1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Behavior of the sequence of norms of primitives of a function

9 118 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 243,55 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Behavior of the sequence of norms of primitives of a function Ha Huy Banga,∗, Vu Nhat Huyb a Institute of Mathematics, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet St

Trang 1

Behavior of the sequence of norms of primitives

of a function

Ha Huy Banga,∗, Vu Nhat Huyb

a Institute of Mathematics, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay,

Hanoi, Viet Nam

b Department of Mathematics, College of Science, Vietnam National University, Hanoi, Vietnam 334 Nguyen Trai Street,

Thanh Xuan, Hanoi, Viet Nam Received 28 April 2009; received in revised form 8 December 2009; accepted 30 December 2009

Available online 6 January 2010 Communicated by Francisco Marcellan

Abstract

In this paper we characterize the behavior of the sequence of the Lp-norm of primitives of a function by its spectrum (the support of its Fourier transform)

c 2010 Elsevier Inc All rights reserved

Keywords: Lp-spaces; Generalized functions

1 Introduction

following limit

lim

n→∞

kf(n)k1 /n

p

and

lim

n→∞kf(n)k1 /n

∗ Corresponding author.

E-mail addresses: hhbang@math.ac.vn (H.H Bang), nhat huy85@yahoo.com (V.N Huy).

0021-9045/$ - see front matter c 2010 Elsevier Inc All rights reserved.

doi:10.1016/j.jat.2009.12.011

Trang 2

where ˆf is the Fourier transform of f

Theorem Ashows that the behavior of the sequence k f(n)k1 /n

It is natural to ask what will happen when we replace derivatives by integrals? Let

x

then

x

Inf ∈ L2(R) for all n, and

lim

n→∞kInf k1/n

2 =σ−1,

vanishes a.e

if D(I f ) = f , that is,

−∞

−∞

ψ(t)dt,

hI f, ϕi = − h f, Φi

Trang 3

Then I f ∈ S0(R) and

, ϕ0 = −



f,Z x

−∞

ϕ0(t)dt= − hf, ϕi , i.e., I f is a primitive of f Furthermore, if I f ∈ S0(R) is a primitive of f , we have

−∞

ϕ(ξ) dξ

−∞

primitive of f So, we have proved the following result: Every tempered generalized function

where C is an arbitrary constant

n, m = 0, 1, 2,

n=0⊂Lp(R)

ˆ

−∞

e−ixξf(x)dx

The Fourier transform of a tempered generalized function f is defined via the formula

We now state our main result:

lim

n→∞kInf k1/n

where

σ = inf{|ξ| : ξ ∈ supp ˆf}

Proof It is well-known that

{ ϕ∈L :k ϕk ≤1}

|hf, ϕi|,

Trang 4

where 1/p + 1/q = 1 So, clearly, we have

{ ϕ∈S:kϕk q ≤1}

Z

R

> k f k1−

Z

|x |≤M

> k f k1−2 and put

h =χ[−M ,M]g,

ω(x) =

(

Ce

1

x 2−1 if |x|< 1,

λω(x

lim

λ→0

Z

R

R

So,

Z

R

> k f k1−3

Next, we divide our proof into two cases

Case1.σ > 0 Let us first prove

ˆ

d

Inf

Therefore,

supp ˆf ⊂supp dInf ⊂supp ˆf ∪ {0}

So, to obtain(3), it is enough to show 0 6∈ supp dInf: We choose numbers a, b: 0 < a < b < σ

supph dInf ⊂ {0}

h dInf =

N n

X

cNn

j δ( j)

Trang 5

F−1h ∗ Inf(x) =

N n X

j =0

cNn

F−1h ∗ Inf(x) = cN n

Note that

F−1h ∗ Inf(x) = F−1h ∗(In+1f)0(x) = F−1h ∗ In+1f(x)0

0

0

≡0

d

Inf, ϕ 6= 0

Second we prove

lim

n→∞kInf k1/n

p ≤ 1

nf, ϕ =DIdnf, F−1ϕE=

D d

Inf, (F−1ϕ)(ξ).h(ξ)E=

D

Inf, F (F−1ϕ)(ξ).h(ξ)E Therefore,



ξn



nf, ϕ = |hf, ψni| = 1



f, ϕ ∗ F hξ(ξ)n



Trang 6

Therefore, since(2), we have for n ≥ 3:

{ ϕ∈S:kϕk q ≤1}

1



f, ϕ ∗ F h(ξ)

ξn



{ ϕ∈S:kϕk q ≤1}

1

√ 2πk f kp ϕ ∗ F hξ(ξ)n

q

ξn 1

Hence,

lim

n→∞kInf k1/n

p ≤ lim

n→∞ F h(ξ)

ξn

1 /n 1

We put for n ≥ 3:

ξn

 Then for n ≥ 3:

sup

x ∈R

|(1 + x2)gn(x)|

x ∈R

1

 Z

R

e−ixξD2 h(ξ)

ξn



Z

R

e−ixξh(ξ)

ξn dξ



x ∈R

1

 Z

| ξ|≥γe

−ix ξ h00(ξ)

0(ξ)



+

Z

| ξ|≥γe

−ix ξh(ξ)

ξn dξ



4

 Therefore, it follows from

Z

R

x ∈R

|(1 + x2)gn(x)|Z

R

1

x ∈R

|(1 + x2)gn(x)|

that

lim

n→∞ F h(ξ)

ξn

1 /n 1

n→∞kgnk1/n

1 ≤ 1

lim

n→∞kInf k1/n

σ − 2

Finally, we show

lim kInf k1/n

p ≥ 1

Trang 7

Without loss of generality we may assume that

σ = inf{ξ : 0 < ξ ∈ supp ˆf}

0 (σ − , σ + ) such thatDfˆ, ϕE6=0 Therefore,

0 6= , ˆϕ =

n(Inf), ˆϕ =

D

Inf, ˆϕ(n)E

≤ kInf kp.k ˆϕ(n)k

q So,

lim

n→∞

kInf k1/n

lim

n→∞k ˆϕ(n)k1 /n

q

We have

sup

x ∈R

|(1 + x2) ˆϕ(n)(x)| = sup

x ∈R

(1 + x2) F ϕ(ξ)ξn

(x)

x ∈R

Z

R

e−ixξϕ(ξ)ξndξ

x ∈R

Z

R

e−ixξϕ00(ξ)ξn+2nϕ0(ξ)ξn−1+n(n − 1)ϕ(ξ)ξn−2



Z

| ξ|≤σ+

|ϕ(ξ)ξn|dξ

+

Z

| ξ|≤σ+



|ϕ00(ξ)ξn| +2n|ϕ0(ξ)ξn−1| +n(n − 1)|ϕ(ξ)ξn−2|



≤max{kϕk∞, kϕ0k∞, kϕ00k∞} 4(σ + )n+1

 Therefore, it follows from k ˆϕ(n)k

q ≤π supx ∈R|(1 + x2) ˆϕ(n)(x)| that lim

n→∞k ˆϕ(n)k1 /n

lim

n→∞

kInf k1/n

and then(11)

C0∞(−, ) such thatDfˆ, ϕE6=0 Then arguing just as above we obtain

lim

n→∞

kInf k1/n

lim

n→∞k ˆϕ(n)k1/n

q

. Therefore,

lim kInf k1/n

p = ∞

Trang 8

So we always have

lim

n→∞kInf k1/n

p =σ−1

supp ˆf = suppcI f

Let g ∈ S0(R) and m = 1, 2, Clearly, the set

0 = n0< n1< n2< · · · < nk < · · ·

0, 1, 2, there exists an element in Pn j +1 −n j(In j f), which belongs to Lp(R) and is denoted

by Inj +1f If the function f satisfies this assumption, we write(In j f)∞

j =0⊂Lp(R)

We have the following result:

lim

j →∞

kInj f k

1

n j

p =σ−1, where

σ = inf{|ξ| : ξ ∈ supp ˆf}

all Djg, j = 1, , m − 1 belong to Lp(R) (see [10,12]) So, since Dnj +1 −n jInj +1f = Inj f

we get that all D Inj +1f, D2Inj +1 f, , Dn j +1 −n j −1Inj +1f, j = 0, 1, 2, belong to Lp(R)

Acknowledgment

This work was supported by the Vietnam National Foundation for Science and Technology Development (Project No 101.01.50.09)

References

[1] N.B Andersen, On real Paley–Wiener theorems for certain integral transforms, J Math Anal Appl 288 (1) (2003) 124–135.

[2] N.B Andersen, G Olafsson, H Schlichtkrull, On the inversion of the Laplace and Abel transforms for causal symmetric spaces, Forum Math 15 (5) (2003) 701–725.

Trang 9

[3] N.B Andersen, A simple proof of a Paley–Wiener type theorem for the Chbli–Trimche transform, Publ Math Debrecen 64 (3–4) (2004) 473–479.

[4] N.B Andersen, Real Paley–Wiener theorems for the inverse Fourier transform on a Riemannian symmetric space, Pacific J Math 213 (1) (2004) 1–13.

[5] H.H Bang, A property of infinitely differentiable functions, Proc Amer Math Soc 108 (1) (1990) 73–76 [6] H.H Bang, Functions with bounded spectrum, Trans Amer Math Soc 347 (1995) 1067–1080.

[7] H.H Bang, The study of the properties of functions belonging to an Orlicz space depending on the geometry of their spectra (in Russian), Izv Russ Akad Nauk Ser Mat 61 (1997) 163–198 Translation in Izv Math 61 (1997), 399–434.

[8] H.H Bang, Investigation of the properties of functions in the space NΦdepending on the geometry of their spectrum (in Russian), Dokl Akad Nauk 374 (1997) 590–593.

[9] H.H Bang, The sequence of Luxemburg norms of derivatives, Tokyo J Math 17 (1994) 141–147.

[10] H.H Bang, A remark on the Kolmogorov–Stein inequality, J Math Analysis Appl 203 (1996) 861–867 [11] J.J Betancor, J.D Betancor, J.M.R M´endez, Paley–Wiener type theorems for Ch´ebli-Trim`eche transforms, Publ Math Debrecen 60 (2002) 347–358.

[12] E.M Stein, Functions of exponential type, Ann of Math 65 (1957) 582–592.

[13] V.K Tuan, On the supports of functions, Numer Funct Anal Optim 20 (3–4) (1999) 387–394.

[14] V.K Tuan, Paley–Wiener-type theorems, Fract Calc Appl Anal 2 (1999) 135–144.

[15] V.K Tuan, Spectrum of signals, J Fourier Anal Appl 7 (3) (2001) 319–323.

[16] V.K Tuan, A Zayed, Generalization of a theorem of Boas to a class of integral transforms, Result Math 38 (2000) 362–376.

[17] V.K Tuan, A Zayed, Paley–Wiener-type theorems for a class of integral transforms, J Math Anal Appl 266 (2002) 200–226.

[18] V.S Vladimirov, Methods of the Theory of Generalized Functions, Taylor & Francis, London, New York, 2002.

...

Trang 7

Without loss of generality we may assume that

σ = inf{ξ : < ξ ∈ supp ˆf}

0...

Trang 6

Therefore, since(2), we have for n ≥ 3:

{ ϕ∈S:kϕk q ≤1}

1

√...

1

x 2−1 if |x|< 1,

λω(x

lim

λ→0

Z

R

R

Ngày đăng: 14/12/2017, 17:54

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm