1. Trang chủ
  2. » Đề thi

Đề thi thử THPT 2018 môn Toán Trường THPT Bình Lục C Hà Nam File word Có ma trận Có lời giải chi tiết

17 148 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 1,38 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Đề thi thử THPT 2018 môn Toán Trường THPT Bình Lục C Hà Nam . File word .doc, Mathtypye 100% kí hiệu toán học Có ma trận Có bảng đáp án Có lời giải chi tiết Bản đẹp chính xác , giá rẻ nhất hiện nay (Xem thêm tại http:banfileword.com Website chuyên cung cấp tài liệu giảng dạy, học tập, giáo án, đề thi, sáng kiến kinh nghiệm... file word chất lượng cao tất cả các bộ môn)

Trang 1

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

Banfileword.com

BỘ ĐỀ 2018

MÔN TOÁN

ĐỀ THI THỬ THPT QG NĂM 2018 THPT BÌNH LỤC C- HÀ NAM- LẦN 1

Thời gian làm bài: 90 phút;

(50 câu trắc nghiệm)

MA TRẬN

Mức độ kiến thức đánh giá

Tổng số câu hỏi Nhận

biết

Thông hiểu

Vận dụng

Vận dụng cao

Lớp 12

( %)

1 Hàm số và các bài toán

liên quan

2 Mũ và Lôgarit

3 Nguyên hàm – Tích

phân và ứng dụng

4 Số phức

6 Khối tròn xoay

7 Phương pháp tọa độ

trong không gian

Lớp 11

( %)

1 Hàm số lượng giác và

phương trình lượng giác

2 Tổ hợp-Xác suất

3 Dãy số Cấp số cộng

Cấp số nhân

4 Giới hạn

5 Đạo hàm

6 Phép dời hình và phép

đồng dạng trong mặt phẳng

Trang 2

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

7 Đường thẳng và mặt

phẳng trong không gian Quan hệ song song

8 Vectơ trong không gian

Quan hệ vuông góc trong không gian

Trang 3

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

Banfileword.com

BỘ ĐỀ 2018

MÔN TOÁN

ĐỀ KHẢO SÁT CHẤT LƯỢNG NĂM 2018 THPT BÌNH LỤC C- HÀ NAM- LẦN 1

Thời gian làm bài: 90 phút;

(50 câu trắc nghiệm)

Câu 1: Hàm số y 1x3 2x2 2x 1

3

    có hai điểm cực trị  x , x khi đó tổng 1 2 x1 bằngx2

Câu 2: Cho hàm số yf x có    

lim f x 2 và lim f x 2

   Khẳng định nào sau đây là khẳng định đúng?

A. Đồ thị hàm số đã cho không có tiệm cận ngang

B. Đồ thị hàm số đã cho có hai tiệm cận ngang y 2 và y   2

C. Đồ thị hàm số đã cho có hai tiệm cận đứng x 2 và x   2

D. Đồ thị hàm số đã cho không có tiệm cận

Câu 3: Tìm giá trị cực đại y của hàm số CĐ y x 33x2  3

Câu 4: Hàm số nào sau đây đồng biến trên �

x 2

4 2

y x x  1 C. 3 2

y x 3x 1 D. 3

y x x

Câu 5: Cho hàm số yf x xác định, liên tục trên � và có bảng biến

Khẳng định nào sau đây là khẳng định đúng

A. Hàm số có đúng một cực trị B. Hàm số có giá trị lớn nhất bằng 3

C. Hàm số có giá trị nhỏ nhất bằng0 D. Hàm số có cực đại và cực tiểu

Câu 6: Hàm số y x 33x2mx có cực trị khi

A. m 3 B. m 3� C. m 3 D. m 3�

Câu 7: Đồ thị hàm số y x 32x25x 1 và đường thẳng y 3x 1  cắt nhau tại điểm duy nhất

x ; y khi đó0 0

A. y0   2 B. y0 1 C. y0 0 D. y0 3

Trang 4

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

Câu 8: Đồ thị hàm số y x 42x2 cắt đường thẳng y 65  tại bao nhiêu điểm?

Câu 9: Tìm giá trị lớn nhất của hàm số y x 33x29x 1 trên đoạn  0; 4

A. max y =0  0;4 B. max y =3 0;4 C. max y =2 0;4 D. max y =1 0;4

Câu 10: Tìm giá trị nhỏ nhất của hàm số y x 9

x

  trên đoạn  1; 4

A. min y = 3 1;4  B.

  1;4

min y = 4 C.

  1;4

min y = 4 D.

  1;4

min y = 6

Câu 11: Cho hàm số y 2x 1

x 2

 Khẳng định nào đúng trong các khẳng định sau?

A. Hàm số luôn nghịch biến trên từng khoảng xác định

B. Đồ thị hàm số có tiệm cận ngang y 2 và tiệm cận đứng x  2

C. Đồ thị hàm số có tiệm cận ngang x 2 và tiệm cận đứng y  2

D. Hàm số có cực trị

Câu 12: Hàm số y 1 x

x 2

 có hai tiệm cận là

A.x 2  và y1 B. x 1 và y 2 C. x 2  và y 1 D. x1 và y1

Câu 13: Cho hàm số 3 2  

y x 3x 1 C Ba tiếp điểm của  C tại giao điểm của  C và đường thẳng

d : y x 2  có tổng hệ số góc bằng

Câu 14: Cho khối lăng trụ tam giác đều ABC.A 'B'C ' có cạnh đáy bằng a , cạnh bên bằng 2a Tính thể tích V của lăng trụ ABC A 'B'C '

A. V a 33

2

6

Câu 15: Cho hàm sốy x 33x2 Gọi M, n lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm 3

số trên đoạn  1;3 thì M n bằng:

Câu 16: Hàm số nào sau đây không có cực trị

A. y x 2 1 B. y x 3x21 C. y x 33x23x D. y x 41

Câu 17: Cho hàm số 3 2

y x 3x  có đồ thị 2  C Tiếp tuyến của  C tại điểm có hoành độ bằng 1 có phương trình là

A. y  3x B. y 3x 3  C. y 3x D. y  3x 3

Trang 5

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

Câu 18: Bảng biến thiên ở bên là bảng biến thiên của hàm số nào

x 1

x 1 y

x 1

x 1 y

x 1

x 2 y

x 1

Câu 19: Cho hàm số y 2x

x 1

 Số tiệm cận của đồ thị hàm số là

Câu 20: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a , cạnh bên SA vuông góc với đáy, mặt; bên SBC tạo với đáy 1 góc bằng 60 o Gọi M, N lần lượt là trung điểm của SB và SC Thể tích

Vcủa khối chóp S AMN ?

A.

3

a

V

2

3

a V 4

3

a 3 V

32

3

a 3 V

8

Câu 21: Cho tứ diện đều cạnh a Tính thể tích V của khối tứ diện đều đó

A. V a 33

12

3

a V 4

12

8

Câu 22: Đường thẳng y m cắt đồ thị hàm số y x 33x 2 tại ba điểm phân biệt khi

A. m 4� B. 0 m 4�  C. 0 m 4 � D. 0 m 4 

Câu 23: Hàm số nào sau đây luôn đồng biến trên tập xác định của nó

2 x

1 2x y

1 x

x 1 y

2x 1

2x y

x 1

y x 3x  có điểm cực tiểu 1 x làCT

Câu 25: Tìm số tiệm cận đứng của đồ thị hàm số

2 2

x 3x 2 y

x 1

Câu 26: Hàm số y 21

x 1

 đồng biến trên khoảng nào dưới đây?

A.  � � ;  B. �;0 C. 0;� D. 1;1

Câu 27: Đường cong hình bên là đồ thị của hàm số dạng phân thức y ax b

cx d

 . Khẳng định nào sau đây đúng?

Trang 6

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

A. y ' 0, x  �� B. y ' 0, x 1  � C. y ' 0, x  �� D. y ' 0, x 1  �

Câu 28: Cho hàm số y x 33mx23 m 21 x m   Với giá trị nào của m hàm số đạt cực đại tại

x 2 ?

A. m 1 B. m 1 hoặc m 3 C. m 3 D. m 0

Câu 29: Tìm điều kiện của m để đồ thị hàm số y x 2

1 mx

 có hai tiệm cận ngang

Câu 30: Cho hàm số y x 1

x m

 Tìm m để hàm số đồng biến trên khoảng � ;0

A. 0 m 1�  B. 0 m 1  C. m 1� D. m 0

Câu 31: Đường thẳng y mx 2 cắt đồ thị hàm số y x 32x2 tại ba điểm phân biệt khi2

A. m4 và m�0 B. m 1 C. m1 và m�0 D. m 4

y 2x x Khẳng định nào sau đây đúng

A. Hàm số đồng biến trên� ;1 B. Hàm số nghịch biến trên 1;� 

C. Hàm số đồng biến trên0;�  D. Hàm số nghịch biến trên  l; 2

Câu 33: Tìm m để hàm số 4   2

y mx  m 1 x  có ba điểm cực trị1

A. 0 m 1  B. m 0 hoặc m 1 C. 0 m 1� � D. m 1

Câu 34: Tìm tất cả các giá trị của m để hàm số y x 42m x2 2 có ba điểm cực trị tạo thành ba đỉnh 1 của một tam giác đều

A. m 0 hoặc m � 63 B. m �63

Câu 35: Cho khối bát diện đều cạnh a Tính thể tích V của khối bát diện đều đó

A. V a3 2

6

3

12

8

Câu 36: Cho hàm số y x m

x 1

 Tìm m để   2;4

min y 4?

A. m 2 B. m 2 C. m 8 D. m 1

Câu 37: Tính thể tích Vlập phương ABCD.A 'B'C 'D ', biết A 'C a 3

Trang 7

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

3

3 6a V

4

3

a V 3

V a

Câu 38: Một vật chuyển động theo phương trình 3 2

s t 3t 6t 4 (s là quãng đường tính bằng m, t

là thời gian tính bằng giây) Vận tốc nhỏ nhất của vật là

A. 3m / s B. 1m / s C. 2 m / s D. 4 m / s

Câu 39: Tìm tất cả các giá trị của tham số m để hàm số y x 3m 1 x  23x 1 đồng biến trên �

A. 7 m 5 � � B. 4 m 2 � � C. m� hoặc m 24 � D. m 2�

Câu 40: Tìm tất cả các giá trị của tham số m để đồ thị hàm số y x 3

mx 1

 không có tiệm cận đứng

A. m 0 B. m 0� C. m 0 hoặc m 1

3

D. m 1

3

Câu 41: Cho hàm số y f x   có đạo hàm f ' x   x 1 x    22 x  4 4  Số điểm cực trị của hàm

số y f x  

Câu 42: Tìm tất cả các giá trị thực của tham số m sao cho hàm số y tan x 2

tan x m

 đồng biến trên khoảng

0;

4

� �

� �

� �

A. m 0� hoặc 1 m 2�  B. m 0� C. 1 m 2�  D. m 2�

Câu 43: Cho hàm số y x 42x2 Tính diện tích S của tam giác có ba đỉnh là 3 điểm cực trị của 3 hàm số trên

Câu 44: Cho hình chóp S ABCD có đáy là hình vuông cạnh a SA a và SA vuông góc với đáy Tính khoảng cách d giữa hai đường chéo nhau SC và BD

2

3

6

3

Câu 45: Cho hàm số y x 3

1 x

 có đồ thị  C Tìm M� C sao cho M cách đều các trục tọa độ

 

M 1;3

M 2; 3

 

 

M 2; 2

M 3;3

 

 

M 4; 4

M 4; 4

 

 

 

M 1;1

M 3; 3

Câu 46: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số 3 2

y x x  cắt trục hoành tại m đúng một điểm

Trang 8

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

27

  hoặc m 0 B. m 0 C. m 4

27

27

Câu 47: Cho hình lập phương ABCD A 'B'C 'D' Mặt phẳng BDC ' chia khối lập phương thành hai 

phần Tính tỉ lệ thể tích phần nhỏ so với phần lớn

A. 5

1

1

1 6

Câu 48: Cho hàm số 3

1

x y

x

 có đồ thị (C).Tìm M�( )C sao cho M cách đều các trục tọa độ:

A. ( 1;3)

M(2; 3)

M

(2;2) M(3;3)

M

(4; 4) M( 4; 4)

M

�  

( 1;1) M(3; 3)

M

Câu 49: Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y x   cắt trục hoành tại 3 x2 m

đúng 1 điểm

27

m

hoặc m>0 B. m>0 C 4

27

m

27 m

  

Câu 50: Cho hình lập phương ABCD.A’B’C’D’ Mặt phẳng (BDC’) chia khối lập phương thành 2 phần Tính tỉ lệ giữa phần nhỏ và phần lớn:

A.5

1

1

1 6

HẾT

Trang 9

-Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

Banfileword.com

BỘ ĐỀ 2018

MÔN TOÁN

ĐỀ THI THỬ THPT QG NĂM 2018 THPT BÌNH LỤC C- HÀ NAM- LẦN 1

Thời gian làm bài: 90 phút;

(50 câu trắc nghiệm)

BẢNG ĐÁP ÁN

Banfileword.com

BỘ ĐỀ 2018

MÔN TOÁN

ĐỀ THI THỬ THPT QG NĂM 2018 THPT BÌNH LỤC C- HÀ NAM- LẦN 1

Thời gian làm bài: 90 phút;

Trang 10

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

(50 câu trắc nghiệm)

LỜI GIẢI CHI TIẾT

Câu 1: Đáp án C

Ta có: 2

1 2

y ' x 4x 2 �x x 4

Câu 2: Đáp án B

Câu 3: Đáp án C

Ta có: y ' 3x2 6x y ' 0 x 0

x 2

  �  � � �

  CĐ  

y '' 0 6

y '' 2 6

 

Câu 4: Đáp án D

Hàm số đồng biến trên �� hàm số có tập xác định D � và y ' 0, x�  ��

Câu 5: Đáp án B

Câu 6: Đáp án C

Ta có: y ' 3x2 6x y ' 0 x 0

x 2

  �  � � �

  CĐ  

y '' 0 6

y '' 2 6

 

Câu 7: Đáp án D

Hàm số đồng biến trên �� hàm số có tập xác định D � và y' 0, x�  ��

Câu 8: Đáp án D

Chú ý: Hàm số không có đạo hàm tại x 2 nhưng y' đổi dấu qua điểm này và x 2 thuộc TXĐ của hàm số nên hàm số vẫn đạt cực trị tại x 2

Câu 9: Đáp án A

Ta có 2

y ' 3x 6x m Hàm số có cực trị �PT y ' 0 có 2 nghiệm phân biệt

 

' y ' 0 9 3m 0 m 3

Câu 10: Đáp án B

x 0

x 2x 2 0

Trang 11

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

Câu 11: Đáp án C

PT hoành độ giao điểm là:

2

2

�  

 

x 1 2

� � � Hai đồ thị có 2 giao điểm

Câu 12: Đáp án D

Ta có y ' 3x2 6x 9 y ' 0 x 1

x 3

 

   �  � � �

Suy ra      

0;4

y 0 1, y 3  26, y 4  127�max y y 0 1

Câu 13: Đáp án D

2

9

x

Suy ra y 1  10, y 3  6, y 4  25 min y3 y 3 1;4   6

4

Câu 14: Đáp án B

Câu 15: Đáp án C

Câu 16: Đáp án D

PT hoành độ giao điểm là 3 2

x 3

 

    � �

�

Ta có

 

       

 

2

y ' 1 9

y ' 3x 6x y ' 1 3 y ' 1 y ' 1 y ' 3 15

y ' 3 9

 

Câu 17: Đáp án A

ABC

 o Thể tích của lăng trụ ABC.A 'B'C ' là:

ABC

Câu 18: Đáp án B

Ta có y ' 3x2 6x y ' 0 x 0

x 2

  �  � � �

Suy ra y 1  1, y 2  1, y 3  3 M 3 M n 2

Câu 19: Đáp án C

Trang 12

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

 2  

3 2

y x 3x 3x�y ' 3 x 1  �0 x�� nên hàm số không có cực trị

Câu 20: Đáp án D

Gọi d là tiếp tuyến của  C tại điểm A 1;0 Ta có   2  

y ' 3x 6x�y ' 1 3. Suy ra

 

d : 3 x 1  0� y  3x 3

Câu 21: Đáp án A

Dựa vào BBT ta thấy đồ thị hàm số có TCĐ là x 1 và TCN là y 1 (loại C và D ) Mặt khác hàm số

đã cho là hàm số đồng biến (loại B )

Câu 22: Đáp án B

Ta có xlim y 0��  �y 0 là TCN, đồ thị hàm số có 2 TCĐ là x �1.

Câu 23: Đáp án C

Gọi I là trung điểm của BC Ta có:

2

2 a a 3

AI a

� �

 � �

� �

SA AI tan 60 3

3 2

S.ABC ABC

Ta có:

S.AMN

S.AMN S.ABC

V  SB SC 2 2 4� 4 8  32

Câu 24: Đáp án C

Gọi O là tâm của tam giác BCD

Ta có:

2 2

� �

� �

2

2 2 2 a 3 a 6

ABC

Câu 25: Đáp án D

Ta có đồ thị hàm số y x 33x 2 như hình vẽ bên

Hai đồ thị có 3 giao điểm �0 m 4. 

Câu 26: Đáp án A

Trang 13

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

 2  

     Hàm số luôn đồng biến trên tập xác định của nó.

Câu 27: Đáp án D

Ta có y ' 3x2 6x y ' 0 x 0

x 2

  �  � � �

  CT

y '' 0 6

y '' 2 6

 

Câu 28: Đáp án A

   

2

2

x 1 x 2

y

    Đồ thị hàm số có 1 TCĐ.

Câu 29: Đáp án B

Hàm số có tập xác định D �.Ta có  2 2

2x

x 1

 Hàm số đồng biến trên khoảng �;0 

Câu 30: Đáp án B

TXĐ: D �\ 1   Hàm số đã cho nghịch biến trên mỗi khoảng xác định

Câu 31: Đáp án C

Ta có: y ' 3x 26mx 3 m  2 1 0�x22mx m 2 1 0

x 2 y ' 2 0 4 4x m 1 0

m 3

Mặt khác y '' 6x 6  �y '' 2   12 6m Với m 1 �y '' 2  0�x 2 là điểm cực tiểu, với

 

m 3 �y '' 2 0�x 2 là điểm cực đại

Câu 32: Đáp án D

Với m 0 �y x đồ thị hàm số không có tiệm cận ngang.

Với m 0 � không tồn tại lim yx 

� � và lim yx 

� �nên đồ thị hàm số không có tiệm cận ngang

thị hàm số có 2 tiệm cận ngang

Câu 33: Đáp án A

TXĐ: D �\ m 

Trang 14

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

Hàm số đồng biến trên khoảng    

 

2

m 1

x 1

m 0

 

���

� � �

Câu 34: Đáp án C

Phương trình hoành độ giao điểm là: 3 2 3 2

2

x 0

x x 2x m 0

g x x 2x m 0

Để đồ thị cắt nhau tại 3điểm thì g x   có 2 nghiệm phân biệt khác 0 0

 

 

g x

m 0

g 0 m 0

Câu 35: Đáp án D

TXĐ: D 0; 2 ta có: y ' 2 2x 2 0 x 1

2 2x x

 Do đó hàm số nghịch biến trên  1; 2

Câu 36: Đáp án A

Hàm số có 3 cực trị khi

 

m 0

0 m 1

ab m m 1 0

 

Câu 37: Đáp án B

o

Câu 38: Đáp án B

Khối bát diện gồm 2 khối chóp tứ giác đều bằng nhau ghép lại

Ta có: V 2V S.ABCD

3 2 S.ABCD ABCD

Do đó V a3 2

3

Câu 39: Đáp án C

Ta có:  2

1 m

y '

x 1

 

 luôn âm hoặc luôn dương trên đoạn  2; 4

Trang 15

Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.

 

2;4

m 2 4

m 8 4

y 4 4

3

 

 ��  ��   � � 

Với m 2 suy ra y' 0 nên    

2;4

min y y 4  (loại)2 Với m 8 suy ra y ' 0 nên    

2;4

min y y 4 4

Câu 40: Đáp án D

A 'C AB 3 a 3  �AB a �V a 

Câu 41: Đáp án A

Vận tốc của vật có PT là: 2  2

v s ' 3t    6t 6 3 t 1  � 3 3

Do đó vận tốc nhỏ nhất của vật là vmin 3 m / s

Câu 42: Đáp án B

Ta có: y ' 3x 22 m 1 x 3   

Hàm số đồng biến trên  

 

y'

2 y'

 

4 m 2

Câu 43: Đáp án C

Đồ thị hàm số không có tiệm cận đứng

m 0

m 0

1

3

Câu 44: Đáp án D

Ta có:      2  2 2 

f ' x  x 1 x 2 x  đổi dấu khi đi qua điểm x 12  nên hàm số đã cho có duy nhất 1 điểm cực trị

Câu 45: Đáp án A

Ta có:  2 2

cos x tan x m

 

 Hàm số đồng biến trên khoảng

 

m 2

tanx m x 0; m tan 0; tan 0;1

4

m 0

� � �� �� � �� ��� �� �� �� � ����

Câu 46: Đáp án B

Ngày đăng: 13/12/2017, 13:55

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w