®200).Aftersufficiently mixing,themixtureswerecooledat−38◦Cwithin2h.The solid-ifiedmasswaspulverizedthoroughlybyapestleandmortarand finally,passedthrougha50meshsievetoobtainSESDpowders

2.2.3 PreparationofcontrolledreleasedtabletcontainingSESD TheHPMC-basedmatrixtablets(150mg)werepreparedbythe directcompressionmethod.Table2showscompositionsofthe con-trolledreleaseHPMCmatrixtablets.TheSESD,HPMCpolymerand theotherexcipientsweremixedthoroughlywithapestleand mor-tar.Theresultingmixturesweredirectlycompressedintotablet usingaconventionaltabletmachineequippedwithroundpunches (8mmdiameter)andadie.Thetablethardnesswasintriplicate

Table 2

Formulation compositions (weight basis) for the preparation of HPMC-based con-trolled release matrix tablets containing SESD (unit: mg).

No SESD HPMC 4000 Avicel ® PH-102 Total weight

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104 105 106 107 108

109

110 111 112 113 114 115 116 117 118 119

120 121 122 123 124 125 126 127 128 129 130

131 132 133 134 135 136 137 138

Trang 3

P.H.-L Tran et al / International Journal of Pharmaceuticsxxx (2013) xxx– xxx 3

measuredusingahardnesstester(ModelSVM-12,ErwekaGmbH,

Heusenstamm,Germany)

2.2.4 HPLCanalysisofIDP

A reverse phase HPLC system was used for the analysis of

IDP.TheHPLCsystem(Jasco,Tokyo,Japan)consistedofthepump

(PU-980),theUV–visiblespectrophotometricdetector(UV-975),

the autosampler (Jasco, AS-950-10), the degasser (DG-980-50),

thereverse phase column(Luna 5␮m C18 100A,150×4.6mm)

andintegrator(Borwin1.20 software).TheconcentrationofIDP

wasdeterminedatwavelengthofUV325nm.Themobilephase

consistedofamixtureofmethanol,deionizedwaterand

acetoni-trile(7:3:5,v/vratio)wasdegassedundervacuumfor5min.The

flowrateofthemobilephasewas1mL/min.A20␮lofthesample

wasinjectedintotheHPLCsystem.Thestocksolutionwas

pre-paredbydissolvingIDPinHPLC-gradeethanol(1mg/10mL)and

thenfurtherdilutedwiththemobilephase topreparestandard

solutions

2.2.5 Invitrodissolutionstudy

Invitro dissolution test of theSESDand tablet formulations

equivalentto5mgIDPwasperformedaccordingtotheUSP

dis-solution II paddle method with a rotation speed of 50rpm in

900mLoftheenzyme-freesimulatedintestinalfluid(pH6.8±0.1)

at37±0.5◦Cusingadissolutiontester(DCM1,Anyang,Korea)

Dis-solutionsampleswerecollectedat5,15,30,60,90and120min

and 1, 2, 3, 4, 6, 8, 10, 12, 16, 20 and 24h, respectively, with

replacementofequalvolumeoftemperature-equilibratedmedia

Thesinkerwasusedfordissolutionofthetablets.Thesampleswere

instantlycentrifugedat10,000rpmfor10min.Thesupernatantof

thecentrifugedsample wasdilutedwiththemobilephase.The

concentrationofsampleswasdeterminedbytheHPLCsystemas

describedpreviously

2.2.6 Thermalanalysis(DSC)

Thethermalbehaviorsofpuredrug,POXanddifferentSESD

formulationswereinvestigatedusingDupontDSC(Dupont,USA)

About3mgofsamplewasweighedinastandardopenaluminum

pan;whereasanemptypanofsametypewasusedasreference

Thesampleswereheatedfrom20to200◦C ata heatingrateof

10◦C/minunderpurgeddrynitrogen.Calibrationoftemperature

andheatflowwasperformedwithindium

2.2.7 PowderX-raydiffraction(PXRD)

PowderX-raydiffractionpatternswereobtainedforthesamples

ofpuredrug,POXanddifferentSESDformulationsusingaD5005

(Bruker,Germany)withCu-Kradiationat40kV50mA.Thesamples

werescannedinstepsof0.02◦from3◦to40◦ witharateofone

secondperstep,usingazerobackgroundsampleholder

2.2.8 Scanningelectronmicroscope(SEM)

Scanningelectronmicroscopywasusedtocharacterizethe

sur-facemorphologyandparticleshapeofthesamples.Thesamples

wereexaminedusingaJSM-5410(Jeol,Japan),atanacceleration

voltageof15kV.Thesampleswerecoatedwithathinlayerofgold

for10min

2.2.9 Stabilitystudy

TheHPMCmatrixtabletsbearingSESDwerestoredfor3months

inaplasticbottlewithsilicagelat40◦C/75%RH(relativehumidity)

Thehardnessanddissolutionprofilesforinitialandstoredsamples

weretestedatthegivenperiodoftime

2.3 Invivocomparativebioavailabilityinhealthyhuman volunteers

2.3.1 Studydesign Eight healthy human volunteers aged 20–30 years old and weighingfrom60 to70kgwereparticipated inthis studyafter submitting a written informed consent Document review and approvalfromaformallyconstitutedInstitutionalReviewBoard

inKangwonNationalUniversitywerepermitted.Thestudywas performed according to the revised declaration of Helsinki for biomedical researchinvolvinghuman subjectsand therules of GoodClinicalPractice.Theinvivobioavailabilitywascarriedout underthebioequivalenceguidelines(KFDA2008-25)accordingto theKoreanFood&DrugAdministration.Theeightvolunteerswere randomlydividedintotwogroups

The current controlled release tablets containing SESD and marketedDynacicr®capsulesequivalentto5mgIDPwereorally giventohumanvolunteerswith250mLofwaterforcomparatibe bioavailability.Foodanddrinkswerewithheldforatleast4hafter dosing.Standardizedlunchanddinnerwereserved5hafterdosing Allsubjectswereprohibitedfromstrenuousactivityand consum-ingalcoholicdrinksduringthestudy.Bloodsamples(10mL)were withdrawnthroughanindwellingthree-waycatheterinthe fore-armandcollectedinheparin-loadedvacutainersat0,0.5,1,1.5,2,

3,4,6,8,10,12,24and36hafterdosing.Thebloodsampleswere centrifugedfor10minat3000rpm.Thecollectedsampleswere keptfrozenat−70◦Cuntilanalysis.

2.3.2 AssayofIDPinhumanplasma TheLC/MS/MS systemwas usedfor theanalysisofIDP.The LC/MS/MS system consisted of the HPLC (PerkinElmer Series

200,Boston, USA),theautosampler(CTCanalyticSPA,Zwingen, Switzerland),theMS/MS(AppliedBiosystemsAPI4000,Boston, USA), and the column (Capcell PAK UG120, 2.0mm×150mm, 5.0␮mporesize).Themobilephaseconsistedof20%1mM ammo-nium acetate and 80% acetonitrile (pH 6.0 with acetic acid) Felodipinewasusedasaninternalstandard.Theflowrateofthe mobilephasewas0.2mL/min

ForanalysisofIDPinhumanplasma,300␮Lofplasma,50␮L (20ng/mL) of internal standard and 30␮L of 10% ammonium hydroxidewereputintotesttubeandmixed10s.Twomillliliters

ofethyletherwasthenaddedandmixedfor20min.Theresulting solutionwascentrifugedat1500rpmfor5min.The20␮Lofthe supernatantlayerinjectedtotheLC/MS/MSsystem

2.3.3 Pharmacokineticanalysis Non-compartmentalpharmacokineticanalysiswasperformed ThemaximumplasmaconcentrationofIDP(Cmax)andtimetoreach

Cmax(Tmax)aftertheoraladministrationweredirectlydetermined fromplasmaconcentration–timecurves.Theareaundertheplasma concentration–timecurve(AUC0–36h)fromzeroto36hwas com-putedusingthelineartrapezoidalrule.Alldatawereexpressedas mean±S.D

2.3.4 Statisticalanalysis Logarithmically transformed or untransformed (arithmetic) AUC0–36h andCmaxwas usedfor statisticalanalysisof variance (ANOVA)usingSPSS®forwindowssoftwareandK-BEtest® pro-gram, respectively The drug,period, group and subject nested withingroupwereincludedinstatisticalmodel.TheTmaxwasalso analyzedasareference

Allstatisticalcalculations wereperformedat 5%significance level The confidence interval of pharmacokinetic parameters between the two preparations was allowed within 80–125%

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195 196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

237 238 239 240 241 242 243 244

245 246 247 248 249 250 251 252 253 254

Trang 4

4 P.H.-L Tran et al / International Journal of Pharmaceuticsxxx (2013) xxx– xxx

wa ter pH 1.

2

pH 6.8 Br ij-9 7

Br ij- 9 8

Br ij- 5 8

Br ij- 3 5

crem opho

r E L

crem opho

r RH 40SLS

Tw ee n-8 0

Tw ee n-6 0

Tw ee n-20 tri ace tin

PE

G-600 0

PE

G-400 0

Ge luc ire 50 /13

cabopo l-934 p

po loxa

me r40 7

po loxa

me r18 8 gly cel in olei c ac id

lin ole

ic id

ca pry lic ac id

ca pr ic id

0

100

200

300

400

500

600

700

Fig 1.The solubility of IDP in various pharmaceutical excipients.

(logarithmicvalue)or80–120%(arithmeticvalue)for

bioequiva-lence,respectively

3 Results and discussion

3.1 Solubilitystudy

Theeffects ofpH,solubilizersand fattyacidondrug

solubil-itywereinvestigatedat 37◦C asshown inFig.1.Thesolubility

ofdruguponvariouspHconditionswasverylow.On theother

hand,allofthesurfactantsandco-surfactantsingeneralhada

ten-dencytoenhancethedrugsolubility.Especially,surfactantssuch

astriacetin,Brij98,SLSandPOX407showedtheirpotential

capa-bilityofenhancingdrugsolubilityremarkably.Becausesolubility

ofIDPinPOX407wasabout1200timeshigherthanthatinwater,

itwasincludedintheSESDformulationsasagoodcarrier.Besides,

othercarrierssuchasPEG6000,PVPK30andGUC50/13werealso

comparedintheSESDformulations

3.2 EffectofformulationcompositionsinSESDsondrug

dissolutionrate

3.2.1 Effectofcarriers

Theeffectofcarriertypesondrugdissolutionratein

intesti-nalfluid(pH6.8)isshowninFig.2.Dissolutionrateofpuredrug

wasverylow(<0.1ppm)inintestinalfluid,confirmingthepoor

watersolubilityofIDP.ThePOX407basedSESDshowed

signifi-cantlyhigherdrugdissolutionrateascomparedtoPEG,PVPand

GUC-basedSESDs.Thisresultwasmatchedwiththepreliminary

studyinwhichsolubilityofIDPreachedthehighestwithPOX407

POX407hasbeenwidelyusedasa wettingand solubilizing

agenttoenhancethesolubility,dissolutionandbioavailabilityof

manypoorlywater solubledrugs(CollettandPopli,2000;Vyas

etal.,2009).TheeffectofPOXcontentondrugdissolutionrate

fromSESDinintestinalfluid(pH6.8)wasalsoinvestigated(Fig.S1)

ThedissolutionrateofIDPsignificantlyincreasedastheamountof

POX407increasedfrom30mgto60mg(SD4-7)duetoitshigh

solubilizingcapability(Leeetal.,2008).Forthisreason,SD4with

thehighestcontentofPOX407(60mg)wasselectedasanoptimal

formulationforfurtherexperiments

Time (min)

0 20 40 60 80 100

raw I DP po wder SD1: PE G-600 0 SD2: PVP K30 SD3: Gelucire 50 /13 SD4: po loxa mer 40 7

Fig 2. The effect of carriers on the dissolution rate of drug from SESD in simulated intestinal fluid (pH 6.8).

3.2.2 Effectofsurfactantandfattyacid Togetherwiththecarrier,incorporatingsurfactantsandother solubilizerssuchasTriacetin,Brij98andoleicacidwerealso impor-tantcomponentstoformnanoemulsionswhenSESDswasexposed

toaqueoussolution.Althoughthesolubilityofdruginoleicacid wasnotsomuchhigh,thisfattyacidwasincorporatedintheSESD formulationbecauseithasbeenknowntobeeffectiveinincreasing

invivoabsorptionandbioavailabilityofpoorlywater-solubledrugs

byformingchylomicronsinthegut(Caliphetal.,2000;Porterand Charman,2001;Parketal.,2007).Figs.S2–S4showdrug disso-lutionratein simulatedintestinalfluid(pH 6.8)asthecontents

ofTriacetin, Brij98and/oroleic acidwerevariedintoPOX 407 basedSESDformulations,respectively.Astheamountofdrug,POX, Brij98andoleicacidwerekeptconstant,therewasnosignificant differenceindrugdissolutionrateofSESDswith(SD4)or with-outtriacetin(SD8)(Fig.S2).Thus, tricetinwasnotimportantin increasingdrugdissolutionandexcludedintheoptimal formula-tion.DrugdissolutionfromSD8(5mgBrij98)wasalmostidentical irrespectiveoftheamountofBrij98ascomparedwithSD9(10mg Brij98)(Fig.S3).So,theamountofBrij98at5mgwassufficient

tomodulatethedrugdissolutionrate.Then,oleicacidwasadded intoSESDformulationtoinvestigatetheeffectofthefattyacid Fig.S4showsthatthepresenceofoleicacidwasnotmeaningful becausedrugreleaseratefromSD8(withOA)andSD10(noOA) wasalmostthesame.Thefactthatdrugdissolutionprofilesfrom thoseSESDswerealmostidenticalwasbelievedduetothegreat effectofPOX407ontheenhancementofdrugrelease.So,the con-tributionofvaryingamountofsurfactantsorfattyacidsinSESD formulationshadanegligibleeffectondrugdissolutionrate Inter-estingly,thedrugdissolutionratefromPOX407basedSESDalone withoutincorporatingsurfactantandfattyacid(SD11)wasthe low-estascomparedwithSD8containingthesetwocomponents(Fig S5).Inotherwords,thedrugdissolutionratewasmainlygoverned

byincorporatingsurfactantinPOX407basedSESD.The dissolu-tionrateofSD4,SD8,SD9andSD10exceptSD11usingPox407 werealmostidentical.However,thefattyacid(OA)andsurfactant (Brij98)werecombinedtoaddintothecurrentPOX407based SESDforfurtherstudiesnotonlyfor enhancingdissolutionrate butalsopromotinginvivobioavailability.Itwasalsoknownthat

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

Trang 5

P.H.-L Tran et al / International Journal of Pharmaceuticsxxx (2013) xxx– xxx 5

Temperature

0 20 40 60 80 100 120 140 160 180

-10

-8

-6

-4

-2

A 0

B C D E

Fig 3.DSC thermograms of (A) IDP, (B) poloxamer 407, (C) SD11, (D) SD9 and (E)

SD8.

unsaturatedfattyoillikeoleicacidmightenhanceabsorptionand

bioavailabilityofdrugbyincreasinglipophilicityofdrug,oreven

lymphaticabsorptioninPeyer’spatchbyformingchylomicronsin

thegut(PorterandCharman,2001;Parketal.,2007)

3.2.3 Effectoftemperature

InordertoimprovetheprocessingofSESDsintosoliddosage

formliketablet,itisdesirablethatSESDshouldpossessgood

flowa-bilityandcompressibilityproperties.Thus,theadsorbentAerosil®

200waschosenandaddedintotheformulationoftheSESDusing

meltingmethod.Inaddition,becausetemperatureisanimportant

factortocontrolthephysicochemicalpropertiesofSESDprepared

bymeltingmethod(Fassihietal.,1985),SD8waspreparedattwo

differenttemperatures:A–thetemperatureusedinthestudyand

anotherB–lowertemperatureusedforonlycomparisonand

abbre-viatedas SD8lowT◦.Fig.S6shows theeffectoftemperatureson

drugdissolutionratefromSESDs(SD8andSD8lowT◦)insimulated

intestinalfluid(pH6.8).Thedrugdissolutionratewassignificantly

increasedastheheatingtemperatureincreasedfromBtoA

There-fore,thetemperatureAwasconfirmedtobetheoptimalonefor

preparationofSESDsbymeltingmethod

3.3 PhysicalcharacterizationofSESDs

Inordertoelucidatetheenhanceddrugdissolutionratefrom

SESDs,thephysical statesoftheSESDswereinvestigatedusing

instrumentalanalysissuchasSEM,PXRDandDSC(Francoetal.,

2001).IthasbeenwidelyknownthattheSESDcanimprovethe

dissolutionrateofpoorlywater-solubledrugsbychangingthe

crys-tallinestructureofdrugintoahighenergystate,i.e.anamorphous

state.DSCthermogramsofSESDs(SD8,SD8lowT◦ andSD11)are

compared withthepure drugand POX 407in Fig.3 PureIDP

andPOX 407exhibitedsingleendothermicpeaksat169◦C and

52◦C,respectively,whichcorrespondedtotheirintrinsicmelting

points.Incontrast,thethermogramsofallSESDsshowedthatdrug

characteristicpeakdisappearedexceptforthatofthecarrieritself

indicatedthatmostofcrystallinedrugchangedintoitsamorphous

structure(LeunerandDressman,2000).Thisfactwasattributed

tobeafactorenhancingdrugrelease.However,additionalpeaks

werealsoobservedaround50–55◦CincaseofSD8lowT◦andSD11

Itsuggesteddrugwasnotcompletelyamorphous,givingdecreased

dissolutionrateasshownpreviously

0 500 1000 1500

2000

A

B C D E F

Fig 4.The powder X-ray diffraction patterns of (A) IDP, (B) poloxamer 407, (C) SD11, (D) SD9, (E) SD8, and (F) Aerosil ® 200.

ThePXRDpatternsofSESDs(SD8,SD8lowT◦andSD11)arealso comparedwiththepuredrugandPOX407inFig.4.Diffractogram

ofthepuredrugrevealsthehighlycrystallinenaturethroughits numerous distinctivepeaks POX407 aloneexhibited two high intensitypeaksat18◦ and 24◦.Contrarily,numerousdistinctive peaksofthedruginthethreeSESDsdisappeared,indicatingthat

ahighconcentrationofthedrugwasdissolvedinthesolid-state carriermatrixinanamorphousstructure(Sheenetal.,1995;Hu

etal.,2003).TherewasnosignificantdifferenceinPXRDpatterns amongSESDsystems(SD8,SD8lowT◦andSD11)

InadditiontophysicalstateofdruginSESDsystem,either amor-phousorcrystallinestructure,theimaginganalysisusingSEMwas examinedtoclarifythedifferencesindissolutionprofilesamong SESDformulations.ThesurfacemorphologyofIDPpurematerial, POX407,Aerosil®200,SESDs(SD8,SD8lowT◦andSD11)isshown

inFig.5.IDPcrystalshaveanacicularformwhereasPOX407and Aerosilshowedirregulargranuleshapeandpowder-likespherical shape,respectively.TheSESDsappearedtobeirregularly granu-latedoragglomerated,dependingonthepreparationtemperature andformulationcompositions.Thesedifferencesofmorphological propertiescanaffectphysicalstateofdrugandwettabilityofSESD, varyingdrugdissolutionrate.SD8lowT◦,preparedbythemelting methodatlowtemperature,orSD11withoutanysurfactantand fattyacid,exhibitedcrystallinestateofdrugintheSESD,resulting

indecreaseddissolutionrateasdiscussedpreviously.Meanwhile, theSD8showedalmostamorphousstructure,indicatingthedrug dissolutionenhancementwasduetothelackofcrystallinestate andthebetterwettability

3.4 EffectofHPMCcontentondissolutionrateofcontrolled releasetablet

TheoptimallyformulatedSD8wasusedtopreparecontrolled release HPMC matrix tablet Hydrophilicswellable HPMC poly-mersarewidelyusedtocontrolthereleaseofdrugsfrommatrix formulations(Alderman,1984;Raoetal.,1990).Additionally, cel-luloseethershavegoodcompressioncharacteristicssothatthey canbedirectlycompressedtoformswellable sustainedrelease matrices (Doelker,1987) Thepolymer content and the viscos-ity grade of HPMC are considered tobe critical factors in the controlledreleaseofdrugsduetothechangesofswelling behav-iorsofHPMCmatrices(Bonferonietal.,1998;Katzhendleretal., 2000; Caoet al., 2005).Therefore, the effectof HPMC quantity

ondissolutionrateofthecontrolledreleasedHPMCmatrixtablet

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

396 397

398 399 400 401 402 403 404 405 406 407 408 409

Trang 6

6 P.H.-L Tran et al / International Journal of Pharmaceuticsxxx (2013) xxx– xxx

Fig 5. SEM photo-micrographs of IDP (× 10k), poloxamer-407 (× 2k), Aerosol 200vv (× 10k), SD8 (× 10k), SD9 (× 10k) and SD11 (× 10k).

in simulated intestinal fluid (pH 6.8) was investigated (Fig.6)

Thehardnessand friability of HPMC matrix tabletswere given

40.0±5N and 0.3±0.05% respectively The matrix tablet

with-outHPMC(T1)orhavinglowcontentofHPMC(T2)displayeda

rapiddisintegrationwithnocontrolledrelease.TheHPMCmatrix

tabletsshowedcontrolledreleaseoveraperiodof10–16h

depend-ingontheHPMCcontent(T3–T6)becauseoftheswellingproperty

ofHPMCasreportedonsomewhere(Wanetal.,1993;Pateland

Patel,2007).OneofthemostimportantcharacteristicsofHPMC

isthe highswellability, whichhas aconsiderable effectonthe

releasekineticsofincorporateddrugs(Velascoet al.,1999;Cao

etal.,2005).WhenHPMCmatricescome incontactwithwater

or aqueous gastro-intestinal fluids, the polymer absorbs water and undergoes swelling and hydration The rapid formation of

a viscous gel layer upon hydration has been regarded as the essential step in achieving controlled drug release from HPMC matrices.Thisprocessleadstorelaxationofthepolymerchains withareductionintheglasstransitiontemperatureofthe poly-mer Subsequently, thepolymer undergoes a glassyto rubbery phasetransitionandthepolymericchainsdisentangleasaresult

ofincreaseddistanceseparationbetweenthechainstodiffusethe drugmoreeasily(Parakh etal.,2003).Contrarily,themarketed Dynacirc® capsuleshowed verylow dissolution rate(T0;about 20%/24h)

410

411

412

413

414

415

416

417

418

419

420

421

422 423 424 425 426 427 428 429 430 431 432 433

Trang 7

P.H.-L Tran et al / International Journal of Pharmaceuticsxxx (2013) xxx– xxx 7

Time (h)

0

20

40

60

80

100

T0: Dynac irc Capsule T1: HPMC 0 % T2: HPMC 5 % T3: HPMC 10 % T4: HPMC 20 % T5: HPMC 25 % T6: HPMC 30 %

Fig 6.The effects of amount of HPMC on the dissolution rate of controlled released

tablet in simulated intestinal fluid (pH 6.8).

3.5 Stabilitystudyofcontrolledreleasedmatrixtablet

Drugdissolutionratesfromthecontrolledreleasematrixtablets

(T4–T6)arealmostidentical.T4withloweramountofHPMCwas

consideredastheoptimalformulationtoavoid stickiness

prob-leminthetabletingprocess.ThestabilityofHPMCmatrixtablet

(T4)containingSESDwasalsoinvestigatedundertheaccelerated

storageconditionsorroomtemperature.Releaseprofilesof

con-trolledreleasedHPMCtabletsinsimulatedintestinalfluid(pH6.8)

asa functionoftimeunderthetwodifferentstorageconditions

areshowninFig.7.Thedissolutionprofilesofthetabletsattwo

differentstorageconditionswerealmostidenticalfor3months

Time (h)

0

20

40

60

80

100

Initial

1 mo nth s: 40 degree / 75 % RH

1 mo nth s: Ro om temp erature

3 mo nth s: 40 degree / 75 % RH

3 months: Room temperature

Fig 7.Dissolution profiles of controlled released tablet in simulated intestinal fluid

(pH 6.8) as a function of time during various storage conditions.

Time (h)

0 1 2 3 4 5

Dinacirc-Reference

CR Table t (T4)

Fig 8.Plasma concentration–time profiles of IDP after an oral administration of controlled released tablet (T4) and marketed Dynacirc ® capsule in healthy human volunteers.

ascompared withinitialtime Moreover,the drugcontentwas almostunchangedduringstorageconditionsfor3months(data notshowed).Accordingly,theHPMCmatrixtabletcontainingSESD (T4)inthestudyhasagoodstabilityandcouldbeusedtodelivery poorlywater-solubleIDPinacontrolledmanner

3.6 Pharmacokineticbehaviorsofcontrolledreleasetabletin healthyhumanvolunteers

Theplasmaconcentration–timeprofilesofcontrolledreleased HPMCmatrixtablets(T4)andmarketedDynacirc®capsule equiv-alentto5mgofIDPfollowinganoraladministrationtohealthy humanvolunteersareshowninFig.8.TheTable3alsocompares pharmacokineticparametersofIDPbetweencontrolledreleased matrixtablets(T4)andmarketedDynacirc®capsule.Thecontrolled releasedHPMCmatrixtabletsshowedsignificantlyincreasedCmax andAUCcomparedtothemarketeddynacirc® capsule.The rel-ativeAUCand Cmaxof controlledreleasedHPMCmatrix tablets increasedabout256%and587%,respectively.Duetothe solubi-lizationeffect,theTmaxofcontrolledreleasedHPMCmatrixtablets wasalsohighlyadvanced.Themechanismforthisenhancedinvivo bioavailabilityresultedfromthecontrolledreleaseofhighly solu-bilizableSESDsystemloadedinHPMCmatrixtablet.Asthewater penetratesintothetablet,drugreadilydissolvesviaemulsification processandreleasethroughthepolymericnetworkofHPMCina controlledmanner.Thechangeofdrugcrystalstructureinto amor-phousformaswellastheincreaseofwettingandsolubilization

Table 3

Comparison of pharmacokinetic parameters after an oral administration of con-trolled released matrix tablets (T4) and marketed Dynacirc ® capsule equivalent to

5 mg IDP in healthy human volunteers.

No AUC (ng h/mL) C max (ng/mL) T max (h) Dynacirc ® 8.56 ± 4.28 0.48 ± 0.10 8.25 ± 3.86 *

* p < 0.05, significantly different compared to Dynacirc ®

434

435

436

437

438

439

440

441

442

443

444

445 446 447 448 449

450 451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

Trang 8

8 P.H.-L Tran et al / International Journal of Pharmaceuticsxxx (2013) xxx– xxx

capacitybyincorporatingexcipientsortheirmixtures(surfactant

andfattyacid)intotheSESDsystemcouldcontributetheenhanced

dissolutionofIDPasdiscussedpreviously

4 Conclusions

TheSESDpreparedbymeltingmethodcouldbeauseful

formu-lationtoenhanceinvitrodissolutionandinvivobioavailabilityof

apoorlywater-solubledruglikeIDP.Thedissolutionenhancement

inSESDsystemwasattributedtothechangeofdrugcrystalline

intotheamorphousstateandtheformationofmicroenvironment

todissolveIDPbyincorporatingformulations.ThisSESDsystem

wasdispersedinHPMC-basedmatrixtablettocontroltherelease

rateofdrug.Interestingly,theHPMCmatrixtabletcontainingSESD

showedgoodstability andenhanced invivobioavailability The

drugcontentanddissolutionprofilesofthetabletswereunchanged

duringstoragefor3months.Oralbioavailabilityofthecontrolled

releaseHPMCtabletwashighlyincreasedascomparedwiththe

referencecapsuleinhealthyhumanvolunteers.Therefore,

solubi-lizationmethodcombinedwithcontrolledreleasetechniquecould

provideauniquewaytoincreasedissolutionrateand

bioavailabil-ityofmanypoorlywater-solubledrugs

Acknowledgements

ThisworkwassupportedbyagrantfromtheKoreanHealth

TechnologyR&DProject,MinistryforHealthandWelfare,Korea

(A092018).WewouldliketothanktheCentralResearchLaboratory

fortheuseoftheDSC,PXRDandSEM,KangwonNationalUniversity

Appendix A Supplementary data

Supplementary data associated with this article can be

found, in the online version, at http://dx.doi.org/10.1016/

j.ijpharm.2013.04.022

References

Alderman, D.A., 1984 A review of cellulose ethers in hydrophilic matrices for oral

controlled-release dosage forms Int J Pharm Tech Prod Manuf 5, 1–9.

Bonferoni, M.C., Rossi, S., Ferrari, F., Bertoni, M., Bolhius, G.K., Caramella, C., 1998.

On the employment of ␭ carrageenan in a matrix system III Optimization of a

␭ carrageenan—HPMC hydrophilic matrix J Control Release 51, 231–239.

Caliph, S., Charman, W.N., Porter, C.J.H., 2000 Effect of short-medium-and

long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal

lymphatic transport of halofantrine and assessment of mass balance in

lymph-cannulated and non-cannulated rats J Pharm Sci 89, 1073–1084.

Cao, Q.-R., Choi, Y.-W., Cui, J.-H., Lee, B.-J., 2005 Formulation, release characteristics

and bioavailability of novel monolithic hydroxypropylmethylcellulose matrix

tablets containing acetaminophen J Control Release 108, 351–361.

Chutimaworapan, S., Ritthidej, G.C., Yonemochi, E., Oguchi, T., Yamamoto, K., 2000.

Effect of water-soluble carriers on dissolution characteristics of nifedipine solid

dispersions Drug Dev Ind Pharm 26, 1141–1150.

Collett, J.H., Popli, H., 2000 Poloxamer In: Kibbe, A.H (Ed.), Handbook of

Pharma-ceutical Excipients , 3rd ed Pharmaceutical Press, London, pp 385–388.

Colombo, P., Bettini, R., Massimo, G., Catellani, P., Santi, P.L., Peppas, N.A., 1995 Drug

diffusion front movements is important in drug release control from swellable

matrix tablets J Pharm Sci 84, 991–997.

Chrysant, S.G., Cohen, M., 1997 Long-term antihypertensive effects with chronic

administration of isradipine controlled release Curr Ther Res 58, 1–9.

Doelker, E., 1987 Water-swollen cellulose derivatives in pharmacy In: Peppas, N.A.

(Ed.), Hydrogels in Medicine and Pharmacy, Polymers, vol II CRC Press, Boca

Raton, FL, pp 115–160.

Fassihi, A.R., Parker, M.S., Pourkavoos, N., 1985 Solid dispersion controlled release:

effect of particle size, compression force and temperature Drug Dev Ind Pharm.

11, 523–535.

Franco, M., Trapani, G., Latrofa, A., Tullio, C., Provenzano, M.R., Serra, M., Muggironi, M., Biffio, G., Liso, G., 2001 Dissolution properties and anticonvulsant activ-ity of phenytoin polyethylene glycol 6000 and polyvinylpyrrolidone K-30 solid dispersion Int J Pharm 225, 63–73.

Hafizullah, M., Zaidi, E., Abbas, F., 2000 Comparative efficacy of amlodipine and slow release isradipine as a monotherapy in hypertensive patients J Postgrad Med Inst 14, 22–27.

Hu, J., Johnston, K.P., Williams III, R.O., 2003 Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems Eur J Pharm Sci.

20, 295–303.

Katzhendler, I., Mader, K., Friedman, M., 2000 Structure and hydration properties

of hydroxypropyl methylcellulose matrices containing naproxen and naproxen sodium Int J Pharm 200, 161–179.

Lee, K.R., Kim, E.J., Seo, S.W., Choi, H.K., 2008 Effect of poloxamer on the dissolution

of felodipine and preparation of controlled release matrix tablets containing felodipine Arch Pharm Res 31, 1023–1028.

Leuner, C., Dressman, J., 2000 Improving drug solubility for oral delivery using solid dispersions Eur J Pharm Biopharm 50, 47–60.

Parakh, S.R., Gothoskar, A.V., Karad, M.T., 2003 A novel method for the study of water absorption rates by swellable matrices Pharm Technol 5, 40–48.

Park, M.J., Ren, S., Lee, B.-J., 2007 In vitro and in vivo comparative study of itracona-zole bioavailability when formulated in highly soluble self-emulsifying system and in solid dispersion Biopharm Drug Dispos 28, 199–207.

Patel, V.F., Patel, N.M., 2007 Statistical evaluation of influence of viscosity and con-tent of polymer on dipyridamole release from floating matrix tablets: a technical note AAPS PharmSciTech 8, E1–E5.

Porter, C.J.H., Charman, W.N., 2001 Intestinal lymphatic drug transport: an update Adv Drug Deliv Rev 50, 61–80.

Pouton, C.W., 2006 Formulation of poorly water-soluble drugs for oral admin-istration: physicochemical and physiological issues and the lipid formulation classification system Eur J Pharm Sci 29, 278–287.

Rao, K.R., Devi, K.P., Buri, P., 1990 Influence of molecular size and water solubil-ity of the solute on its release from swelling and erosion controlled polymeric matrices J Control Release 12, 133–141.

Serajuddin, A.T.M., 1999 Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs J Pharm Sci 88, 1058–1066.

Sheen, P.C., Khetarpal, V.K., Cariola, C.M., Rowlings, C.E., 1995 Formulation studies

of a poorly water-soluble drug in solid dispersions to improve bioavailability Int J Pharm 118, 221–227.

Shin, S.C., Cho, C.W., 1997 Physicochemical characterizations of piroxicam-poloxamer solid dispersion Pharm Dev Technol 2, 403–407.

Tang, B., Cheng, G., Gu, J.C., Xu, C.H., 2008 Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms Drug Discov Today 13, 606–612.

Tran, T.T.D., Tran, P.H.L., Lee, B.-J., 2009 Dissolution-modulating mechanism of alka-lizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug Eur J Pharm Biopharm 72, 83–90.

Tran, T.T.D., Tran, P.H.L., Lim, J., Park, J.B., Choi, S.K., Lee, B.-J., 2010 Physico-chemical principles of controlled release solid dispersion containing a poorly water-soluble drug Ther Deliv 1, 51–62.

Tran, P.H.L., Tran, T.T.D., Park, J.B., Lee, B.-J., 2011a Controlled release sys-tems containing solid dispersions: strategies and mechanisms Pharm Res 28, 2353–2378.

Tran, H.T.T., Park, J.B., Hong, K.-H., Choi, H.-G., Han, H.-K., Lee, J., Oh, K.T., Lee, B.-J., 2011b Preparation and characterization of pH-independent sustained release tablet containing solid dispersion granules of a poorly water-soluble drug Int.

J Pharm 415, 83–88.

Velasco, M.V., Ford, J.L., Rowe, P., Rajabi-Siahboomi, A.R., 1999 Influence of drug: hydroxypropylmethycellulose ratio, drug and polymer particle size and com-pression force on the release of diclofenac sodium from HPMC tablets J Control Release 57, 75–85.

Verger, M.L.L., Fluckiger, L., Kim, Y.I., Hoffman, M., Maincent, P., 1998 Preparation and characterization of nanoparticles containing an antihypertensive agent Eur.

J Pharm Biopharm 46, 137–143.

Vyas, V., Sancheti, P., Karekar, P., Shah, M., Pore, Y., 2009 Physicochemical char-acterization of solid dispersion systems of tadalafil with poloxamer 407 Acta Pharm 59, 453–461.

Wan, L.S.C., Heng, P.W.S., Wong, L.F., 1993 Relationship between swelling and drug release in a hydrophilic matrix Drug Dev Ind Pharm 19, 1201–1210.

Wang, Z., Horikawa, T., Hirayama, F., Uekama, K., 1993 Design and in vitro eval-uation of modified release oral dosage form of nifedipine by hybridization

of hydroxypropyl-␤-cyclodextrin and hydroxypropylmethylcellulose J Pharm Pharmacol 45, 942–946.

Wong, J.W., Yuen, K.H., 2001 Improved oral bioavailability of artemisinin through inclusion complexation with ␤- and ␥-cyclodextrins Int J Pharm 227, 177–185.

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

Ngày đăng: 16/12/2017, 01:05

🧩 Sản phẩm bạn có thể quan tâm