1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Detection of the location of the hazard during and after the design of combinational circuits

8 125 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 832,39 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Delay fault and glitch fault cause hazards that are structure hazard and function hazard.. During design process we can use many methods to identify and remove structural hazard [1-2], [

Trang 1

V N l J J o u r n a l o f S c i e n c c , M a t h e m a t i c s - P h y s i c s 27 ( 2 0 1 1 ) 1 2 3 - 13 0

Detection o f the location o f the hazard during and after the

design o f combinational circuits

Nguyen Quy Thuong

VNU, Ỉ4 4 Xuan Thuy, Can Giav, Hanoi, Vietnam

Received 14 April 2011

A b stract Delay fault and glitch fault cause hazards that are structure hazard and function hazard

During design process we can use many methods to identify and remove structural hazard [1-2],

[3] However, with function hazards, determination and remove much more difficult In this paper

we introduce a new solution to determine the structure hazard by the Truth table - Matrix

mathematics M ethod and method for determining function hazard over how to determine crosstalk fault [4-71

Keywords: Structure hazard, function hazard, truth table, multiplication matrix, hazard - algebra,

crosstalk fault, glitch

1 Introduction

D e te ctin g , lo c a tin g a n d rem o v in g h a zard s in a digital circu its is the c o m p ellin g w o rk o f a designer

K a rn a u g h m ap [8 ] w a s u se d very often to d esig n d igital circu its th at are c o m b in atio n al a n d sequence;

sy n c h ro n o u s an d a s y n c h ro n o u s w ith h azard - free

John K n ig h t [1], [3], T h u o n g N Q [2] ap p lied h a z a rd - alg eb ra m eth o d for the d e sig n o f digital

c ircu its I f a c irc u it h a s a hazard , then function o f the c irc u it w ill be reduced to o n e o f th e se form s

X X , X 4 - X , x x + x a n d (x + x)x H azard - alg eb ra m eth o d can d ete c t and m ask h a z a rd in both

c o m b in a tio n a l a n d s e q u e n c e circuits

T o in v e stig a te h a z a rd in co m b in a tio n a l circu its w ith E X - O R gates, E c T an and M H H o [9]

b u ilt m atrix m e th o d th a t g en erate a set o f v ariab les o f all nodes in each gate level o f a circuit

p ro g re s s iv e ly u ntil it re a c h e s th e o u tp u t o f circuit H o w e v er, th is m ethod has notyet sh o w exact

lo ca tio n o f h a z a rd s a n d w h en d y n a m ic h azard is d e p e n d en t on static logic 0 “ h azard o r d e p e n d e n t on

fault Through crosstalk fault, we have function Hazards can be determined, that appears only after the circuit was put into use.

In th is p a p e r a n e w so lu tio n is p ro p o se d to in v estig ate stru ctu re h azard s in c o m b in a tio n a l circuits

th at is b a s e d o n c o m b in a tio n o f truth tab le, m atrix m ath em atics and h azard - alg eb ra to d e te c t stru ctu re

E-mail: cp4m ua@ yahoo.com vn

123

Trang 2

124 N.Q T h u o n g / VNU Journal o f Science, Mathematics - Physics 27 (20Ỉ Ỉ) Ỉ2 3 -Ỉ3 0

h a z ard s T his p a p e r also p o in ts out the m ethod o f d e te rm in in g th e fu n ctio n h a zard s via the

d e te rm in a tio n o f cro sstalk fault T h e stru ctu re o f this p a p e r is as fo llo w s S ectio n 2 g iv es b a c k g ro u n d

on h a z a rd algebra, the d iffe re n c e b etw een B o olean alg eb ra and H a z a rd alg eb ra; rela tio n s b etw een

m a t ì x m ath e m a tic s a n d tru th table an d circu it eq uation o f function; the test m e th o d s to d ete rm in e the

c ro s s ta lk fault, w hich is to d e te rm in e fu nction h azard in the d igital circu it S ection 3 gives the form al

p ro b le m sta te m e n t to be so lv ed , an d an intuitive o v erv iew o f the n ew m eth o d as the ru le s to d elect

s ừ u c tu re h azard s o f so p h istic a te d form s (in c lu d in g SO P and P O S ) S e c tio n 4 gives th e m ode o f

d e te rm in in g the fu nction h a z a rd in th e c irc u it w as put into use

2 B ackground

T h e p o ten tial for a g lilch in a com b in atio n al circu it is ca lled a hazard H azard s fall into tw o

c la sse s: fu nction h azard s an d stru ctu ral hazard s S tructure h azard co u ld be d e te c te d and rem o v ed even

d u rin g the design p ro ce ss b u t function hazard that can d elect o n ly th e c irc u it a fte r hav in g taken into use an d the rem oval o f fu n ctio n h azaru is m ore difficu lt th an o f stru c tu ra l h a z ard T h is sectio n focuses

o n th e p ro b le m to o f h azard s, h a z a rd alg eb ra, m atrix m a th e m a tic s and c ro ssta lk fault

2.1 Truth ta b le - M a tr ix M a th e m a tics M e th o d f o r (he detectio n a n d lo ca tio n o f s tr u c tu re h a za rd s in

d ig ita l circu its

T ru th table - m atrix m ath e m a tic s m eth o d w as b uilt to th e d e te c tio n and lo ca tio n h azard s in

c o m b in a tio n a l circu its th a t is e x p re sse d in e ith e r sum -of- p ro d u c ts (S O P ) form o r p ro d u ct-o f-su m s

(P O S ) fo rm o r both T h e m ain idea o f this w o rk IS to “d ip ” th e v a ria b les o f fim c iio n on th e ir truth ta b le

b y m u ltip ly in g th ese m a tric e s c o n fo m i to the rules o f m u ltip lic a tio n m atrix (m a th em a tic s) T h e result

o f th e m u ltip lic a tio n is c o m p a red w ith d efin itio n s o f hazard s in h a z ard alg eb ra [1], [2], [3] T h at is ^ =

^ (0 ) as static 0 - hazard, ^ ^ t ” -r ^ (1) as sta tic I - h a z a r d aruli^ ^ x’ ^o(O) , ^ ^ ( t^ + = ^ e (l) as d y n a m ic h a z ard d ep e n d en t on static 0- h a z ard and d y n a m ic h a z ard d e p e n d en t on sta tic 1- h a z ard , resp ectiv ely

T h e p rin c ip le o f th is m eth o d as follow s: firstly w e find the v ariab les X th a t can c a u se hazard , and

th e n fix v alu e 0 or 1 in v a ria b le s Xj X T o realize th is p roblem w e can “d ip ” th e v a ria b le s, the sum

fac to rs o r the p ro d u ct term s o f c irc u it eq u a tio n on th e tru th tab le n v a ria b le s b a se d on m u ltip ly in g

eq u a tio n - m a trix w ith truth ta b le - m a trix that c o n fo rm to th e m le s o f m u ltip lic a tio n m atrix

(m a th em a tic s)

T h e e q u a tio n ~ m a trix is a m atrix ex p re ss circu it eq u atio n I f c irc u it e q u a tio n in fo rm SO P, th en

c irc u it e q u a tio n w ill h o ld s su m fac to rs and i f circuit eq u atio n in form P O S , th en c irc u it eq u atio n w ill

h o ld s p ro d u c t term s N u m b e r o f sum fac to rs or p ro d u ct te n n s in th ese c irc u it e q u a tio n s sh o w s n u m b er

colu m ns o f m atnx, that is, matrix with dim ensions Ixn that IS matrix w ith 1 row and n colum ns.

T h e M a tr ix truth ta b le is a m atrix ex p ress ưxith tab le o f c irc u it fu n ctio n In th is m eth o d the fruth

ta b le is re p u te d to be a m atrix n X 2""', it m ean s m atrix w ith n c o lu m n s an d 2 " “ ‘ ro w s

T o m ak e n u m b e r o f c o lu m n s in c irc u it eq u atio n - m atrix equal to n u m b e r o f ro w s in tru th table -

matrix w e can change this matrix into transpose matrix, that is, let A be an n X 2" ' matrix defined by

th e n u m b e r aịj, then th e tra n sp o se o f A as A^, d en o ted is the 2"'' X n m a trix d e fin e d b y the n u m b er

bjj where bji =

Trang 3

N.Q Thuong / VNU Journal o f Science, Mathematics - Physics 27(2011) 123-130 125

T he algorithm to d e te c t stru ctu re h azard s m com b in atio n al c irc u it o f th is m eth o d IS g iven as follow s:

S tep 1: C o n sid e r the circu it eq u atio n

I f the c irc u it eq u a tio n is c o m p lic a ted , then apply D e M o rg an L aw to get the sim plest c irc u it

eq uation that are circuit e q u a tio n s in form s e ith e r SO P or PO S or both

- F irstly, find the v a n a b le s that can cause hazards T hey are th o se variab les h av in g b o th X a n d X form , in this case x:= x " a n d x ’:= x' are independent

Fix X ) v a lu e s (0 ,1) b y “d ip ” c irc u it eq uation n v a ria b le s on th e tru th table o f c irc u it

function resp ectiv ely that re a liz e d b y m u ltip ly in g tw o m atrices that are circu it eq u a tio n - m a trix an d truth table - m atrix.

S tep Ỉ: C o n sid e r the re su lt o f m u ltip licatio n

A fter the variablesX are fixed value 0 or 1 by “ d ip ” circu it eq u a tio n n v ariables o n th e tru th table so we get the resu lt o f m u ltip lic a tio n th at eith e r the sum facto rs t ” t ’’ = ^ (0), the c irc u it

con ta in s static - 0 hazard, or the product term s t" + t ‘- = ^ (1), that IS the circuit co n ta in s static - 1

h a z ard d ep e n d en t on static logic 1 - h azard ^ = (x"+ ) t " = 4o (l) o r n o t at all, th at is the free h a z a rd circuit

S tep 4: In v estig ate to rem a in in g v ariab les

T o find the rem a in in g v a ria b le s X jthat can cause hazards G o to Step 2, S tep 3 until last v a ria b le Xi

is co n sidered

2.2 To d etec t cro ssta lk f a u l t in d u c e d fu n c tio n h a zards

A fter the digital circu it is d e sig n e d an d b u ilt, it is alw ays d esirab le to k n o w w h e th e r the c irc u it is

c o n sừ u c te d w ith o u t any faults Is it IS p ro p erly co n stru c te d and in use, it m ay be d isa b le b y a lm o st an y internal failure T h e p ro ce ss o f a p p ly in g te st an d d eterm in in g w h e th e r a digital c irc u it is fault free o r

n o t is know n as fault d ete c tio n I f w e k n o w n rela tio n sh ip ex ists b e tw e en the v a rio u s possib le fau lts

and d ev iatio n s o f outp u t p a tte rn s, IS term ed as fault lo cation [12] as fu n c tio n ha za rd T h e in c re a se d

d e sig n d en sity in deep - su b m ic ro n d e sig n s leads to m ore sig n ifican t in te rfe re n c e b e tw e e n the sig n a ls

b ecau se o f c a p ac itiv e c o u p lin g o r cro sstalk C ro ssta lk can induce b o th B o o le a n e ư o r s and delay fau lts

C ro ssta lk - in d u ced p u lses are lik e ly to cause errors on h a z ard - sen sitiv e lines such as in p u ts to

d y n am ic g ates, clock, se t/re se t an d d ata in p u ts to flip - flops C ro ssta lk p u lse s m ig h t resu lt in lo g ic

e ư o r s o r d eg rad ed vo ltag e lev els, w h ic h increase p ro p ag atio n d elay s [6]

Studies sh o w that in cre ase d c o u p lin g e ffe c ts b etw een signals ca n cau se sig n a l d e la y to in c re a se (slo w dow n) or d ec re a se (sp e e d up) sig n ifican tly B oth c o n d itio n s can cau se errors S ignal slo w d o w n

c a u se race (glitch) c o n d itio n s i f a tra n sitio n s are pro p ag ated a lo n g short p a th s [6], C ro sstalk g litch

o c c u rs w hen th ere is a sw itch for th e signal at o n e line and the signal at the o th e r line is d riven ste a d y ,

in w h ic h case a g litch is fo rm ed at th e o u tp u t o f the steady line T h e co n d itio n fo r c ro sstalk d e la y is

th at the signal at b o th line sw itc h e s to the op p o site d irection T h e re su lt is an in cre ase in fra n sitio n tim e [5] F o r tw o line in a circ u it, i f the signal ữ a n sitio n o f 0 to 1 o r 1 to 0 o n a line p ro d u ce s c o u p lin g

e ffe c ts on a n o th e r line, th en th e signal line is called an a g g re sso r line, an d th e o th e r line is c a lle d a

v ic tim line F o r in stan ce, i f th e v ic tim line an d a g g re sso r line are d riv e n re sp e c tiv e ly b y a static 0 a n d a

Trang 4

126 N.Q Thuong / VNU Journal o f Science, Mathematics - Physics 27 (20Ỉ I) 123-130

fast - rising ( 0 to 1) tra n sitio n , then the cro sstalk p o sitiv e g litch is g e n e ra te d in th e v ic tim ’s ou tp u t

s ig n a l I f the heig h t o f c ro sstalk g litc h h ap p en s to be larg er than the u p p e r - th re s h o ld v a lu e o f logic -

lo w voltage for the g ive tec h n o lo g y , it w ill p ro d u ce logic failures fu n c tio n a lity p r o b le m ) [6], W e

c o n s id e r the function h azard in dig ital circuit, w as p u t into use, as d e te c t the c ro s s ta lk faults H ere w e

d e fin e cro sstalk fault on digital c irc u its b y u sing B in a ry D e c isio n D ia g ra m (B D D ) o f [6],

So i f w e w ant to d ete c t all fo rm s o f h a z ard in the circu it so, th en w e n eed to d e te rm in e structure

h a z a rd s w ithin the desig n p ro cess and fu nction h azard by d e te rm in in g the cro sstalk fau lt

3 D etection structure hazard in com binational circuits

F ro m d efin itio n s o f h azard and the alg o rith m to d etect h azard o f th is m eth o d in se c tio n 2 n ow w e

ca n fin d hazard s in circu its fo r su m - o f - p ro d u cts im p lem e n ta tio n , or for p ro d u c t - o f - sum s

im p lem e n ta tio n , or c o m p lic a ted c irc u it th at is not o n ly in forni P O S o r S O P b u t a lso h o ld all PO S and

S O P L et us c o n sid er an E X - O R g ate [9] (Fig 5) as co m plex circu it

X -

-w

Fig 1 Circuit with EX - OR gate

S te p 1: F rom this circu it w e have c irc u it equation:

Q = X Y + X Y + X + W + X Y + X Y + Z

U se the B o olean rela tio n s to c h an g e circu it equation, w e get:

Q - + XỸ)X w + (X + Y)(X + Y)Z

S te p 2: T he C ircuit eq u atio n has tw o variab les X ( x ^ ',T ^ ) and Y ca n c a u se hazard

F irstly , c o n sid e r for X:

X : =

(Y,Z,W): = (OJ) ^

T h e eq u atio n Q h as tw o su m fa c to r s that are (XY + XY )X W and (X + Y )(X + Y )Z (in form SO P),

b u t in one sum facto r h o ld p ro d u ct term s (PO S) E xam ple: sum fac to r (3Õ" + XỸ)XW hold tw o

p ro d u c t term s (X Y + X Y ) an d x w (PO S and SO P) So w e C a n cre a te from c irc u it e q u a tio n Q to one

m afrix M w ith tw o p ro d u c t term s (X Y + X Y ) , X w and one sum fac to r (X + Y )(X + Y )Z

‘ 0 1 0 1 0 1 0 1 M.A^ =[(3Ò^ + XỸ) (XW) (X + Y)(X + Y ) z ] 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

Trang 5

N.Q- T h uong/ VNU Journal o f Science, Mathematics - Physics 27 (20Ĩ1) Ỉ23-Ỉ30 127

Also re s u lt o f m u ltip lic a tio n in a co lu m n is d efin ed b y ad d itio n (A o C ) for sum fac to rs an d m u ltip ly (M oC ) for p ro d u c t term s E x am p le, resu lt o f m u ltip licatio n in first c o lu m n o f b e lo w M A is

M A ^ = ( t " )

_L

(T ^ )

L

(x«)

(0) L

(T^) (t^^)

( t ) + t : ( t ) ( t ) + t t

(0)

xL

L

0

I]

( x » ) ( t ^ ) Y

(0) (0) z

w

- 1

z =0 ệ ( l ) i n ^ z =0 ^(0) in -z= 0

0

C o m p are w ith D e fin itio n 1 and 2 w e find out one static - 0 h azard ậ (0 ) in Y - w - 1, z - 0, one static - 1 h a z a rd ^ ( l ) i n Y = Z = W = 0 and one dynam ic h a z ard d e p e n d e n t static - 1 h azard ^0 (1) in

Y = l,z = w = 0

Step 4: G o to Step 2, S tep 3 to c o n sid e r variable Y :

Y ; = (T»,x^)

(X,Z,W): = (0,1)

- ( t " ) ( x " ) (0) ( 0 ) ( t “ ) ( t " ) (0) (0) z

0 (t» )(:-'■)+r ' - ( T ” ) ( r ^ ) 0 0

0

z =0 min ■z =0

Trang 6

128 N.Q Thuong / VNU Journal o f Science, Mathematics - Physics 27 (2011) 123-130

w e have id entified h a z a rd s ^ (1) e Ị x = Z = W = o Ị , ^ (0) e í X = W = l , Z = 0 ) Ị and

^Q(0)e(x = l, z = w = 0)

T h u s, the circuit fu n ctio n Q has n o t only dynam ic h a z ard [9], b u t a lso sta tic - 1 h a z a rd and static -

0 hazard

4 D etection C rosstalk induced function hazard

T o determ ine th e g litch in the circu it than w e n eed to id en tify th e c ro s s ta lk fa u lt In p rin c ip le to

d e te rm in e the stuck a t fault o r cro sstalk fault is to create the test v e c to r I f th e re I S a fa u lt in a circuit

th e n the test v ectors o f the fau lt are the input assig n m en ts th at cau se th e fa u lty c irc u it and norm al

c irc u it (fault - free c irc u it) to p ro d u ce d iffe re n t ou tp u t values T h e test v e c to r d is tin g u is h b etw een the

g o o d m ac h in e and th e fau lted m ach in e So the test v e c to r is bu ilt, w h ic h is th e X O R o p e ra tio n o f the

fa u lt - free circuit an d faulty circu it F igures 2 [10] tells us m ore a b o u t th is in F u n c tio n a l E qu iv alen ce

a n d F u n c tio n a l D o m in an ce (F u n c tio n a l C o llapsing): F o r an in p u t v e c to r, V , to b e a te st fo r a fault, we

h ave:

F , ( V ) 0 F , ( V ) = 1

w h e re Fo is the fault - free fu n ctio n and F | is the faulty fun ctio n , re s p e c tiv e ly C o n s id e r a second fault

th a t p ro d u c e s a fault fu n ctio n p2 A c c o rd in g lo the defin itio n o f fau lt e q u iv a le n t fa u lts h a v e ex actly the

sa m e tests T h erefo re, for tw o fau lts to be eq u iv alen t, w e have

[F„ ( V ) © F, (V )] e F, (V )] = 0 => F, (V )] © R ( V ) = 0

Fig 2 \ ’iewing fault Equivalence

In [6] te st v ecto r is ca lled test B D D (T e st B in ary D e c isio n D ia g ra m ), n o rm a l c irc u it a re know n as

n o rm a l B D D an d fau lty c irc u it is fau lty B D D , so w e h av e test B D D ;

T e st B D D = n o rm al B D D • faulty B D D + n o rm al B D D • fa u lty B D D =1

In th e te st B D D , e a c h in p u t assig n m en t w ith attrib u te valu e 1 is a te st v e c to r o f th e fau lt

T h e cro sstalk fau lt is o n e o f th e in te rfe re n c e effects b e in g c a u se d b y p a ra s itic c a p a c ita n c e and

in d u c ta n c e coupling F o r tw o lin e in circu it, i f the signal tra n sit o f 0 to 1 o r 1 to 0 o n e lin e produces

c o u p lin g e ffe c ts on a n o th e r line, then the line is called an a g g re sso r lin e, th e o th e r I S c a lle d a victim line F ig u re 3 show s th e re la tio n sh ip b e tw e en a g g resso r line an d v ic tim lin e [1 1 ]

Trang 7

N.Q Thuong / VNU Journal o f Science, Mathematics ~ Physics 27 (201Ỉ) 123 -Ỉ 30 129

victim

Y1

0 victim

victim

i

i

victim

Positive glitch Negative glitch Slow to fall

Fig 3 Maximal aggressor fault model

Slow to rise

T he P o sitiv e g litc h a n d N e g a tiv e g litch in Fig 3 are fu nction h azard s T h e se H a z a rd s can n o t be rem oved d u rin g th e d e s ig n p ro c e ss, b e c au se th ey a p p e ar only a fte r hav in g tak e n in to use

H ere fo r c irc u it C 1 7 [6 ] sh o w n in Fig 4, w e give an e x am p le for test g e n e ra tio n w hen th ere is a cro sstalk fau lt b e tw e e n s ig n a l lin e s C3 and C4 T h e task o t test g e n e ra tio n is to se a rc h for the in p u ts

v ectors o f c irc u it c 17 in o rd e r to d e te c t the c ro sstalk fault F or ex am p le, a te st v e c to r o f the c ro s s ta lk

fault is made up o f circuit input vectors Vi = (Xi, X 2 , X 3 , X 4 , X 5 ) = (0, 0, 0, 0, 0) and V2 = (X|, X2, X3, X 4 ,

X5) = (0, 0, 0, 0, 1) A p p ly V i and V2 to the circuit seq uentially I f the c irc u it o u tp u ts are yi = 0 a n d y i

= 0 for V i, y , = 0 a n d y2 = 1 for V2., th en th ere is not crosstalk I f th e c irc u it o u tp u ts are yi = 0 a n d yz =

0 for V ,, y, = 1 a n d y2 = 1 for V2,, th en there is crosstalk T h e refo re, th is te s t v e c to r ca n d e te c t th e cro sstalk fa u lt b e tw e e n 6 3 a n d 6 4 H ere, assu m e that C4ÌS a a g g re sso r line an d 6 3 is a victim lin e , an d

th at a d o w n tra n s itio n (1 to 0 ) in sig n al line 6 4 pro d u ces a g litch (1 to 0) in signal lin e e3, th a t is, th e re

is a function h a z ard

ei

X I

X3 X2

X4

X5

6 2

G3

y i

6 4

Fig 4 C17 Cừcuit

Trang 8

130 N.Q T h u o n g / VNU Journal o f Science, M athem atics - Physics 27 ( 2 0 ỈĨ ) Ỉ2 3 -Ỉ3 0

5, C onclusion

T h e d etectio n , lo c a te a n d re m o v e th e H a z a rd s o f th e d ig ita l c irc u its is v e ry c ritic a l fo r circuit

d e sig n e rs S tru ctu re h a z a rd a re d e te c te d a n d re m o v e d e v e n d u rin g th e d e s ig n p r o c e s s an d th e re w ere

s o m e m e th o d s to s o lv e th is T r u th ta b le - M a trix M a th e m a tic s M e th o d p re s e n te d h e re is a new

s o lu tio n to in v e stig a te s tru c tu re h a z a rd T h is m e th o d n o t o n ly d e te c te d all k in d s h a z ard s in

combinational circuits but also point out location o f hazards w ith high accuracy The Truth table -

M a trix M a th e m atic s c a n d e te c t h a z a rd in all c irc u it fu n c tio n s th a t c a n e x p re s s e d b y tru th table T he

re m o v in g stru c tu re h a z a r d e rro rs n o d iffic u lty i f w e u se K a rn a u g h m a p [8] o r h a z a rd a lg e b ra [1-3] to

s u p p ly red u n d a n t te rm s c o rr e s p o n d in g e a c h k in d o f h a z a rd T h e s e fu n c tio n h a z a rd c a n n o t b e rem o v ed

d u rin g th e d e sig n p ro c e s s , b e c a u s e th e y a p p e a r o n ly a fte r h a v in g ta k e n in to u se D u ra tio n o f function

h a z a rd can p e rm a n e n t, te m p o ra ry o r in te rm itte n t, th u s re m o v in g it is n o t e a sy W e can determ in e

fu n c tio n hazard, fo r e x a m p le th ro u g h th e id e n tific a tio n o f c ro s s ta lk f a u lt a s d e s c rib e d a b o v e

R eferen ces

[1] John Knight, A synchronous Circuits Races Cycles, a nd Effect o f Hazards, Electronics D epartm ent Carleton

University, April 1, 2006,

[2]N Q Thuong, Race and hazard algebra in asynchronous system, K//Ơ Jo u rn a l o f Science, Mathematics- Physics, VoL24, N o l (2008) 47.

[3] John Knight, Glitches a nd H azards in D igital Circuits, Electronics D epartm ent, Carĩeton U niversity April 1,

2006

[4] Shehzad Hasan (advisor: Prof w A nheier) (hasan, anheier), Test Pattern Generation a nd Compaction fo r Crosstalk induced Gỉitch Fault, ITEM , University o f Brem en, Otto - H ahn - Allee 1, 28359 Bremen,

Germany

[5] Xiaoyun sun, seonki Kim , B apiraju Vinnakoda, Crosstalk fa u lt detection by dynam ic Idd, Department of

Electrical and Com puter Engineering U niversity o f M innesola, M inneapolis, M M , 55455

[6] Zhong - Liang Pan, Ling Chen, G uang - Zhao Zhang, Cultural A lgorithm for M inim ization o f Binary

Decision Diagram and its A pplication in Crosstalk Fault D etection, International Journal o f Automation and Computing, 7(1) February (2010) 70.

[7] Kwang - Ting Cheng, C urrent D irections in Autom atic Test - Pattern Generation^ U niversity o f California,

Santa Barbara

[8] M Karnaugh, A M ap M ethod for synthesis o f com binational logic circuit, Transactions o f the AỈEE, Communications a n d Electronics, V ol72:l (1953) 593.

[9] E c Tan, M.H Ho, M atrix m ethod to detect logic hazard in com binational circuit w ith EX OR gate, Journal

o f Universal Com puter Science, vol 5, 11 (1999) 765

[10] Raja K K R Sandừeddy, V ishw anti D A grawal, D iagnostic a n d D etection F ault CoUapsing fo r Multiple Output Circuits, D epartm ent o f Electrical and Com puter Engineering A uburn U niversity, AL 36849, USA.

[11] Jin Fu Li, Transistor Stuck - Open Fault, A dvanced Reliable system s (A RES) Lab.

[12] Thamarai, S.M K uppusam y, K M eyyappan, T Enhancing test pattern com pacrion algorithm s for simple

two stage cừcuits, International Journal o f Current Research, v.)l 4 (2010) 015.

Ngày đăng: 14/12/2017, 15:50

🧩 Sản phẩm bạn có thể quan tâm