The central piperidone ring has a boat conforma-tion, whereas the terminal piperidone ring adopts a chair conformation.. The conformation of the central piperidone ring is determined by
Trang 124-Acetyl-8,11,14-trioxa-24,27-diaza-pentacyclo[19.5.1.122,26.02,7.015,20
]octa-cosa-2,4,6,15(20),16,18-hexaen-28-one
Le Tuan Anh,a* Truong Hong Hieu,aAnatoly T
Soldatenkov,bNadezhda M Kolyadinaband Victor N
Khrustalevc
a Department of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay,
Hanoi, Vietnam, b Organic Chemistry Department, Russian Peoples Friendship
University, Miklukho-Maklaya St 6, Moscow, 117198, Russia, andcX-Ray Structural
Centre, A.N Nesmeyanov Institute of Organoelement Compounds, Russian
Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
Correspondence e-mail: vkh@xray.ineos.ac.ru
Received 13 June 2012; accepted 15 June 2012
Key indicators: single-crystal X-ray study; T = 100 K; mean (C–C) = 0.002 A ˚;
R factor = 0.042; wR factor = 0.106; data-to-parameter ratio = 21.6.
The title compound, C25H28N2O5, is a product of the
Petrenko–Kritchenko condensation of N-acetylpiperidone
with 1,5-bis(2-formylphenoxy)-3-oxapentane and ammonium
acetate The molecule comprises a fused pentacyclic system
containing an aza-14-crown-3-ether macrocycle, two
piper-idone and two benzene rings The aza-14-crown-3-ether ring
adopts a bowl conformation The dihedral angle between the
benzene rings fused to the aza-14-crown-4-ether unit is
70.18 (4) The central piperidone ring has a boat
conforma-tion, whereas the terminal piperidone ring adopts a chair
conformation The conformation of the central piperidone
ring is determined by two intramolecular N—H O hydrogen
bonds In the crystal, molecules are linked by weak C—H O
interactions into chains along [010]
Related literature
For general background to the design, synthesis and
applica-tions of macrocyclic ligands for coordination and
supra-molecular chemistry, see: Hiraoka (1978); Pedersen (1988);
Gokel & Murillo (1996); Bradshaw & Izatt (1997) For related
compounds, see: Levov et al (2006, 2008); Komarova et al
(2008); Anh et al (2008, 2012a,b); Hieu et al (2011); Khieu et
al (2011); Sokol et al (2011)
Experimental
Crystal data
C25H28N2O5
M r = 436.49 Orthorhombic, Pbca
a = 17.1756 (6) A˚
b = 11.1724 (4) A˚
c = 22.6546 (8) A˚
V = 4347.3 (3) A˚3
Z = 8
Mo K radiation
= 0.09 mm 1
T = 100 K 0.30 0.25 0.25 mm
Data collection Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
Tmin= 0.973, Tmax= 0.977
54466 measured reflections
6326 independent reflections
4682 reflections with I > 2(I)
R int = 0.069
Refinement R[F 2 > 2(F 2 )] = 0.042 wR(F 2 ) = 0.106
S = 1.00
6326 reflections
293 parameters
H atoms treated by a mixture of independent and constrained refinement
max = 0.34 e A˚3
min = 0.24 e A˚3
Table 1
Hydrogen-bond geometry (A ˚ , ).
N27—H27 O8 0.90 (2) 2.49 (2) 3.0337 (13) 119 (1) N27—H27 O14 0.90 (2) 2.44 (1) 3.0193 (13) 122 (1) C21—H21 O28 i
1.00 2.48 3.4683 (14) 168 C30—H30B O28 i
0.98 2.51 3.0556 (16) 115 Symmetry code: (i) x þ 1 ; y 1 ; z.
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used
to prepare material for publication: SHELXTL.
We thank the Vietnam National University, Hanoi, (grant
No QG.11.09) for the financial support of this work
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2068).
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
Trang 2Anh, L T., Hieu, T H., Soldatenkov, A T., Kolyadina, N M & Khrustalev,
V N (2012b) Acta Cryst E68, o1588–o1589.
Anh, L T., Hieu, T H., Soldatenkov, A T., Soldatova, S A & Khrustalev, V N.
(2012a) Acta Cryst E68, o1386–o1387.
Anh, L T., Levov, A N., Soldatenkov, A T., Gruzdev, R D & Hieu, T H.
(2008) Russ J Org Chem 44, 463–465.
Bradshaw, J S & Izatt, R M (1997) Acc Chem Res 30, 338–345.
Bruker (2001) SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005) APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
Gokel, G W & Murillo, O (1996) Acc Chem Res 29, 425–432.
Hieu, T H., Anh, L T., Soldatenkov, A T., Golovtsov, N I & Soldatova, S A.
(2011) Chem Heterocycl Compd, 47, 1307–1308.
Hiraoka, M (1978) In Crown Compounds Their Characteristic and
Application Tokyo: Kodansha.
Khieu, T H., Soldatenkov, A T., Anh, L T., Levov, A N., Smol’yakov, A F., Khrustalev, V N & Antipin, M Yu (2011) Russ J Org Chem 47, 766–770 Komarova, A I., Levov, A N., Soldatenkov, A T & Soldatova, S A (2008) Chem Heterocycl Compd, 44, 624–625.
Levov, A N., Komarova, A I., Soldatenkov, A T., Avramenko, G V., Soldatova, S A & Khrustalev, V N (2008) Russ J Org Chem 44, 1665– 1670.
Levov, A N., Strokina, V M., Komarova, A I., Anh, L T., Soldatenkov, A T.
& Khrustalev, V N (2006) Mendeleev Commun 16, 35–37.
Pedersen, C J (1988) Angew Chem Int Ed Engl 27, 1053–1083 Sheldrick, G M (2003) SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G M (2008) Acta Cryst A64, 112–122.
Sokol, V I., Kolyadina, N M., Kvartalov, V B., Sergienko, V S., Soldatenkov,
A T & Davydov, V V (2011) Russ Chem Bull 60, 2086–2088.
Trang 3supplementary materials
Acta Cryst (2012) E68, o2165–o2166 [doi:10.1107/S1600536812027274]
24-Acetyl-8,11,14-trioxa-24,27-diazapentacyclo-[19.5.1.122,26.02,7.015,20]octacosa-2,4,6,15(20),16,18-hexaen-28-one
Le Tuan Anh, Truong Hong Hieu, Anatoly T Soldatenkov, Nadezhda M Kolyadina and Victor N Khrustalev
Comment
Design, synthesis and applications of macrocyclic ligands for coordination and supramolecular chemistry draw very great attention of investigators during the last several decades (Hiraoka, 1978; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997) Recently we have developed the effective methods of synthesis of azacrown ethers containing
piperidine (Levov et al., 2006, 2008; Anh et al., 2008, 2012a, 2012b), perhydropyrimidine (Hieu et al., 2011), perhydro-triazine (Khieu et al., 2011) and bispidine (Komarova et al., 2008; Sokol et al., 2011) subunits.
In attempts to apply this chemistry for obtaining of a macrocyclic ligand containing N-acylsubstituted bispidine moiety,
we studied the Petrenko-Kritchenko condensation of the N-acetylpiperidone with
1,5-bis(2-formylphenoxy)-3-oxa-pentane and ammonium acetate The reaction have proceeded smoothly to give the expected azacrown system with a good yield (Fig 1)
The molecule of the title compound, C25H28 N2O5, comprises a fused pentacyclic system containing the aza-14-crown-3-ether macrocycle, two piperidone and two benzene rings (Fig 2) The aza-14-crown-3-aza-14-crown-3-ether ring adopts a bowl
conformation The configuration of the C7—O8—C9—C10—O11—C12—C13—O14—C15 polyether chain is t–g(-)–t–
t–g(+)–t (t = trans, 180°; g = gauche, ±60°) The dihedral angle between the planes of the benzene rings fused to the
aza-14-crown-4-ether moiety is 70.18 (4)° The central piperidone ring has a boat conformation, whereas the terminal piperidone ring adopts a chair conformation Apparently, the conformation of the central piperidone ring is determined by the two intramolecular N–H···O hydrogen bonds (Table 1) The nitrogen N24 atom has a trigonal-planar geometry (sum
of the bond angles is 359.8°), while the nitrogen N27 atom adopts a trigonal-pyramidal geometry (sum of the bond angles
is 326.7°)
The molecule of the title compound possesses four asymmetric centers at the C1, C21, C22 and C26 carbon atoms and can have potentially numerous diastereomers The crystal of the title compound is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-1R*, 21S*,22R*,26S*.
In the crystal, the molecules are bound by the weak intermolecular C–H···O hydrogen bonding interactions into the
chains along [010] (Fig 3, Table 1) The crystal packing of the chains is stacking along the a axis (Fig 3).
Experimental
Ammonium acetate (3.0 g, 39.0 mmol) was added to a solution of 1,5-bis(2-formylphenoxy)-3-oxapentane (3.14 g, 10.0
mmol) and N-acetylpiperidone (1.41 g, 10.0 mmol) in ethanol-acetic acid mixture (30 ml 1 ml) The reaction mixture was
stirred at 293 K for 3 days (monitoring by TLC until disappearance of the starting heterocyclic ketone spot) At the end
of the reaction, the formed precipitate was filtered off, washed with ethanol and re-crystallized from ethanol to give 2.54
Trang 4g of white crystals of the title compound Yield is 58% M.p.= 500–502 K IR (KBr), ν/cm-1: 1603, 1649, 1713, 3405,
3460 1H NMR (CDCl3, 400 MHz, 300 K): δ = 2.37 (s, 3H, CH3C=O), 2.91 (m, 3H, H22, H26 and H27), 3.47 and 4.98
(both dd, 1H each, H1 and H21, J = 7.3 and 1.1), 3.92–4.10 (m, 12H, OCH2CH2OCH2CH2O, 2H23 and 2H25), 6.75–6.95 (m, 3H, Harom), 7.21–7.36 (m, 5H, Harom) Anal Calcd for C25H28N2O5: C, 68.79; H, 6.47; N, 6.42 Found: C, 69.03; H, 6.52; N, 6.43
Refinement
The hydrogen atom of the amino group was localized in the difference-Fourier map and refined isotropically with fixed
isotropic displacement parameters [Uiso(H) = 1.2Ueq(N)] The other hydrogen atoms were placed in calculated positions
with C–H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) =
1.5Ueq(C) for the methyl group and 1.2Ueq(C) for the other groups]
Computing details
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL
(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication:
SHELXTL (Sheldrick, 2008).
Figure 1
Petrenko-Kritchenko condensation of the N-acetylpiperidone with 1,5-bis(2-formylphenoxy)-3-oxapentane and
ammonium acetate
Trang 5Figure 2
Molecular structure of I Displacement ellipsoids are shown at the 50% probability level H atoms are presented as small
spheres of arbitrary radius Dashed lines indicate the intramolecular N–H···O hydrogen bonds
Trang 6Figure 3
The H-bonded chains of I along the b axis Dashed lines indicate the intramolecular N–H···O and intermolecular C–H···O
hydrogen bonds
24-Acetyl-8,11,14-trioxa-24,27- diazapentacyclo[19.5.1.1 22,26 0 2,7 0 15,20 ]octacosa- 2,4,6,15
(20),16,18-hexaen-28-one
Crystal data
C25H28N2O5
M r = 436.49
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
a = 17.1756 (6) Å
b = 11.1724 (4) Å
c = 22.6546 (8) Å
V = 4347.3 (3) Å3
Z = 8
F(000) = 1856
Dx = 1.334 Mg m−3
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 6757 reflections
θ = 2.4–27.6°
µ = 0.09 mm−1
T = 100 K
Prism, colourless 0.30 × 0.25 × 0.25 mm
Data collection
Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
Tmin = 0.973, Tmax = 0.977
54466 measured reflections
6326 independent reflections
4682 reflections with I > 2σ(I)
Rint = 0.069
θmax = 30.0°, θmin = 1.8°
h = −24→24
k = −15→15
l = −31→31
Trang 7Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.042
wR(F2) = 0.106
S = 1.00
6326 reflections
293 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo) + (0.0483P)2 + 1.18P]
where P = (Fo + 2Fc2)/3
(Δ/σ)max < 0.001
Δρmax = 0.34 e Å−3
Δρmin = −0.24 e Å−3
Special details
Geometry All e.s.d.'s (except the e.s.d in the dihedral angle between two l.s planes) are estimated using the full
covariance matrix The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s planes
Refinement Refinement of F2 against ALL reflections The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2 The threshold expression of F2 > σ(F2) is used
only for calculating R-factors(gt) etc and is not relevant to the choice of reflections for refinement R-factors based on F2
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 )
Trang 8O14 0.12189 (5) 0.60544 (8) 0.28352 (4) 0.01997 (18)
Atomic displacement parameters (Å 2 )
C1 0.0160 (5) 0.0145 (5) 0.0144 (5) 0.0005 (4) −0.0013 (4) −0.0007 (4) C2 0.0214 (6) 0.0161 (5) 0.0153 (5) −0.0028 (4) −0.0044 (4) 0.0024 (4)
C3 0.0305 (7) 0.0199 (6) 0.0223 (6) 0.0040 (5) −0.0115 (5) −0.0018 (5) C4 0.0432 (8) 0.0197 (6) 0.0276 (7) 0.0000 (6) −0.0188 (6) −0.0032 (5) C5 0.0351 (7) 0.0251 (7) 0.0225 (6) −0.0113 (6) −0.0147 (6) 0.0067 (5)
C6 0.0200 (6) 0.0304 (7) 0.0212 (6) −0.0071 (5) −0.0041 (5) 0.0069 (5)
C7 0.0207 (6) 0.0207 (6) 0.0167 (5) −0.0047 (5) −0.0024 (4) 0.0033 (4)
O8 0.0147 (4) 0.0290 (5) 0.0278 (5) −0.0003 (3) 0.0011 (3) −0.0074 (4) C9 0.0138 (5) 0.0349 (7) 0.0298 (7) 0.0033 (5) 0.0000 (5) 0.0000 (6)
C10 0.0203 (6) 0.0303 (7) 0.0312 (7) 0.0083 (5) −0.0001 (5) 0.0006 (6)
O11 0.0229 (4) 0.0251 (5) 0.0254 (5) 0.0009 (4) −0.0005 (4) −0.0010 (4) C12 0.0203 (6) 0.0234 (6) 0.0296 (7) 0.0037 (5) 0.0038 (5) −0.0072 (5)
Trang 9C13 0.0199 (6) 0.0281 (7) 0.0225 (6) 0.0034 (5) 0.0066 (5) −0.0068 (5) O14 0.0195 (4) 0.0211 (4) 0.0193 (4) 0.0053 (3) 0.0051 (3) −0.0004 (3) C15 0.0157 (5) 0.0191 (5) 0.0174 (5) −0.0020 (4) 0.0000 (4) −0.0015 (4) C16 0.0217 (6) 0.0274 (6) 0.0173 (6) −0.0020 (5) 0.0013 (5) −0.0024 (5) C17 0.0249 (6) 0.0326 (7) 0.0148 (5) −0.0066 (5) −0.0036 (5) 0.0025 (5)
C18 0.0214 (6) 0.0239 (6) 0.0206 (6) −0.0034 (5) −0.0072 (5) 0.0030 (5)
C19 0.0169 (5) 0.0180 (5) 0.0187 (5) −0.0025 (4) −0.0029 (4) −0.0023 (4) C20 0.0147 (5) 0.0153 (5) 0.0146 (5) −0.0034 (4) −0.0014 (4) −0.0018 (4) C21 0.0137 (5) 0.0138 (5) 0.0142 (5) −0.0004 (4) −0.0005 (4) −0.0015 (4) C22 0.0145 (5) 0.0132 (5) 0.0156 (5) −0.0009 (4) 0.0018 (4) −0.0028 (4) C23 0.0153 (5) 0.0187 (5) 0.0182 (5) −0.0020 (4) 0.0027 (4) −0.0024 (4) N24 0.0160 (5) 0.0218 (5) 0.0167 (5) −0.0009 (4) 0.0027 (4) −0.0018 (4) C25 0.0184 (5) 0.0232 (6) 0.0166 (5) −0.0019 (5) 0.0017 (4) 0.0027 (5)
C26 0.0162 (5) 0.0152 (5) 0.0165 (5) −0.0007 (4) 0.0006 (4) 0.0024 (4)
N27 0.0154 (4) 0.0157 (5) 0.0141 (4) −0.0021 (4) −0.0012 (4) −0.0002 (3) C28 0.0143 (5) 0.0145 (5) 0.0190 (5) −0.0026 (4) 0.0037 (4) 0.0019 (4)
O28 0.0217 (4) 0.0150 (4) 0.0286 (5) 0.0028 (3) 0.0010 (4) −0.0012 (3) C29 0.0234 (6) 0.0222 (6) 0.0215 (6) 0.0003 (5) 0.0039 (5) −0.0020 (5) O29 0.0422 (6) 0.0448 (6) 0.0238 (5) 0.0150 (5) −0.0044 (4) −0.0134 (4) C30 0.0200 (6) 0.0283 (7) 0.0266 (6) 0.0009 (5) 0.0044 (5) −0.0053 (5)
Geometric parameters (Å, º)
Trang 10C13—H13A 0.9900 C29—O29 1.2314 (16)