1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Fabrication of new single-walled carbon nanotubes microelectrode for electrochemical sensors application

7 152 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 1,18 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Severaltechniqueshavebeendevelopedforfabricationofthe well-definedgeometrymicroelectrodesbasedonCNTs,inwhich thesupportsubstratewasisolated,attherangeofnano[7,9,15] tomicroscale[8,13,14,1

Trang 1

Talanta

j ourna l h o me p a g e : w w w e l s e v i e r c o m / l o c a t e / t a l a n t a

Fabrication of new single-walled carbon nanotubes microelectrode for

electrochemical sensors application

a School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan

b Faculty of Chemistry, Hanoi University of Science, VNU, 19 Le Thanh Tong, Hoan Kiem District, Ha Noi, Viet Nam

c The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

d Research Center for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, VNU, 334 Nguyen Trai, Thank Xuan District, Ha Noi, Viet Nam

a r t i c l e i n f o

Article history:

Received 31 October 2011

Received in revised form 12 January 2012

Accepted 12 January 2012

Available online 20 January 2012

Keywords:

Single-walled carbon nanotube

Microelectrode

Electrochemical sensors

a b s t r a c t

Inthispaper,wedescribetwosimpledifferentwaystofabricateanarrayofsingle-walledcarbon nano-tubes(SWCNT)microelectrodesfromSWCNTnetwork,grownonSisubstrate,throughmicro-fabrication process.Twokindsofmaterial,photoresist– organiccompoundandsputteredSiO2,wereusedasan insulatorlayerforthesearraysofSWCNTmicroelectrodes.TheSWCNTmicroelectrodeswere character-izedbyscanningelectronmicroscopy(SEM),Ramanspectroscopy,andelectrochemicalmeasurements TheSWCNTmicroelectrodeswithsputteredSiO2asaninsulatorexhibitsomeprioradvancestothese usedphotoresistlayerasinsulatorsuchasmuchstableinharshcondition(highactiveorganicsolvents) andhighcurrentdensity(24.94␮Amm−2 comparedto2.69␮Amm−2,respectively).Inaddition,the well-definedgeometryofSWCNTmicroelectrodesisnotonlyusefulforinvestigatingkineticsofelectron transfer,butalsopromisingcandidateinelectrochemicalsensorsapplication

© 2012 Elsevier B.V All rights reserved

Carbonnanotubes(CNTs),discoveredbyIjimain1991[1],isthe

nextgenerationofcarbonmaterials.Theyhavedistinctstructural

andelectronicpropertiescomparedtoconventionalcarbon

mate-rialsthathavebeenwidelyusedinelectrochemistrysuchasglassy

carbon(GC),graphite,andcarbonfiber[2,3].Thecombinationof

highaspectratio,nanometersizeddimensions,goodelectrical

con-ductivity,andlowcapacitance[4]inthepristinestatedictatesthat

CNTshavethecapabilitytomakeexcellentelectrodematerials[5]

Randomnetworksof single-walled carbon nanotubes

(SWC-NTs),whichlieflatontheinsulatorsupportsurface,havemultiply

interconnectedpointsathighdensityofnetworks.Theyhave

con-ductivelengthscalesmuchlongerthantheindividualnanotubes

Infact,theyhaveactingeffectlikethinconductingfilm[6].These

SWCNTnetworkshaveshowninterestingpropertiesforelectrical

andelectrochemicalapplications[5,6]

ThereismuchattentioninusingSWCNTtofabricateelectrode

inthesmalldimension,becausethereareseveralbenefitsofusing

small-scaleelectrodesinelectrochemicalsensors.Firstly,since

cur-rent(i)isproportionaltotheelectrodearea,small-scaleelectrodes

willfurtherreducetheOhmic(iR)dropdistortionandcanbeusedto

∗ Corresponding author Tel.: +81 761 51 1661; fax: +81 761 51 1665.

E-mail address: yztakamura@jaist.ac.jp (Y Takamura).

detectelectrochemicalreactionsinpoorlyconductingmedia,even

intheabsenceofasupportingelectrolyte[7].Secondly, double-layercapacitancesareproportionaltoelectrodearea.Thustheyare greatlyreducedforsmall-scaleelectrodeswhichhavesmall sur-facearea,resultingsmallRC(R:resistance,C:capacitance)time constants inelectrochemical cells [8].Thirdly, therate ofmass transporttoandfromtheelectrode(andtherelatedcurrent den-sity)increasesastheelectrodesizedecreases[9,10]

Normally,CNTelectrodesarepreparedessentiallybyrandomly dispersingorconfiningtheCNTsonaconductingsubstrate,most commonly glassycarbon.Thisis achievedbydropcasting[11], abrasiveattachment[12]ordirectlygrownrandomCNTsnetwork

onmetalsubstratesbychemicalvapordeposition(CVD)[13,14] But,intheseCNTelectrodes,thesupportingconductivesubstrates arenotelectricallyisolatedtheelectrolytesolution,sothatthe elec-trochemicalsignalscamefrombothCNTsandsupportingsubstrate Thus,theyareunsuitableforfundamentalelectrochemicalstudies,

asitisdifficulttoquantitativelyisolatetheSWCNTresponsefrom thatofthesupportsubstrate

Severaltechniqueshavebeendevelopedforfabricationofthe well-definedgeometrymicroelectrodesbasedonCNTs,inwhich thesupportsubstratewasisolated,attherangeofnano[7,9,15]

tomicroscale[8,13,14,16].Koehneetal.fabricatednanoelectrode arrays using vertically aligned multi-walled carbon nanotubes (MWCNT)embeddedwithinSiO2matrix.OnlytheendofMWCNT wasprotrudedtoexposetosolutionbyusingchemicalmechanical

0039-9140/$ – see front matter © 2012 Elsevier B.V All rights reserved.

Trang 2

layersontheelectrochemicalpropertiesofSWCNTmicroelectrodes

wereinvestigated.ThecoupleK3[Fe(CN)6]/K4[Fe(CN)6]wasused

asabenchmarktocharacterizetheelectrontransferpropertiesof

SWCNTmicroelectrodes

2.1 Reagent

Fe(NO3)3·9H2O, Mo(acac)2, KCl, K3[Fe(CN)6] were purchased

fromWakoPureChemicalIndustries(Japan).Otherreagentswere

ofanalyticalgrade,and allsolutionswerepreparedanddiluted

usingultra-purewater (18.2Mcm) fromtheMilliporeMilli-Q

system

2.2 Devicefabrication

2.2.1 ElectriccontactonSiwafer

Platinumcontacts,thicknessof30nmwith10nmTiadhesive

layers,werethermallyevaporatedontotheSisubstratethrough

aconventionalphotolithographyprocessandaplasmasputtering

method.TheSisubstrateisthep-typewith100nmofthermally

intrinsicSiO2.Inordertoseparatebetweenelectrodes,achromium

layer(60nmofthickness)wasalsosputteredinthemiddleof

plat-inumcontacts.Thislayerthenwasremovedoffafterthecatalytic

processbychromiumetchantsolutiontoleavetheblankspaceof

SiwaferbetweenelectrodesonthesameSiwafer

2.2.2 GrowthofSWCNTnetwork

SWCNTnetwork wasgrownonSi substratebyethanol CVD

method[17].TheSisubstratewasimmersedinthecatalystsolution

consistingofFe(NO3)3·9H2O,Mo(acac)2,andalumina

nanoparti-clesfor10min,anddriedintheairfor10min[18].Thecatalyst

coatedSi substrate was baked at 130◦C in 3minbefore

trans-ferringintoCVDmachine.Thesubstratewasheatedto825◦Cin

CVDmachineunderargongasandthenargongaswasreplacedby

ethanolvapor.Thegrowthprocesswasconductedfor10min

2.2.3 ApplytheinsulatorlayeronSWCNTnetwork

a)SiO2layer

The procedure for fabricating SWCNT microelectrodes is

showninFig.1a.Achromiumlayer(200nm)was,firstly,

ther-mallyevaporatedontotheSWCNTnetworkusingtheplasma

sputteringmethod.Aphotoresistlayerwiththicknessof15␮m

(PMERphotoresist)wassubsequentlyspunoverthechromium

layer.Disktypepatternsof180␮mdiameterinsidethePt

con-tactswereformedbyexposingtothe458nmHelightfor30sand

developinginPG-7solution.Theexposedchromiumlayerwas

removedbychromiumetchantsolutionin2min.Thenathermal

SiO2 layerof250nm wassputtered onexposed SWCNT

net-workbytheplasmasputteringmethod.Finally,theresiduedisk

quentlywashedbypurewatertogettheSWCNTmicroelectrode ThisSWCNTmicroelectrodeisnamedelectrodeP

Inboth ways,24 SWCNTmicroelectrodeswerearrayedona singleSisubstrateof25mm×30mm

2.2.4 Measurement Scanning electron microscopy (SEM) images were obtained usingHitachiS-4100withacceleratingvoltage20kV.Raman spec-trawereperformedwithlaserexcitationenergyof514.5nmon Micro-Ramanmachine

Electrochemical measurements were performed on ALS/CH Instrumentselectrochemicalanalyzer,model730C(USA)asshown

inFig.1c,inwhichthreeelectrodessystemwereusedwithPtwire

ascounter,AgCl/Agmicro-electrodeasreference(Microelectrodes Inc.,USA)andSWCNTmicroelectrodesasworkingelectrode.Adrop

ofKCl 0.1Msolution(25␮l) containinginterested electroactive specieswasplacedinthePDMSchamberovertheexposedSWCNT area

Cyclicvoltammetricmeasurement onas-grown SWCNT net-workwasconducted byusing conecapillary cell, in whichthe topandbottominnerdiameterofcapillaryare3mmand0.5mm, respectively[19].Thecounterandmicro-referenceelectrodewere placedinsidethecapillary.Theapproachofcapillarytothesurface

ofSWCNT network wasperformedbyusingthe manually con-trolledx-y-zpositioner.Bythisway,thebottomtipofcapillary willnotcontactwiththesurfaceofSWCNTnetwork

Theelectrodeposition of AuonSWCNT microelectrodes was conductedbychronoamperometrictechnique.Theconstant poten-tialof−0.4VversusAg/AgClwasappliedonthesemicroelectrodes foraperiodof20sin0.1MphosphatebuffersalinePBSsolution containing10mMHAuCl[19]

3.1 CharacterizationofSWCNTnetworkandmicroelectrode TheSEMimageofas-grownSWCNTnetwork,showninFig.2a, clearlyillustrateshighdensityofas-grownSWCNTandtheyexist

intheindividualorsmallbundletubes.TheRamanspectrumof as-grownSWCNTisdepictedinFig.2b.Theshapeandpositionofpeaks

inRamanspectrumaround1600cm−1(Gband)allowtoidentify theSWCNT[20].Thecharacterizedpeakofdisordergraphiteat around1350cm−1(Dband)indicatesthatthereislittleamorphous carbonpresentandthattheas-grownSWCNTishighquality,that thereareveryfewdefectsinSWCNT[17,18,20]

ThedistributionofSWCNTdiametercanbeinducedfromthe radialbreathingmode(RBM)followingequation[20]

d= 248

Trang 3

Fig 1.Schematic of procedure for fabricating SWCNT microelectrodes (a) Using SiO 2 layer as insulator (b) Using photoresist layer as insulator (c) The electrochemical

Trang 4

Fig 2.(a and b) SEM image and Raman scattering spectrum of as-grown SWCNT network, respectively.

whereistheRBMpeakpositionandd(nm)isthenanotube

diam-eter.FromEq.(1)thenanotubediameteriscalculatedandgiven

intheupperx-axisandthevalueofnanotubediameterisinrange

1.0–2.0nm,ingoodagreementwiththoseobtainedfrompublished

literatures[14,17]

Fig.3ashowstheSEMimageofanobtainedSWCNT

microelec-trode.ThediskdiameterofSWCNTmicroelectrodeswascalculated

fromtheSEMimagesandgotthevalueof185±2.6␮m(averageof

8individualsamples)

The SEM images of SWCNT network inside electrode S and electrodePareshowninFig.3 andc,respectively.TheSWCNT networksofelectrodePafterposttreatmentprocesseslookslightly thickerthanthatinas-grownSWCNTnetworkandelectrodeSas well.TheSEMimagesexhibitthatthedensityofSWCNTnetworks

Trang 5

Fig 4. Cyclic voltammograms in 0.1 M KCl solution containing 0.05 mM K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] mixture (1:1 molar ratio) of (a) as-grown SWCNT network (b) electrode S and electrode P All potential scan rates are 4 mV s−1.

afterpostprocessesseemashighasthatofas-grownSWCNT(see

Fig.2a).ThisisbecausetheindividualorsmallbundleofSWCNT

entangleseachothertoincreasethestabilityofnetworkduring

postprocesses.IncaseofelectrodeS,thesurfaceofSWCNT

net-workwascoveredentirelybyasputteringCrlayer.TheCrlayer,

however,finallyremovedbychromiumetchantsolution,which

specifiestoCronlyanddoesnothave anyharmfuleffectstoSi

substrateandSWCNTnetwork.ThisCrlayeralsoactedasashield

topreventdirectcontactoforganiccompounds(photoresist,

sol-vents)totheSWCNTnetwork,whichisbelievedstronglyeffectson

theelectrochemicalpropertiesofSWCNT[9]

Ontheotherhand,theSiO2insulatorlayerisdirectlyappliedon

theSWCNTnetworkwithouttheCrlayer.WhenSiO2isremoved

fromSWCNTsurfacebyeitherwetetchingwithHFsolution[9]

ordryingetching[14].Bothetchingprocessescouldnotexactly

controlremovingtheupperlayerofSiO2insulator.Onecanleadto

overetchingwhichbreaktheSisubstratedestroyingtheSWCNT

network,anotherisnotcompletelyremovedwhichmakeSWCNT

networkinactiveatsomeareasduetotheblockingofSiO2onthe

surfaceofSWCNT(datanotshown)

TheSiO2insulatorexhibitssomeadvantagestophotoresist

insu-lator[8]includingmuchthermalstableandinertinDMF,DMSO

environment.Thesesolventsare usuallyusedasthesolventfor

linkermolecular duringthe immobilizationof antibody onthe

surfaceofSWCNT[14,21]inthesensingprocesscomparedto

pho-toresistlayer

3.2 ElectrochemicalpropertiesoftheSWCNTmicroelectrodes

Fig.4ashowsthetypicalcyclicvoltammogram(CV)ofas-grown

SWCNT electrode in 0.05mMK3[Fe(CN)6]/K4[Fe(CN)6] mixture

solution(1:1molarratio)atpotentialscanrate4mVs−1

TheEp,peakpotentialseparationofforwardandbackward

curvesinaredoxcouple,is67mVsuggestingaquasireversibleat

theelectrode

For a microelectrode using SWCNT network, the

den-sity/separationofindividualorsmallbundleSWCNTiscritical[7]

AsobservedwiththehighdensitySWCNTnetwork,thediffusion

layersofneighborindividualSWCNTlikelyoverlap.Asaresult,the

CVofthiskindofelectrodesinmeasuringtheredoxspeciesinbulk

solutionissimilartoasolidplanarmacroelectrode[22]

ThehighelectroactivityofSWCNThasbeenrecentlyattributed

bythepresentofnano-graphitic“impurity”[23,24],whichisrich

edge planematerial and is thehighest electrochemicalactivity

amongcarbonmaterials[25–27],inas-grownSWCNTratherthan

bySWCNTitself

ItisclearthattheCNTelectrodeisdrivingtheelectron trans-fer(ET)reactionfasterthanmanyothercarbonelectrodessurfaces observed[3],withverysmall apparentactivationbarrierat the electrodesurface

Ontheotherhand,theSWCNTmicroelectrodesshowthevery differentCVbehavior.Fig.4 showstypicalCVsoftwodifferent SWCNTmicroelectrodesin0.05mMK3[Fe(CN)6]/K4[Fe(CN)6] mix-turesolution,recordedatapotentialscanrateof4mVs−1.TheCVs showawell-definedsigmoidalshape,characteristicofsteadystate behavioratultramicroelectrode (UME).Thesteady statefeature

inCVisthestrongevidenceindicatingthatmostexposedSWCNT behaviorasindependentnanoelectrodeafterpostgrownprocesses ThecurrentmagnitudeatSWCNTelectrodeSismuchhighthan that ofelectrode P.Thecurrent densityis inducedfromCVs to yieldavalueof24.49,and2.69␮Amm−2forSWCNTelectrodeS andP,respectively.ThisillustratesthattheelectrodeSismuch electrochemicalactivethanelectrodeP

Therearesomepossibilitiescausingthisphenomenon(i)the reductionindensityofSWCNTnetworkduetolosingofSWCNT

in postgrown processes (ii)partialblocking surface ofSWCNT afterthecontactingofSWCNTwithphotoresist,whichcausesthe contaminationonSWCNTand(iii)thereductionofnano-graphitic particlesinSWCNTnetwork.ForelectrodeSonlythereasoniand iiicanaffecttothechangeofCVcharacterization

Because the density of SWCNT networks do not change so much,wetentativelyattributethistothereductionof“impurity” nano-graphiticparticles densityin SWCNT afterposttreatment processes.InthecaseofelectrodeP,thepartialblockingsurfaceof SWCNTbyorganiccompoundsfromphotoresist,whichcausethe contamination,alsoaffectsstronglyontheelectrochemical prop-erties[9].InFig.5showstheSEMimagesofAuelectrodepositedon electrodeSandP.WeconfirmedthatthewhitespotsintheSEM imagesareAubyX-raydiffractometry(SEM-EDS)(datanotshown) ThedensityofAuparticlesonelectrodeSisclearlyhigherthanthat

onelectrodeP.ThisisalsotheevidencethattheelectrodeSismore activethanelectrodeP

ThecurrentdensityobtainedatelectrodeSalsomuchhighthan thatoftheMWCNTnanoelectrodearray[7],SWCNTUMEusing photoresistasinsulatorlayer[8],andmicrocarbonfiberelectrode

[28],0.4,2.04and9.84␮Amm−2,respectively.Thecurrentdensity

atelectrodePisslightlyhigherthanthatattheUME,whichwas fabricatedusingsimilarmethod[8]

Thehysteresis(shiftinhalfwavepotential)betweentheforward andbackwardwavesindicatesaslightdeparturefromatruesteady stateresponse,attributedtothepartialoverlapofdiffusionlayers

atsomelocationsintherandomlydistributednetwork[7]

Trang 6

Fig 5. SEM images of Au particles electrodeposited on (a) electrode S (b) electrode P, respectively.

Fig 6. (a) Cyclic voltammograms of electrode S in 0.1 M KCl solution containing 0.025, 0.05, 0.25, 0.5 and 1.0 mM K 3 [Fe(CN) 6 ]]/K 4 [Fe(CN) 6 ] mixture (1:1 molar ratio), scan rate is 4 mV s −1 (b) Plot of limiting currents (at 0.4 V) vs mediator concentration and linear fit for K 3 [Fe(CN) 6 ].

Fig 6a shows the CVs of electrode S in the

K3[Fe(CN)6]/K4[Fe(CN)6] mixture solution (1:1 molar ratio) in

therangeof0.025–1mMwiththepotentialscanrateof4mVs−1

Thediffusion-controlledsteady-statelimitingcurrent,iss,ata

coplanardisk-shapedmicroelectrodeisgivenbyEq.(2)[29]

wherenisthenumberofelectronstransferredperredoxevent,Fis

theFaradayconstant,ristheradiusofthediskelectrodeandCand

Darethebulkconcentrationanddiffusioncoefficientofthe

elec-troactivespecies,respectively.TheuseofEq.(2)isvalidbecausethe

degreetowhichtheelectrodeisrecessedisminimalcomparedtoits

lateraldimension.Fig.6 showsplotoflimitingcurrents(at0.4V)

versusredoxspeciesconcentration.Thelinearfitthroughthepoints

indicatesanearperfectscalingofisswithmediatorconcentration

(r2is0.9903).Thediffusioncoefficientextractedfromtheslopeof

theplotis8.8×10−6cm2s−1,whichisverygoodagreementwith

literaturevalues[29,30]

Theobservedplateauincyclicvoltammetricresponseandthe

scalingof iss withconcentrationofredoxmediatorin the

man-nerpredictedbyEq.(2)indicatesthattheSWCNTmicroelectrode

behavesasaconventionalmetallicUME(e.g.,Pt,Au)

Wehave successfully fabricatedtheSWCNT microelectrodes

based SWCNT network on insulator substrate through

micro-fabricationprocess.TheSWCNTmicroelectrodesusedsputterSiO2

asinsulatorexhibitsomeprioradvancestotheseusedphotoresist

layeras insulatorsuchasmuch stablein harshcondition(high

activeorganicsolvents)andhighcurrentdensity(24.94compared

with2.69␮Amm−2,respectively).Thesebenefitscomefromusing

ofCrlayertocoverentirelySWCNTnetworkduringthefabricating processes.Inaddition,thewell-definedgeometryofSWCNT micro-electrodes is not only useful for investigating kineticselectron transfer,butalsopromisingcandidateinelectrochemicalsensors application

Acknowledgement

ThisworkwaspartiallysupportedbyaGrant-in-Aidfor Scien-tificResearchonPriorityAreas(No.19054011)andtheCooperative ResearchProgramof“NetworkJointResearchCenterfor Materi-alsandDevices”fromtheMinistryofEducation,Culture,Sports, ScienceandTechnologyofJapan

References

[1] S Iijima, Nature 354 (1991) 56–58.

[2] A.V Melechko, V.I Merkulov, T.E McKnight, M.A Guillorn, K.L Klein, D.H Lowndes, M.L Simpson, J Appl Phys 97 (2005) 041301.

[3] R.L McCreery, Chem Rev 108 (2008) 2646–2687.

[4] S Rosenblatt, Y Yaish, J Park, J Gore, V Sazonova, P.L McEuen, Nano Lett 2 (2002) 869–872.

[5] J Edgeworth, N Wilson, J.V Macpherson, Small 3 (2007) 860–870.

[6] E.S Snow, P.M Campbell, M.G Ancona, J.P Novak, Appl Phys Lett 86 (2005) 033105.

[7] J Koehne, J Li, A.M Cassell, H Chen, Q Ye, H.T Ng, J Han, M Meyyappan, J Mater Chem 14 (2004) 676–684.

[8] I Dumitrescu, P.R Unwin, N.R Wilson, J.V Macpherson, Anal Chem 80 (2008) 3598–3605.

[9] I Heller, J Kong, H.A Heering, K.A Williams, S.G Lemay, C Dekker, Nano Lett.

5 (2005) 137–142.

[10] D Wei, M.J.A Bailey, P Andrew, T Ryhanen, Lab Chip 9 (2009) 2123–2131.

Trang 7

[12] C.E Banks, R.R Moore, T.J Davies, R.G Compton, Chem Commun (2004)

1804–1805.

[13] J Okuno, K Maehashi, K Matsumoto, K Kerman, Y Takamura, E Tamiya,

Elec-trochem Commun 9 (2007) 13–18.

[14] J Okuno, K Maehashi, K Kerman, Y Takamura, K Matsumoto, E Tamiya,

Biosens Bioelectron 22 (2007) 2377–2381.

[15] J.K Campbell, L Sun, R.M Crooks, J Am Chem Soc 121 (1999) 3779–3780.

[16] J.M Nugent, K.S.V Santhanam, A Rubio, P.M Ajayan, Nano Lett 1 (2001)

87–91.

[17] K Maehashi, Y Ohno, K Inoue, K Matsumoto, Appl Phys Lett 85 (2004) 858.

[18] H.E Unalan, M Chhowalla, Nanotechnology 16 (2005) 2153–2163.

[19] P.V Dudin, P.R Unwin, J.V Macpherson, J Phys Chem C 114 (2010)

13241–13248.

[20] M.S Dresselhaus, G Dresselhaus, A Jorio, A.G Souza Filho, M.A Pimenta, R.

Saito, Acc Chem Res 35 (2002) 1070–1078.

[21] R.J Chen, Y Zhang, D Wang, H Dai, J Am Chem Soc 123 (2001) 3838–3839.

[22] J Li, A Cassell, L Delzeit, J Han, M Meyyappan, J Phys Chem B 106 (2002) 9299–9305.

[23] M.E Itkis, D.E Perea, R Jung, S Niyogi, R.C Haddon, J Am Chem Soc 127 (2005) 3439–3448.

[24] P.-X Hou, C Liu, H.-M Cheng, Carbon 46 (2008) 2003–2025.

[25] C.E Banks, R.G Compton, Analyst 131 (2006) 15–21.

[26] M Pumera, Chem Eur J 15 (2009) 4970–4978.

[27] A Ambrosi, M Pumera, Chem Eur J 16 (2010) 10946–10949.

[28] Micro carbon fiber electrode (BAS Inc., Japan), diameter: 33 ␮m.

[29] L.R.F Allen, J Bard, Electrochemical Methods: Fundamentals and Applications, 2nd ed., 2001.

[30] J.L Conyers, H.S White, Anal Chem 72 (2000) 4441–4446.

Ngày đăng: 14/12/2017, 17:48

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm