1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: The controllability of degenerate system described by invertible operator

12 116 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 4,13 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

DSpace at VNU: The controllability of degenerate system described by invertible operator tài liệu, giáo án, bài giảng ,...

Trang 1

V N U JOURNAL OF SCIENCE M athem atics - Physics T X V IIỊ N()3 - 2002

T H E C O N T R O L L A B I L I T Y O F D E G E N E R A T E S Y S T E M

D E S C R I B E D B Y R I G H T I N V E R T I B L E O P E R A T O R S

N g u y e n D in h Q u y e t, H o a n g V an T h i

H a n o i U niversity o f P edagogy

A b s tr a c t T h e co n tro lla b ility o f a linear s y s te m described by light, invertible opera-

to rs was stu d ie d by m a n y a u th o rs H ow ever, fo r the degenerate syste m , the problem

ha s n o t been so fa r considered In this paper, the co n tro llability o f these syste m s is studied.

0 I n t r o d u c t io n

T he theory of right invertible operators was sta rte d in 1972 w ith works of I) Przeworska- Rolewicz and then has been developed by M Tasche, II veil Trotha, z Binderm an and m any other M athem aticians (see [7]) W ith the appearing of this theory, the initial, boundary arid m ixed boundary value problems have been considered Since 1977- 1978, Nguyen Dinh Q uyet, in series of articles, has introduced the controllability of linear system s described by right invertible operators in the case of a resolving operator being invertible (see[2, 3]) T he results related to the controllability of linear systems were generalized by Pogorzelec for the case of one-sized invertible resolving operarors In 1992, Nguyen Van Man, in his study, introduced the controllability of general system and stu d ­ ied the controllability of linear system s described by generalized invertible operators (see [5]) However, for the degenerate systems, the problem has not been so far investigated

In this paper, the controllability of the degenerate system described by right, invertible operators is studied.

1 S o m e f u n d a m e n ta l n o tio n s

L et X be a linear space over a field T of scalars [ T = M or C).

Denote by l j ( X) the set of all linear operators w ith dom ains and ranges contained

in X and L 0( X ) = {AL ( X ) : donii4 = X }

D e fin itio n 1.1 [7] A n o p e ra to r D £ L ( X ) is said to be a rig h t in v e r tib le o p era to r i f there is an o p e ra to r RL q ( X ) su ch th a t I m R c d o m D a n d

w here I is id e n tity o p era to r In th is ease, R is called a rig h t in verse o p c tã lo r o f D T h e se t

o f all rig h t in v e r tib le o p e ra to rs b e lo n g in g to L { X ) will be d e n o te d b y R ( X ) I f D £ R { X ) ,

we d e n o te 7Z p = { I i £ L q { X ) : D R = /}

'Fypeset by

Trang 2

38 N g u y e n D i n h Q u y e t , H o a n g V a n T h i

P r o p o s i t i o n 1 2 [7] I f DR { X ) , th e n fo r e v e r y R £ 7Z p we h a v e

D e f i n i t i o n 1 2 [7] All operator F L q ( X ) is said to be an in itia l operator for D corresponding to R 6 7ZI) i f F2 == jP, F X = ker D a n d F R = 0 1 doinH T h e set o f all initial operators for D will be den o ted by Tj j

D e f i n i t i o n 1 3 [7] Suppose th a i D £ R ( X ) and RTZd- A n operator A E L o ( X ) is said to be sta tio n a ry if D AA D = 0 on cIomD and R A — A R = 0.

T h e o r e m 1 1 [7] Suppose th a t DR ( X ) A necessary and sufficient condition for an

o p e r a to r FLo (X ) to b e a n in itia l o p e r a to r for D c o r r e s p o n d in g to R € is th a t

D e f i n i t i o n 1 4 [7] An operator V £ L o ( X ) is said to be a left in vertible operator i f there

is an o p e r a to r LL { X ) s u c h th a t I m V c d o m L } L V = I W e d e n o t e A ( X ) th e s e t o f

all left invertible operators belonging to L ( X ) and by C y the set o f all left inverses o f

v e A ( x )

D e f i n i t i o n 1 5 |5j All operator VL ( X ) is said to be generalized invertible i f there is

an operator w £ L ( X ) ( called a generalized inverse o f V ) such that:

ImV c domW y Im W c domV and v w v = V on domV.

T h e s e t o f all g e n e r a liz e d in v e r tib le o p e r a to r s in L ( X ) w ill b e d e n o t e d b y W ( X ) I f

V W ( X ) , we den ote by w v th e set o f all generalized inverses o f V.

P r o p o s i t i o n 1.2 (5j S u p p o s e t h a t V Ç W ( X ) a n d w G vvv , th e n

T h e o r e m 1 2 [5] S u p p o s e t h a t A , BL ( X ) , I m A c d o m B a n d I m B c ( lo m A, th e n

I - A B is r ig h t in v e r tib le ( le ft in v e r tib le ' in v e r tib le , g e n e r a liz e d in v e r tib le ) i f cind o n ly i f

so is I B A M oreover, i f we d en ote by Ra b{ La b> w a b) & r ig h t inverse ( left inverse,

generalized inverse ) o f IA B , then there exists Rb a^ i-i ì a{ ^b a£ j - B A ) Wb a

W /- /M , r e s p e c tiv e ly s u c h th a t:

(i) Ra b — I + A Rb a Rb a = / + B R a b A ,

(iij Lj\h = J + A Lb aB y Lb A = I + B La bA ,

(in ) ( I - A B ) - 1 = I + A ( I - B A ) - ' B } ( I - B A ) - 1 = I + t ì ự - A B ) ~ l A ,

fiv j VVUb = / + j W î m B , ^ > 1 = I + .

T h e th eo ry o f right in v ertib le o p era to r s and th ie r a p p lic a tio n s ca n b e seen in [5,7].

Trang 3

T h e c o n t r o l l a b i l i t y o f d e g e n e r a t e s y s t e m d e s c r i b e d b y 39

2 D e g e n e r a t e s y s t e m s

D e f i n i t i o n 2 1 Suppose th a t DR ( X ) }d i mk e T D ý- 0 and A, B L o ( X ) , with A ^ 0

non-invertiblc T hen a linear s y s te m o f the form

is said to be a degenerate system

P r o p o s i t i o n 2 1 Suppose th a i I)R ( X ) , d i m k er D 7^ 0; F is an initial operator for

D corresponding to R TZjj a n d A y B Lq( X), with A Ỷ 0 non-invertibie Then the following id en tities hold on d o m ü :

F roof, (i) O n (loin D we have

D { I - R [ ( I - A ) D + B ] } = D - D R [ Ự - A ) D + B} = D - Ự - A ) D - tì

= I ) - D + AD - H = AD - t ì

T h e p ro o fs o f (2.3) a n d (2 4 ) a re co m p letely sim ilar

P r o p o s i t i o n 2 2 Sup p ose th a t a11 th e assum ptions o f P roposition 2.1 arc satisfied I f

A — H R is righ t invertible ( leit in v ertib le, invertible, generalized invertible), then so is I — R[(I — A ) D + tì] M oreover, i f Ra b(J'AJJ) {AB R ) ~ l , w A b) is right inverse ( left inverse,

in v e rs e, g e n e r a liz e d in v e r s e ) o f AB R , th e n th e r e e x is ts R q'R 'Ị - R \ụ - A ) D + iì\ỤJ0 £

£ i - R [ ( i - A ) n + B } , W QV\>Ị-R \ ụ - A)D+B] respectively, su ch that:

(i) Ro = I + R Ra bHI - A ) p + B] ,

(ii) Lo = / + 7 ỈL ^ Ị(/-i4 )D + fi) ,

(iỉi) { I - R [ ự - A ) ỏ + ] } “ 1 = s / + « ( i 4 - B / ĩ ) - l ị ( / - i 4 ) D + B l ,

(ỉv) IVo = I + R W a M V - A ) D + fl] •

Proof. W e w ill prove th e ca se ( iv ) W e h ave / — [ ( / — i4)/J) -f /? ] /ỉ = y4 — B R S u p p ose

th a t /1 - B R € W (X ) and € W /I-B * T hen / - /ĩ[ ( / - i4)D + 0 | G W (X ) (by

T h eo rem 1.2 ) M oreover, th ere e x is t s Wq = I + R W A b \ { I “ >4)/) + # ] is a generalized inverse o f I — R [ ( I — >4)D + # ] .

A n o p e r a to r - B R is sa id to b e a resolving operator for th e s y ste m (2 1 ), if

>4 — R R is in v er tib le, th en th e s y s te m (2 1 ) is said to b e w ell-d e te rm in e d O th erw ise, it is

ill-d ete rm in ed

T h e o r e m 2 1 Supp ose th a t all a ssu m p tio n s o f Proposition 2.1 arc satisfied Then, we

have:

(i) I f A — B R Ç Jl { X) a n d /Ỉ,4/J € T^A- BR Ì then all solutions o f th e s y ste m (2.1) are

A D x = B x + y , y € X (2.1)

A D - t ì = D ự - R [ ự - A )D + £ ] } , (i4 D - t ì ) R = A - B R

A D - B = ( A - B R )D - B F

(2.2)

(2.3) (2.4)

g i v e n b y

Trang 4

40 N g u y e n D i n h Q u y e t, H o a n g V a n T h i

where z € kerD } z € k er{ / — / ỉ [ ( / — v4)D 4- # ] } ,

(ii) I f A — # / ? € A ( X ) a n d Zvy\# € C a - b h , th e n a ll s o lu tio n s o f th e s y s te m (2 1 ) a re

given by

X = { / 4- /Ỉ L v4/ j [ ( / — /1 )D + £?]}(/£?/ + 2) , 2 G k erD , (2 6 )

(Hi) I f AB R is invertible, th en a11 solutions o f th e s y ste m (2.1 ) are given by

X = { / + / Ỉ( i4 - f í / ỉ ) “ l í ơ - i4 )D + £ ] } ( i ỉ y + í ) , 2 € k e rD , (2 7 )

(iv) I f AB R € IV' ( X ) rUìd W A Ịì £ VV/t - Ị ĩ Ị{ , then all solutions o f the system (2.1)

a re g i veil b y

X = { I + R W AtB[(I - A ) D + tì]}ự ỉy + z) + z, (2.8)

where z € ker I) , £ € k e r {J — /-?.[(/ — j4 ) D + Ổ ]}.

P ro o f. S in ce b o th o n e -sid e d in v e rtib le a n d in v e rtib le o p e r a to r s axe g en eralized in v e rtib le ,

it is su fficien t t o co n sid er th e ca se (2?;) A ccord in g to e q u a lity th e (2 2 ) ill P ro p o sitio n 2.1,

w e see t h a t (2 1 ) is e q u iv a le n t to D { I — / ĩ [ ( / — A )D + B ) } x = y H ence,

{ / - I i [ { I - A ) D + £ ] } * = « y + ỉ , 2 e k er £>, (2.9)

B y th e a s s u m p tio n , /1 — B R € i y ( X ) a n d W/ \ n € VVU-/3/* T h u s , P ro p o s itio n

2.2 im p lies th a t I — / { [ ( / - / 4 ) D + f í | G VV'(X) an d th ere e x is ts a gen era lized in v er tib le

operator Wq = I + /?[(/ — i4)D + B\ Therefore, (2.9) obtaines that all solutions of

(2 1 ) axe g iv e n b y X = { J + /ỈM^ì4, b [ ( / - -4)-D + f t Ị } ( / t y 4- z ) + 5.

3 T h e i n i t i a l v a l u e p r o b l e m

S u p p o s e t h a t 1) £ I Ỉ ( X ) , d im k e rD ^ 0; -F is a n in itia l o p e r a to r for D c o rre sp o n d in g

to I t £ 1Z ị)\ a n d A , B £ L o ( X ) , w ith A Ỷ 0 n o n -in v e rtib le In th is sec tio n , w e co n sid er

th e in itia l v a lu e p ro b le m fo r d e g e n e ra te s y s te m ( D S) 0 o f th e form :

T h e o r e m 3 1 S u p p o se th a t oil th e assum p tio ns o f P roposition 2.1 are satisfied and

R y + X'o E { / - / ? [ ( / — y4)D + B ] } d o m D T hen, we have:

(i) I f A — B R G I Ì { X ) a n d R a bTZ a - b r y th e n a ll s o lu tio n s o f t h e p r o b le m (3 1 )-(3 2 )

axe given by

x = { ỉ + H R a b ỉ ơ - A ) D + B } } ( R y + x 0 ) + z , (3.3)

where z € k e r { / — / ? [ ( / — A ) D + 5 ] }

(ii) I f A - B R € /1(X ) a n d L a bC a - b r , th e n a /i s o lu tio n s o f th e p r o b le m (3 1 )-(3 2 )

are given by

X = { / + /Ỉ L ^ B Í Ơ - i4 )D + « ị } ( i ỉ y + x o ) (3.4)

(Hi) I f AH R is invertible, th en solution o f th e p ro b lem (3.1)-(3.2) arc given by

X = { I + R(A - i4)/J + B ]}(/ỉy + x 0) (3.5)

Trang 5

(iv) I f A — B l i (E W ( X ) and wy\ ỊỊ £ y^A -B R Ĩ then all solutions o f the problem

(3.1)-(3.2) cue given by

X = { / + Ỉ I Wa j ỉ[Ự - A ) D 4- B ] } ( R y 4* Xo) 4- z , (3 6 )

Ì where z € kcr{7 - / ỉ [ ( / — 4 )D + B]}.

Proof. According; to the p r o o f o f T h e o r e m 2.1, fro m (3 1 ) w e h a v e

{ / — lì.ịự - A )D + B ] } x = R y + z , z G k e r /J (3 7 )

Thus, acting on b o th sides of t his equality by o p erator F , we find th a t F x — F H [ ( I —

,4 )/J + Bịa: = F R y + F z Ile n c c XQ = F x = /*2 = 2 T h e re fo re ,

{ / - / ỉ | ( / - A ) D + B ) } x = R y + *0 (3.8)

By our assum ption, A - H R € implies th a t I — /£[(/ — A )D + B] € w p o

an d th ere e x is ts i t ’s g en e r a lise d in verse Wo = I + R W A /* [ ( / — A ) D + B] , w ith co n d itio n

R y -f Xo{ I — R[ ( I — A) I) + B ] } d o m D , w e h a v e a ll s o lu tio n s o f th e p r o b lem (3 1 )-(3 2 )

is given by

X = { I + R W AtR[{I - A ) D + B \ } ( R y + Xo) + z , z € k e r { / - / ỉ [ ( / - / ! ) / ; + / * ] }

T h e o r e m 3 2 S u p p o s e t h a t A B a r e s ta tio n a r y o p e r a to r s a n d A — f t / ỉ is in v e r tib le

T h e n , th e in itia l va lu e p r o b le m ( 3 1 )-(3 2 ) h a s a u n iq u e s o lu tio n

x = ( A - B R ) - \ R y + x 0) (3.9)

P ro of. By th e a s s u m p tio n /1, ft a re s ta tio n a r y o p e ra to rs , A D — B = D ( A — f t / i ) a n d (3.1) becomes D(A — B R )x = ty , this implies that (/1 — H I Ỉ ) x = /fy -f £ € k e r/J The

co n d itio n (3.2) fin d s th a t 2 = XQ M oreover, /t — is in v e rtib le T h u s , th e s o lu tio n o f the problem (3.1)-(3.2) is unique and given by

X = {A — B R ) ~ l (R y + z 0)

E x a m p l e 3 1 Suppo se th a t X is the space («) o f all real sequences { x n } , n — 0 , 1 , 2 , ■ • ■

with addition and m ultiplication by scalars defined as follows: I f X = { i n } , y = {j/n }> A <E

R then X + y — { x n 4- y n } , Ằ x = {Ằ.T„},71 = 0 , 1 , 2 , W rite D { x n } = { i n+1 - £ « } ,

R { x n} = { y n } , y0 = 0, y „ = Y,kZo n ^ 1 HI1(I F {x n} = { ^ n } , z n - XQ, n = 0 , 1 , 2 , —

It is easy to verify th a t DR ( X ) , R € 7Zp, F is an in itia l op erato r for Ỉ) corresponding

to R and ker D = {z = {Zn}, ZTX = c , n € N ,c G R } C onsider th e degenerate sy ste m ( D S )0 o f th e form :

where A ) B are defined b y A { x n } — {&’n + i } , B { x n } = {a:n + 2 — ^ n } nn d y = {?/„} G X ,

x 0 = { x 0 } G ker D arc given Wc conclude th a t 4 ^ 0 is Đon-invertible, the resolving operator A - B R is invertible, A - B l l = (A — = —I B y T h eo rem 3.1, the solution o f th e s y ste m ( D S ) 0 is o f the form :

X = { / + fì(i4 - B /Ĩ) “ l [(/ - / 1 )D + « ] } ( % + 5?o)

= {/ - -Rí(/ — i4)£> + B]}{Ry + x0)

= {^ 0 , ^0 - yo> Zo - Vo - Vì, ^0 - 2/0 - 2/1 - 2 / 2 , • • • }•

T h e c o n t r o l l a b i l i t y o f d e g e n e r a t e s y s t e m d e s c r i b e d b y 41

Trang 6

42 N g u y e n D i n h Q u y e t y H o a n g V a n T h i

E x a m p l e 3 2 Suppose th a t X , Dy R an d F are defined as in E xam ple 3.1; W rite i4 { x n } = {2 z o + x i , 0 , X2 + X3}X3+ X4> • • • }, B { x n } = { x2 - Xo, 0, X4 - X2, S5 - x3) • • • }• Clear, A ^ o and is non-invertible, sin c e ker i4 = {x o , —2 x o , x2) —X2, X2, —£2, • • • } 7^ { 0 } a n d ,4 X Ỷ X

L et y = {?/„} € X and XQ = { x o } € ker D

N ow we consider th e degenerate sy ste m ( D S ) 0 o f th e form:

It is easy to verify th a t th e resolving operator AB R is generalized invertible, in d e e d ,

(A - B R ) I ( A - B R ) { x n } = (i4 - ổ / ỉ ) { x n } , i.e A - B R £ W { X ) a n d I € W a - b k

Moreover, ker{ / — -R [(/ — j4 )D + f i] } = { { 0 , 0 , X'2, X3, x 4 , • • • }, x n € R , n = 2, 3, 4, • • • } B y

(3.Ổ) , the solution o f the problem ( D S) 0 is g ive n by

X = { / + / ĩ [ ( / - A ) D + ổ ] } ( i ? y + x o ) 4- 2 , Ỉ 6 k e r { / - f i[ ( J - i4 ) D + B ] }

= {xo , x 0 + yo , 20 + yo + 2yi + x2,x0 + yo + 2t/i +2y2 + ®3»"* }•

4 C o n tr o lla b ility o f t h e d e g e n e r a te s y s te m

Let X and u be linear spaces over the same field T [ T = R or C) Suppose that

DR ( X ) } d im k e r ữ ^ 0] F e T o is an in itia l o p era to r for D c o r r esp o n d in g to R € 7Zd\

and A, R € L ()(X ), w ith A Ỷ 0 n o il-in v ertib le a n d c Lo( U} X ) W e c o n sid er th e p ro b lem (£>S)o:

f A D x = B x + Cîz , w ith c o n d itio n JĨC Ơ © {xo} c { / — / ỉ [ ( / — >4)D + B )} d o m D (4 1 )

T he spaces X and [/ are called the space of states and the space o f controls, re­ spectively Elements X £ X and u £ u are called states and controls, respectively The

elem en t Xo G ker D is called an in itia l s ta te A pair ( x o , u ) G (ker D) X u is ca lled an

in p u t.

In se c tio n 3, w e have proved th a t th e p ro b lem (4 1 )-(4 2 ) is e q u iv a le n t to th e e q u a ­ tion

{ / - R[ ( I - A ) D + B ] } x = R C u + xo (4 3 )

Hence, the inclution R C U © {xo} c { / — R [ (I — A )D + B ]} dom D is a necessary

and su fficien t co n d itio n for th e p ro b lem (4 1 )-(4 2 ) h ave s o lu tio n for ev ery u G V . D en o te

by <px(i = 1 , 2 , 3 , 4 ) th e fo llo w in g se ts, d efin ed for ev ery Xo € ker Dy u £ Ư:

(i) If A — B R G R (X ) and Ra s g T^a- b r } then:

# i(x o , u) = {x = T \(R C u + Xo) + z , z € ker{ I — R [ (I — A )D + B]} ,

Tx = I + R Ra b[{I - A )D + B] } (4.4)

(ii) If A — H R G Ả ( X ) a n d La b ^ £a- b r ) then:

0 2(xo,îi) = {x = T2( R C u + x q ) , T2 = / + /Ỉ La b[(/ - + 5 ) } (4.5)

Trang 7

(iii) If A — t ìỉỉ is invertible, then:

* 3 (x o ,u ) = {x = 73(R C u + xo) ,7 3 = / + R (A - B R ) - ' [ { I - A )D + H\ } (4.6)

T h e c o n t r o l l a b i l i t y o f d e g e n e r a t e s y s t e m d e s c r i b e d b y 43

(iv) If A - B R e w ( x ) and W^,B e , then:

i>4(xo, u) = {x = T4( R Cu + Xo) + z , z € ker{7 — /ỉ[ ( / - A )D + Ổ]} ,

n = I + R W A,B[ ( I - A ) D + H \} (4.7)

N o t e that = 1 , 2 , 3 , 4 ) are s e ts o f all so lu tio n s o f th e p ro b lem (4 1 )-(4 2 ) in th e

c o rr esp o n d in g ca se.

D e f i n i t i o n 4 1 S up pose that wc are given a s y ste m ( D S ) o a n d file s e ts <pị(.'Co, u) o f the form s (4.4)-(4.7) A sta te X € X is said to be (i)- reachable (i = 1 , 2 , 3 4 ) from an initial

s ta te XQ € kcr D i f for every TìỰTị = I + R R AB[(I - A) D + B ] , T2 = J + / Ỉ Í M B | ( / - / 1 ) 0 + Ã ]

73 = 7 + / ỉ ( / l - B f í ) - l [(J - A ) D + B), T a = I + - i4 ) D + e ] ) there e x ists a

control uu such that X G '■/•>, (xn , u )

W rite Rangi/.xo^i = ( J u) J ^0 € ker D , (2 = 1 , 2 ,3 ,4 ).

u€ ơ

It is easy to see th a t Rangy is ( 2 )- reachable from x *0 6 k e rD by m eans of controls

u £ IJ , and th ese sets are co n ta in ed in dom D .

L e m m a 4 1 S u p p o se th a t T i(i = 1 ,2 , 3 ,4 ) are defined as in (4.4)-(4.7) , then:

r t ( / ì ơ ơ © {z0} )+ k e r{ / - /ỉ[ ( / - 4 ) /J + £]}

= TaR C U © {TiXo} © ker{/ - /ỉ( ( / - ,4)1) + B]} (4.8)

Proof. It is su fficien t to p rove th e ca se 2 = 4.

By our assum ption, I — R [(I — A)D + B] € W (X ) and T 4 G

Therefore, Proposition 1.2 implies th a t X = 7 4 { / — jR((J — A )D 4 B ] } x © k er{ I — R [(I

-A )D + B)} On the other hand R C U © {xq} c { / — R [ (I - A )D + B}} dom D, there exists

E C dom D such th a t R C U © {x 0} = { / - R [(I - A)D + B ] } E c { / - /ỉị ( / - i4)D +

# ]} đom /) Hence,

r 4(/?ct/ © {.T0})+ ker{/ - R[(I - yl)D + B]}

= T4{ I - R [(I - i4)D + JB]}E + ker{J - /ỉ[ ( / - A )D + B}}

= T4{7 - R [(I - ^ ) D + B ] } E e ker{/ - R [ (I - yl)D + B]}

= r A{R C U © {a?Q}) © ker{7 - /ỉ[(/ - i4)D + /?]}

W e w ill p rove th e e q u a lity T ^ (R C U © { ^0} ) = T4R C U @ {T4X0} Indeed, let

æ € (T4R C U ) n {T4X0}, i.e th ere e x is ts u € U , t € T su ch th a t X = T ^ R C u = T Ạ xo , or

T n (R C u — £xo) = 0 B y our a ssu m p tio n /ỈC Ỉ7 © { z o } c { / — / ỉ [ ( / — ^4)D + B ]} d o m D ,

Trang 8

th ere e x is t s V € đ o m D s u c h th a t R C u — t x 0 = { I — R [ ( I — A ) D + B] } v , th is im p lies th a t

0 = Ta( R Cu - t xo) = r 4{ / - R [ ( I - A ) D + B) } v , or

0 = { / - R[ { I - A ) Ü + B \} T a{ I - R [ ( I - A ) D + B ) } v

= { I - R [ ( I - A ) D + B }}v = R C u - t x 0

Ilence, 0 = Dtx 0 = D R C u = Cu, tx 0 = 0 and X = T4R C u — T 4 Í 10 = 0

R e m a r k If eith er A — B R Ç: A ( x ) or A — B R is an invertible operator, then

k e r { / - R{ ( IA ) D - f # ] } = { 0 } T h u s th e fo rm u la (4 8 ) ta k es th e form:

TịỤlCU © {xo}) = TtRCƯ ® {TiX 0 } , (t = 1,2,3,4) (4.9)

C o r o l l a r y 4 1

Rangự)Xo<Pl = Tị R C U © {TịX 0 } © k e r{ / - R[ự - A) D + BỊ} (4.10)

C o r o l l a r y 4 2 A s ta te X is (i)- reachable from a given initial sta te XQ € ker D if and

only if X e T iR C U © {Ttxo} ® ker{7 - R [(I - yl)D + B}} , (i = 1 ,2 ,3 ,4 ).

D e f i n i t i o n 4 2 L et be given a degenerate sy ste m ( D S ) o o f th e form (4.1)-(4.2) and let

F, G T u ụ — 1,2, 3 , 4 ) be arbitrary initial operators (not necessarily different).

(i) A s ta te XI € ker D is s a id to b e F t- reachable from an initial s ta te XQ € ker D i f

th e re e x i s t s a c o n tr o l uu su ch t h a t Xị £ F ị $ i ( x o , u ) T h e s t a t e Xi is c a lle d a

final sta te.

(ii) T h e s y s te m ( D S ) o is s a id t o b e F ị- c o n tr o lla b le i f fo r e v e r y in itia l s t a t e x o 6 k er D,

F i( RangU 'X04>i) = k e r D (4.11)

(Hi) T h e s y ste m ( D S ) 0 is said to be Ỉ ) - controllable to XI € ker D i f

Xi 6 F i(R a n g UtXo<Pi) (4 1 2 )

for every initial s ta te XQ E k e r D.

L e m m a 4 2 L et be given a degenerate s y ste m ( O S )0 a n d an initial operator 1\ £ J 7/;

S u ppo se th a t th e s y ste m { O S )0 is F i- controllable to zero and th a t

Fi{Ti k e r D + k e r { / - / ỉ [ ( / - y l) D + £ ] } ) = ke r D (4 1 3 )

T h en every s ta le Xị € ker D is F t- controllable to zero.

Proof It is sufficient to prove th e case 2 = 4 Let Xi € ker D , since the assum ption ( DS)o is

F4- c o n tro lla b le to zero T h u s , 0 € F t ( R a n g ỉ /x0^4) for ev ery Xo € ker D , i.e th e re e x ists

a c o n tro l Uo € u a n d 20 ^ k e r { / — /Ỉ[ (Z — A ) D 4- B ]} su c h t h a t F ^ [ T ^ { R C u q + Xo) + 20] = 0,

or

F 4(TaR Cuo + 20 ) = - f \ T AXQ (4.14)

44 N g u y e n D i n k Q u y e t , H o a n g V a n T h i

Trang 9

T h e c o n d itio n (4 1 3 ) im p lies t hat for ev ery X\ £ ker Dy th e r e e x is t s X2 € ker D and

Z\ £ k e r { / — ft[(IA) I) -f H]} s u c h th a t

F a ( T * x2 + Z\ ) = X ] (415)

O n th e o th e r h a n d , by form u la (4 1 4 ) for ev ery X'2 £ ker Ü , th e r e e x is t s uQu an d

2q € k(*r{/ — / ỉ [ ( / — 4 )/J 4- H]} su c h that

P<i( 1 \ R Cuq 4- Zq 4* 2 i) = Kị ( A x 2 + 2 i) (4 1 6 )

S o th a t (4 1 5 ) and (4 1 6 ) im p ly F'k( 7 \ R C u'0 + z[) = X\ , w ith = 2q -f- 2i €

k er{J - /£ [ ( / — / l ) / J + ft]} • This p roves th a t every s t a t e X\ G ker I) is i*4- rea ch a b le from

/,oro

T h e o r e m 4 1 Suppose that- nil a ssu m p tio n s o f L em m a 4/2 arc satisfied Then th e d e-

ircncrnt.fi s y ste m ( D S )0 is - controllable.

Proof Suppose; that /1 — B Ji € li7(X ) By our assum ption there exists Uo € u and

2<) £ k e r { / — /? [ ( / — A )D + w ]} su c h th a t

^ [ ' A Í / Ỉ C i i o + .To) + *o] = 0 (4 1 7 )

On th e o th e r h a n d , by Lerm na 4 2 , for ev ery X\ € kcr D th e r e e x is t s Uq u and

Z\ € k e r { / — I i \ ( I — y t)/} + # ] } su c h th a t

T h e re fo re , (4 1 7 ) a n d (4 1 8 ) im p ly th a t Fa{T/[[RC(uo + Uq) + Xo) + (zo + Z\ ) } = X\y

i.(\ the sta te X\ is Fi\- re ach ab le fro m in it ia l state XQ. T h e th e o re m h a s b e en proved

T h e o r e m 4 2 L e t b e g iv e n a d e g e n e r a te s y s te m ( D S ) o o f th e fo r m (4 1 )-(4 2 ) a n d ail

in itia l o p e r a to r F tT o (i = 1 ,2 ,3 ,4 ) a n d le t T \ = / 4- R I Ỉ A t ì [ ( ỉ — A ) D + B \ i f AB R

ï l { X) 9 7 2 = i f A - B R € y l(X ) , 7 3 = J + / ỉ ( / i - B / ỉ ) - l [ ( / - y l ) D + « l

i/\4 - / Í / Ỉ is in v e r tib le a n d 1 \ = 7 + /ỈW 0\,£*[(J - / I ) /-> + /í) i / '/ i - H R € W ( X ) S u p p o s e that c e Lq(U X , X ' -> u % D € X')> and A, B , RL0( X , X ' ) Then , the

s y s te m ( P S) 0 is i s - c o n tr o lla b le i f a n d o n ly i f

Proof. It is sufficient, to co n sid er th e c a se 2 = 4 N o te th a t in a ll th e c a s e s con sid er,

F / l ) l i e m a p s Ơ in to k erD T h e c o n d itio n (4 1 9 ) is e q u iv a le n t t o

T h e a s s u m p tio n R C U © {xo} c { / — / ỉ [ ( / — i4 )D + /^1} d o i n ơ , im p lie s th a t

FaT4RCƯ = F M R C U © {x*o}) - {F 4 T 4 X 0 }

c F4T4{/ - /i[(/ - /1)0 + B]}domD ~ {F4T4®o}

c F 4 {T 4 {7 - /ỈỊ(/ - /i)D + B]}dọm D © k e r{ / - /ỉ[(J - i4)jD + B]}}

- {F 4 T 4 X 0 } - F 4 ker{/ - /?[(/ - A )D + tì}}

= / ‘4d o m /) ~ { ^474^0} - F4 k e r { / - / i [ ( / - /1) / ; + /ỉ]} c k e r D

T h e c o n t r o l l a b i l i t y o f d e g e n e r a t e s y s t e m d e s c r i b e d b y 45

Trang 10

46 N g u y e n D i n h Q u y e t f H o a n g V a n T h i

B y (4 2 0 ), w e h a v e F4T4R C U = r ^ d o m D —ịr^ T /iX o } —F4 k e r { 7 —/ ? [ ( / —A ) D + B]} = k e r D

T h u s, /V A / ĩ C Ơ 4 - { K t T4x o H F4 k e r { / - i l [ ( / - i 4 ) j D + B ] } = A d o m D = ker D T h is m ea n s

th a t for e v e ry X\ € ker D i th e re e x is ts V G d o m D , u £ Ư a n d 2 0 € k e r { 7 — / ? [ ( / — i 4 ) D 4- B ] }

su ch th a t Xi = F4V = F4T4R C U 4- F4T4XQ 4- -£4*0 = 4- Xo) + 20], i.e X\ is F4 -rea ch a b le from Xo T h e a rb itra r in ess o f Xo, X\ € ker D im p lie s th a t

F 4( R an gt/,Xo$ 4) = ker£>.

C o n v ersely , su p p o se th a t F 4( Range; Xo^4) = k e r D C h o o sin g £0 = 0 ,z o = 0, we

g e t t h a t F4T4R C U = ker D T h e p ro o f is co m p leted

C o r o l l a r y 4 3 S u pp o se th a t A, 2? are sta tio nary operators T h en th e system ( D S )0 is

F 3 - controllable if and only if

ker c * R * ( A - B R) * ~ ' = { 0 } (4 2 1 )

T h e o r e m 4 3 S u p po se th a t th e s y s te m ( D 5 ) o is F i- controllable T h e n, it is jF/- con-

trollable for every initial o p era to r F[ G T o

-Proof. L et F i b e a n in itia l o p e r a to r for D co rresp o n d in g t o jR € 7^ 0 , i-e - Ỉ*\ỈU = 0

O n th e o th e r h a n d , for ev er y £1 € k e r D a n d V £ X , th e re e x is t s X2 £ ker D su ch th a t

x x = .T'2 B y our a s s u m p tio n th e s y ste m ( D S )0 is F t- co n tro lla b le T h u s, for every

x 0i %2 € ker D ị th e r e e x is ts a co n tro l U G Í / an d Zo € k e r { 7 — jR [(/ — A ) D + J5]} su c h th a t

F i[T i(R C u + xq) + Zo] = x2 , or Fi[T t ( / ỉ ơ u + æ0) + Zo] = F t ( x2 + Rị v ) , for so m e V € X

Hence, F '[T i(R C u + xo) + zq] = F '( x 2 + jRiv) = £2 + F 'R iV = X\ The arbitrariness of

3?0, Xi € ker Đ , th e p ro o f is c o m p le te d

T h e o r e m 4 4 L et he g iven a degenerate system ( D S ) 0 a n d an in itial operator 1 \ £ T p

T h e n, th e s y ste m ( D S )0 is F t- controllable i f and o nly i f it is Fi- controllable to every

element v' e F jT i R X

Proof. F ir s t, w e p rove th e eq u a lity :

F4{ T 4( i ỉ X © ker D ) + k e r { I - / ì ị ( / - A ) D + £f]>> = ker D (4 2 2 )

In d eed , sin c e { / - / ? [ ( / — Ẩ ) D + ổ ] } d o m D c d o m ơ = R X © ker D , th ere e x ists

E c X a n d c ker D su c h t h a t f t # © z ' = { / - ./?[(/ - ,4 ) D + B] } d o mD. T h is im p lies

th a t

Ta( R E ® z ' ) + ker ự - R [ ự - A ) D + B}}

= 1 \ { I - / i [ ( / - A ) D + B ]} d o m D © k e r { / - R [ { I - /1)1) + B } } = d o m D

H en ce,

ker D = F td o m D = F4{ T 4( / Ỉ E © z ' ) + k er{7 - / ĩ [ ( / - >1)D + B ] } }

c F 4 {T4(f lX © ker D) + k e r{ / - / ỉ[ ( / - Ấ )D + B]}} c ker Ơ,

i.e th e form u la (4 2 2 ) is h a s b e e n proved.

S u p p o se that, the s y ste m ( DS ) o is F4-c o n tro lla b le to e v e ry elem ent v' G F4T4RV, V £

X , i.e th e re e x is t s a co n tro l UQ € u a n d 2 0 € k e r { I — / ỉ [ ( / — A ) D + J5]} su ch th a t

i*4[ T ^ R Ouq 4* xq) 4* zq] = F4T4/ÎV.

Ngày đăng: 14/12/2017, 19:57

🧩 Sản phẩm bạn có thể quan tâm