1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Study of EXAFS cumulants of FCC crystals containing n dopant atoms

8 93 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 3,16 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

They depend on the number of dopant atoms and approach those derived by anharmonic correlated Einstein model, if all dopant atoms are taken out or replacing all the host atoms.. Numerica

Trang 1

VNU JOURNAL OF SCIENCE, Mathematics - Physics, T.XXII, N03, 2006

S T U D Y O F E X A FS C U M U LA N TS O F FCC CRYSTALS

C O N T A IN IN G N D O P A N T ATOM S

N g u y e n V a n H ư n g , T r a n T ru n g D ung, N g u y en C ong T o an

Department o f Physics, College o f Science, VNU

A B ST R A C T A n e w p r o c e d u r e f o r d e s c r i p t i o n a n d c a l c u l a t i o n o f t h e EXAFS (Extended X-ray Absorption Fine Structure) cumulants for fee crystals containing an abitrary number n of dopant atoms have been developed Analytical expressions for the l 8t, 2nd and 3rd cumulants have been derived They depend on the number of dopant atoms and approach those derived by anharmonic correlated Einstein model, if all dopant atoms are taken out or replacing all the host atoms Numerical results for Cu doped by Ni atoms based

on the Morse potential show significant dependence of thermodynamic parameters of the substance on the number of dopant atoms and a reasonable agreement with experiment

1 I n t r o d u c t i o n

C um ulant expansion approach has been developed [1, 2] to include anharm onic effects in th e EXAFS procedure These anharm onic effects are contained in the first cu m u lan t or net therm al expansion, the second cum ulant or Debye-W aller factors, th e th ird cum ulant, and the therm al expansion expansion coefficient, which are investigated intensively in the EXAFS experim ent and theory [1-14] It is also very im p o rtan t to study therm odynam ic properties of m aterials containing dopant atom s [10, 14, 16] Some investigations for crystals containing one dopant atom have been perform ed [10, 14, 16] But norm ally more than one atom can be doped into a crystal This case can lead to developing procedures for studying therm odynam ic properties of alloys with nano stru ctu re which are often sem iconductors containing some components with different atomic sourses The

effective interatom ic potential and local force constant for fee crystals containing n

dopant atom ts have been studied [16]

The purpose of th is work is following our previous one [16] to develop a new procedure for description and calculation of the EXAFS cum ulants and other

therm odynam ic p a ra m eters of fee crystals containing some (n) dopant atoms, where

one dopant atom [10, 14, 16] is only a special case of this theory Our development

IS derivation of the analytical expressions for the correlated E instein frequencies and tem p eratu re, for the 1st, 2nd and 3rd cum ulants, where the host atom is denoted

by the letter H an d th e dopant atom by the le tte r D All these expressions are

different if the num ber of dopant atom s changes The resu lts in the case if all the dopant atom s are tak e n out or if all the host atom s are replaced by the dopant atom s are reduced to those derived by using the anharm onic correlated Einstein model [8] for th e pure m aterials N um erical calculations have been carried out for

31

Trang 2

32 Nguyen Van Hung, T ran Trung D ung, Nguyen Cong Toan

Cu doped by one or m ore Ni d o p an t atom s, an d th e re s u lts a re com pared to th o se of

th e p u re m a te ria ls a n d som e to ex p erim e n t d ed u cted from th e m easu red M orse

p o ten tial p a ra m e te rs [15]

2 F o rm a lism

2.1 A n h a r m o n i c effe ctive p o t e n t i a l , l o c a l f o r c e c o n s t a n t a n d d e r i v a t i o n

o f c o r r e l a t e d E i n s t e i n f r e q u e n c y a n d t e m p e r a t u r e

Follow ing [16] th e an h arm o n ic c o rrelated in te ra to m ic effective p o ten tial of a

fee c ry stal doped by n ato m s from a n o th e r source is given by

as a function of th e d isp lac em e n t x = r - r 0 for r an d r0 bein g th e in sta n ta n e o u s and

eq u ilib riu m d ista n c e s b etw een ab so rb er an d b a c k s c a tte re r atom s

U sing th e d efin itio n s [8] y = X — a , a = (x) Eq (1) is changed into

co n tain in g a n effective local force c o n sta n t k ejỵ

and anharm onic effective factor k

A4HMp

M ff + M p

3 eff

(y + m ỹ

(3)

(4)

involving co n trib u tio n s of im m e d ia te atom ic neig h b o rs, w here

A = m 2(l + 4<50B- r n + ^ ) ) C = 3 ^ + <513n - ^ + i [ ( l - 4 , nX n - l ) + r n( 9 - /t)

B = ị p - 5S0n + SÍOn - ỏnn + (1 + m f (1 - y n)] + ^ [(9 - n ) ( \ - ỏ 0n- ỵ n) + m 2( 4 - 4Slĩn - Pn - 4<50n)]

(5)

A ĩ = m ĩ ạ + AS0n- y n + ị - ) , c 3 = c,

o

5 3 = 2 D - ỏ ũn + S \0n - ỏ Un + 0 + m f 0 - 7n - Ỗ0n ) ] + ị [ ( 9 - n ) ( ] - <*0» - ĩ n )

+ m \ A - A 8 nn- P n - A 5 ữn)}

(6)

t £ ' 2 ( £ n A £ , I f , r , f _ ^ D ^ O n H ^ D ) / * 7 \

ĩ n - 0 \ 0 n + ^ 1 1 n + ơ 12n + <?I3n > P n - 4 ^1 ft + 3 ^ 2 n + 2<^3n + <5An m - 777 -7 7 - ■ ( ' )

M H +Yn{MD~ M H)

Trang 3

S tu d y o f EXAFS C u m u la n ts of 33

U sing th e a n h arm o n ic effective local force c o n s ta n t Eq (3) th e co rrelated

E in ste in frequency C 0 %D an d te m p e ra tu re 0j!D a re given by

w here k B is th e B o ltzm an n co n stan t.

M orse p o te n tia l p a ra m e te rs for th e case w ith doping a re o b tain ed by an

a v erag in g calcu latio n from th o se for th e h o st (H) a n d th e doping (D) cry stals expanded to th e th ird o rd er a ro u n d it equilibrium

D enoting th e eq u ilib riu m bond len g th of th e h o st atom by r0H , of th e doping atom by r0D a n d b etw een th e ho st an d th e doping atom by r0HD a n d solving th e

eq u atio n sy stem of av erag in g procedure, th e M orse p o ten tial

p a ra m e te r D hd c h a ra c te riz in g dissociation energy, th e M orse p o te n tia l p a ra m e te r

a HD c h a ra c te riz in g th e w idth of th e p o ten tial, a n d th e eq u ilib riu m bondlength

betw een H a n d D ato m s r0HD a re re su lte d as

They w ill be u se d for calcu latio n of th erm o d y n am ic p a ra m e te rs of c ry sta ls in

th e doping case

2.2 D e r i v a t i o n o f a n a l y t i c a l e x p re s si o n s f o r E XA FS c u m u l a n t s

M aking u se of q u a n tu m s ta tis tic a l m ethods [19] th e p h y sical q u a n tity is

d eterm in ed by a n a v erag in g procedure u sin g can o n ical p a rtitio n fu n ctio n z and

sta tistic a l d e n sity m a trix p , e g.,

Atomic v ib ra tio n s a re q u a n tize d in term s of phonon, a n d a n h a rm o n ic ity is th e

re s u lt of phonon-phonon in te ra c tio n , th a t is w hy we e x p r e s s ^ i n te rm s of phonon

a n n ih ila tio n a n d c re a tio n o p e ra to rs, à a n d a +, resp ectiv ely

(8)

V(x) = DH m ( ẽ laH^ - 2 /" » ™ * ) Dm m ( - 1 + a ị m x ‘ - a ị m x 3 + ) (9)

3

D}ja H2 + DDa D2 +

D rr 2 I ^ r°D r°H)a H2aD2DHDD(aD - a H)

u D a D +

-(1 2)

(1 3 )

Trang 4

34 Nguyen Van Hungy T ran T ru n g Dung, Nguyen Cong Toan

k ,ầMD

sa tisfy in g re la tio n s

[ a ,a +] = l , a + \ n > = J n + l \ n + l > , a \ n > = yfn \ n - l > , (15)

an d u se th e h a rm o n ic o scillato r s ta te I nj as th e e ig e n s ta te w ith th e eig en v alu e

E n = nhcủ£ D , ig n o rin g th e zero-point energy for convenience.

U sin g th e above re s u lts for c o rre lated ato m ic v ib ra tio n a n d th e first-o rd e r

th e rm o d y n a m ic p e rtu rb a tio n th eo ry [19] co n sid erin g th e a n h a rm o n ic term in th e

p o te n tia l Eq (2) as a p e rtu rb a tio n s v due to th e w eak a n h a rm o n ic ity in EXAFS

B ased on th e p ro ce d u re d escribed by Eqs (13-15) we d e riv e d th e c u m u la n ts

0 =<y>= ^ T r ( p y ) » -J-Tr ( ỏpy) ,

ơ (2) =< y 2 >= Ị - T r ( p y 2) « - ^ - T r ( p 0y 2) ,

ơ (3) = < y 3 > = ị T r ( p y 3) * \ - T r i ô p y3 ) ,

(18)

w h ere p0 , Z Q a re u n p e rtu rb e d q u a n titie s a n d <5p, s z th e p e rtu rb a tio n s of th e

s ta tis tic a l d e n s ity m a trix a n d th e canonical p a rtitio n fu n ctio n , resp ectiv ely

T he second c u m u lan d or M ean S q u a re R e la tiv e D isp la ce m e n t (MSRD)

d e scrib in g D ebye-W aller facto r (DWF) h a s been d eriv e d

Ơ2 = < y 2 > w Ả - T r { p ữy 2) = J ^ z n < n \ y 2 \ n > , z = e e'E IT (20)

S u b s titu tin g th e c a lcu late d m a trix e le m e n t, i e.,

< n I y 2 I n>= (2n + 1)(702 (21)

in to Eq (20) we o b tain ed

z

, 1 \ n 1 _ 2 Í 1 , 2 z \ h l + z 2 l + z - 2 _ ^ l 0 ) E D /Q Q \

„ z 0 I 1" 2 (1-z) J 2yJ{jkeJĨ 1 -2 1 -z 2kcff

T he odd m o m en ts < y > a n d < _y3 > h av e b een c a lc u la te d u sin g th e g en eral

ex p ressio n

1 1 v-n e- P E" - e - P E*

< y m > = — Tr{8pym) = — Y - - - < n \ s u E \ n'X n' \ ym \ n >, /3 = ỉ / k BT (23)

Zo z o t ? £" ~ en'

Trang 5

S tu d y of EXAFS C u m u la n ts of 35

Since < y > c o n ta in s < n ' \ y \ n > w hich is d ifferen t from zero only for n' = n + 1

th a t is why from Eq (22) we o b ta in

_ 1 V

< y > = y L

^ 0 n

-hũ) e-pEn

+

hco

< n I s v 171 + 1 > < 1 Ĩ + \\ y \ n >

< n I s v \ n - l x n - l \ y \ n >

(24)

C a lc u la tin g th e m a trix e le m e n ts

< n \ y \ n + l>= ơ 0(n + 1)1/2, < n I y 3 I n +1 >= 3<703(rt + 1)3/2

an d satisfy in g th e c o n d itio n Eq (16) we o b tain ed th e 1st c u m u la n t

<7(1) = a 3 ^ 3 eff 1 + 2 _ - = CĨA -= -—— ơ , ƠQ = -(1) ^ + <2:_ 2 (1) _ 3 k 3eff

1 - 2

(25)

(26)

S in c e < y 3 > c o n ta in s < n.1 I Ai' >< n ' I ;y3 I n > w hich is d iffe re n t from zero only

for n' = n ± 1, ft’ = ft ± 3 so t h a t from Eq (22) we o b tain ed

e - P £ n _

^ -< n I 171 +1 >< ft + 1 1 y 3 I n >

cr(3) =< y 3 >= —

z n

-hco e-P£n _ e'^n-1 hco < n I <5V I ft - 1 >< n - 1 1 y 3 I n >

„ * - / f e » _ p - / t e „ +3

+ ^ r - z - < n I § y I ft + 3 >< ft + 3 I ;y3 I n >

-3hco

e - P £ n _ g - / t e « - 3

3hco < n I J V 171 - 3 >< 71 - 3 I y 3 I rc >

(27)

We c a lc u la te d th e m a trix e le m e n t

< n \ y 3 I n + 3 >= (cr0)3[(/i + l)(n + 2)(rc + 3)]1/2

S u b s titu tin g E qs (25, 28) in to Eq (27) we o b tain ed th e 3rd c u m u la n t as

(28)

h*h

V 1 - Z j

.(3) 1 + I 0z + z 2 (3)

( 1 - * )

2

k 3 e f f [ hcúE D ) _ k :ieffh ứ )

HD

CTq •

(29)

Note t h a t in th e above ex p ressio n s , (To , ctq3^ a re zero -p o in t c o n trib u tio n s

to th e 1st, 2nd, a n d 3rd c u m u la n ts , respectively, a n d w hen th e d o p in g a to m s a re tak e n from th e h o st m a te ria l a ll th e above ex p ressio n s will be red u c ed to th o se of

th e p u re m a te ria l [8, 20]

Trang 6

3 N u m e r ic a l r e s u lts a n d c o m p a r iso n to e x p e r im e n t

T a b le 1: C alcu lated v a lu e s of keff a n d k 3eff of Cu doped by n = 0, 1, 4, 8, 10, 13 atom s of Ni com pared to e x p erim e n t [15]

Now we apply ex p ressio n s derived in th e previous section to n u m erica l

calculation for Cu doped by n atom s of Ni M orse potential p aram eters for Cu and Ni

have been calculated by procedured p resented in [17, 18] They are used for calculation

of Morse p a ra m eters for Cu doped by Ni The resu lts are presented in Table 1 com pared to experim ent ex tracted from th e m easured M orse potential param eters The case n = 0 corresponds to th e pure Cu and the case n = 13 to the pure Ni because all Cu atom s are replaced by th e Ni atom s All they are found to be in good agreem ent w ith experim ent extracted from m easured M orse p a ra m e te rs [15]

Figure 1 shows te m p e ra tu re dependence of the 1st cum ulant or net th erm al expansion c r^ (r) of Cu doped by one Ni atom com pared to experim ent extracted from the m easured M orse p o ten tial p a ra m eters [15] (a) and by n =0, 1, 4, 13 Ni atom s (6)

Figure 2 illu stra te s th e tem perature dependence o f the calculated 2nd cumulant ơ 2(t) or

DW F o f Cu doped by n = 1 Ni atom com pared to experim ent extracted from the

measured M orse potential param eters [15] (a) and by n = 0, 1, 4, 13 atom s o f Ni (b)

Figure 3 shows the tem perature dependence o f the calculated 3rd cum ulant o f Cu doped

by one Ni atom com pared to experim ent extracted from m easured M orse potential

param eters [15] (a ) and by n = 0, 1 , 4 , 13 Ni atom s (6) All the above Figures contain

zero-point contributions and satisfy all their fundam ental properties, e g., a t high- tem p eratu res th e 1st an d 2nd cu m u lan ts are linearly proportional to the tem p era tu re and the 3rd cu m u lan t to th e square of tem p eratu re They provide a reasonable agreem ent w ith experim ent for th e case n = 1 doping atom

Figure 1: C alc u lated 1st c u m u la n t <x^(r) of Cu doped by n = l Ni atom com pared to

e x p e rim e n t [15] (a) a n d by n =0, 1, 4, 13 Ni atom s (b)

Trang 7

S t u d y o f EXAFS Cu m u la n ts of 37

Figure 2: calcu late d 2nd c u m u la n t ơ 2( t ) or DW F of Cu doped by n = 1 Ni atom

co m p ared to e x p erim en t [15] (a) an d by n =0, 1, 4, 13 Ni ato m s (b)

Figure 3: C a lc u la ted 3rd c u m u la n t of Cu doped by n = l Ni ato m com pared to

e x p e rim e n t [15] (a) an d by n =0, 1, 4, 13 Ni ato m s (b)

4 C o n c lu ss io n s

T his w ork h a s developed a new procedure for d escrip tio n a n d calcu latio n of

th e c o rre lated E in ste in frequency and te m p e ra tu re , th e 1st, 2nd, a n d 3rd cu m u lan ts

for a fee c ry sta l doped by an a rb itr a r y n u m b er n of ato m s from a n o th e r m ateria l.

D erived ex p ressio n s of th e considered q u a n titie s a p p ro ach th o se derived by

u sin g th e a n h a rm o n ic co rre lated E in ste in m odel for th e p u re m a te ria ls w hich can

be considered as a special case of p re s e n t p rocedure T hey sa tisfy all th e ir

fu n d a m e n ta l p ro p e rtie s a n d provide a reaso n ab le a g re e m e n t w ith ex p erim en t

e x tra cted from m ea su re d M orse p o te n tia l p a ra m e te rs

T his m ethod considered for sm all clu ste r can be g e n eralize d for th e whole

c ry stal so t h a t from th e p re s e n t procedure one can develop a m ethod for description

Trang 8

38 Nguyen Van H ung, Tran T ru n g D ung, Nguyen Cong Toan

an d c a lc u la tio n of th e th erm o d y n am ic p a ra m e te rs of a n alloy c o n sistin g of d ifferen t

p e rc e n ta g e of c o n s titu e n t elem en ts

A c k n o w l e d g e m e n t s T he a u th o rs th a n k Prof D M P e a se (U n iv ersity of

C o n n ecticu t) for u se fu l d iscu ssio n s an d com m ents T h is w ork is su p p o rte d in p a r t by

th e Bisic S cience R esearch P roject No 4 058 06 a n d th e sp ecial re se a rc h project of VNU H anoi No Q G 05.04

R e fe r e n c e s

1 E D Crozier, J J Rehr, and R Ingalls, in X-ray absorption, edited by D c Koningsberger

and R Prins (Wiley, New York, 1988)

2 G Bunker, Nucl.&Jnstrum Methods 207 (1983) 437.

3 J M Tranquada and R Ingalls, Phys Rev B 28 (1983) 3520.

4 E A Stem, p Livins, and Zhe Zhang, Phys Rev B 43 (1991) 8850.

5 N V Hung, R Frahm, Physica B 208 & 209 (1995) 91.

6 N V Hung, R Frahm, and H Kamitsubo, J Phys Soc Jpn 65 (1996) 3571.

7 N V Hung, J de Physique IV (1997) C2 : 279.

8 N V Hung and J J Rehr, Phys Rev B 56 (1997) 43.

9 N V Hung, N B Due, and R R Frahm, J Phys Soc Jpn 72 (2003) 1254.

10 N V Hung, VNU-Jour Science, Vol 18, No 3 (2002) 17.

11 A V Poiarkova and J J Rehr, Phys Rev B 59 (1999) 948.

12 J J Rehr, R c Albers, Rewiews o f Modern Physics, Vol 72 (2000) 621-653

13 P Fomasini, F Monti and A Sanson, J Synchrotron Radiation 8 (2001) 1214.

14 M Daniel, D M Pease, N V Hung, J I Budnick, to be published in Phys Rev B 69

(2003) 134414

15 I V Pirog, T I Nedoseikina, I A Zarubin, and A T Shuvaev, J Phys.: Condens Matter

14(2002) 1825

16 N V Hung, T T Dung, N c Toan, VNU-Jour Science, Vol 20, No 2 (2004) 9.

17 L A Girifalco and V G Weizer, Phys Rev 114 (1959) 687.

18 N V Hung and D X Viet, VNU-Jour Science Vol 19, No 2 (2003) 19-24.

19 R F Feynman, Statistical Mechanics (Benjamin, Reading, MA, 1972).

20 A I Frenkel and J J Rehr, Ptiys Rev B 48 (1993) 585.

Ngày đăng: 14/12/2017, 16:46

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm