1. Trang chủ
  2. » Giáo án - Bài giảng

Đề cương giải tích lớp 12 học kỳ 1

11 157 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 588,72 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Đề cương giải tích cực hay, được chọn lọc từ đề thi THPT Quốc Gia năm 2017 Các dạng toán được phân dạng rất kỹ và cơ bản. Các giáo viên có thể tải về và giúp học sinh mình học tốt hơn nhất là đối tượng học sinh trung bình, khá.

Trang 1

MỘT SỐ DẠNG TOÁN THƯỜNG GẶP PHẦN GIẢI TÍCH Chủ đề 1: Sự đồng biến, nghịch biến của hàm số

Dạng 1: Tìm khoảng ĐB, NB

Câu 1 Hàm số yx33x21 đồng biến trên các khoảng:

A  ;1 B 0; 2 C 2;  D.R

Câu 2 Hàm số y x 42x21 nghịch biến trên các khoảng:

A  ;0 B 0;  C.R D 1;

Câu 3 (ĐỀ THPT QG 2017) Cho hàm số yx3 3x2 Mệnh đề nào dưới đây là đúng ?

A Hàm số đồng biến trên khoảng ( ;0) và nghịch biến trên khoảng (0;)

B Hàm số nghịch biến trên khoảng (  ; )

C Hàm số đồng biến trên khoảng (  ; )

D Hàm số nghịch biến trên khoảng ( ;0) và đồng biến trên khoảng (0;)

Dạng 2: Tìm m để hàm số ĐB, NB trên R.

Câu 4: Tìm các giá trị thực của tham số m sao cho hàm số yxmxmxm

2 3 3

1

đồng biến trên R

A m    ( ; 1) (0; ) B m  ( 1;0)

C m   1;0 D m      ; 1 0;

Câu 5: Tìm tất cả các giá trị thực của tham số m sao cho hàm số x m

mx y

nghịch biến trên từng khoảng xác định

A m    ( ; 2) (2; ) B m  [ 2;2]

C m     ; 2  2; D m  ( 2; 2)

Câu 6: Hàm số nào trong các hàm số sau đây nghịch biến trên R?

1 2

x

x

y

B y x4 2x2 1 C 



y

3 2 3

D y 2  3x

Dạng 3: Tìm m để hàm số đồng biến nghịch biến trên một khoảng cho trước.

3

3

m

yxmxmx

đồng biến trên 2; thì m thuộc tập nào:

Trang 2

A m  ;

 

2

   

2 C m  ;

   

2

3 D m     ; 1

A

3

2

m 

B

3 2

m 

C

3 2

m 

D

3 2

m 

Chủ đề 2: Cực trị hàm số

Dạng 1: Tìm điểm cực đại, cực tiểu

Câu 9: Tìm điểm cực đại của đồ thị hàm số y x 3 3x21?

A 1;0 B 2; 3  C 0;2 D 0;1

Câu 10 (ĐỀ MINH HỌA QUỐC GIA NĂM 2017) Giá trị cực đại yCD của hàm số

3 3 2

A y =CD 4 B y =CD 1 C y =CD 0 D y =-CD 1.

Câu 11 Điểm cực trị của hàm số y x 312x212 là:

Câu 12 Điểm cực tiểu của hàm số y x 3 3x22 là:

Câu 13: Hàm số y x 3 3x2 9x4 đạt cực trị tại x1 và x2 thì tích các giá trị cực trị bằng

A 25. B 82. C 207. D 302.

Dạng 2: Tìm số cực trị của một hàm số.

Câu 14: Mệnh đề nào sau đây đúng?

A Hàm số 3

1

x

x y

luôn có cực trị

B Hàm số yx4  2x2 1 có một điểm cực trị

C Hàm số yx3 mx2  x5 có hai điểm cực trị với mọi giá trị của tham số m

D Hàm số y3 x 4 không có cực trị

Câu 15: Tổng giá trị cực đại và giá trị cực tiểu của đồ thị hàm số y x 312x2 là:

Câu 16 Hàm số nào sau đây có 2 cực đại

A.

1

2

y xxB y x4 2x23

Trang 3

C

1

4

yxxD y2x42x2 3

Câu 17: Tìm tất cả các giá trị thực của tham số m sao cho hàm số yx4 3mx2 5 có ba điểm cực trị

A m0 B m3 C m3 D m0

Câu 18: Tìm m để hàm số ymx4m 3x23 - 5m chỉ có cực tiểu mà không có cực đại

A. m 3 B 0 m 3

0

3

m C m

D m  0

Dạng 3: Tìm m để hàm số đạt cực trị ( CĐ, CT) tại 1 điểm.

1 3

yxmxmmx

Giá trị m để hàm số đạt cực đại tại x1 là:

Câu 20: Tìm tất cả các giá trị thực của tham số m sao cho hàm số y x 4(m1)x2m đạt cực tiểu tạix0

Câu 21: Nếu x1 là điểm cực tiểu của hàm số f x  x32m 1 x  2 m28 x 2 

thì giá trị của m là:

Chủ đề 3: Giá trị lớn nhất, nhỏ nhất của hàm số.

Câu 22 Cho hàm số y x 3 3x2, chọn phương án đúng trong các phương án sau:

A  2;0   2;0 

maxy 2, miny 0

B  2;0   2;0 

maxy 4, min y 0

C  2;0   2;0 

maxy 4, miny 1

D  2;0   2;0 

maxy 2, miny 1

Câu 23 Giá trị lớn nhất của hàm số y x24x

Câu 24 Giá trị lớn nhất của hàm số y  x23x5 là

A

29

13 2

Câu 25: Giá trị lớn nhất của hàm số y x 3 3x2 trên 1;1 là:

A 4 B 0 C 2 D  2

Trang 4

Câu 26 (ĐỀ THPT QG 2017) Tìm giá trị nhỏ nhất m của

2 2

y x

x

 

trên đoạn

1

;2 2

 

A

17

4

m 

Chủ đề 4: Tiệm cận

Câu 27: Cho hàm số

2

x 2x 3 y

x 3x 2

  Đồ thị hàm số đã cho có bao nhiêu đường tiệm cận ?

Câu 28 Đồ thị hàm số

2 1

mx y

x m

  có hai tiệm cận khi

A m1,m B.2 m  C.0 m1,m D 2 m 2

Câu 29 (ĐỀ THPT QG 2017) Tìm số tiệm cận đứng của đồ thị hàm số

2 2

3 4 16

y x

 

Câu 30 (ĐỀ THPT QG 2017) Tìm số tiệm cận của đồ thị hàm số

2 2

1

y x

Câu 31 (ĐỀ THPT QG 2017) Đồ thị của hàm số nào dưới đây có tiệm cận đứng ?

A

1

y

x

1 1

y

x x

1 1

y x

1 1

y x

Câu 32 (ĐỀ THPT QG 2017) Đồ thị của hàm số 2

2 4

x y x

 có bao nhiêu tiệm cận

Chủ đề 5: Tương giao Câu 33 (ĐỀ THPT QG 2017) Cho hàm số y(x 2)(x2 1) có đồ thị (C) Mệnh đề nào dưới

đây đúng ?

A ( )C cắt trục hoành tại hai điểm B.( )C cắt trục hoành tại một điểm

C ( )C không cắt trục hoành D ( )C cắt trục hoành tại ba điểm

Trang 5

Câu 34 (ĐỀ MINH HỌA QUỐC GIA NĂM 2017) Biết rằng đường thẳng y=- 2x+2 cắt đồ thị hàm số y x= 3+ +x 2 tại điểm duy nhất; ký hiệu (x y0 ; 0) là toạ độ của điểm đó

Tìm y0?

A y =0 4 B y =0 0 C y =0 2 D y =-0 1

Bài toán: Tìm m để hai đồ thị hàm số cắt nhau tại k điểm phân biệt

2 1 2

x y x

 tại hai điểm phân biệt

A.m   1; 4 B.m 4 C.m   D.m  1 hoặc m 4

Câu 36 Tìm giá trị của m để phương trình 2x³ – 3x² + m = 0 có 3 nghiệm phân biệt

A 0 < m < 1 B –1 < m < 0 C 1 < m < 2 D 0 < m < 4

Câu 37 Tìm giá trị của m để đường thẳng y = mx – 1 cắt đồ thị (C) của hàm số y = x³ + 3x – 1

tại 3 điểm phân biệt

A m > 3 B m < 3 C m > 1 D m < 1

Câu 38 Cho hàm số y = –x³ – 3x² + 2m Tìm giá trị của m để (Cm) cắt trục hoành tại 3 điểm phân biệt

A 0 < m < 4 B –4 < m < 0 C 0 < m < 2 D –2 < m < 0

thẳng d y: 2m 7 tại bốn điểm phân biệt

A  3 m5. B  6 m10. C m 5. D m  3.

Chủ đề 6: Tiếp tuyến

Câu 40:Hàm số

1

3

yxxx

Phương trình tiếp tuyến của đồ thị hàm số song song với đường thẳng y3x có dạng 1 y a x b .  Giá trị của a b là

A.

29

3

B.

20 3

C.

19 3

D.

29 3

Câu 41 Cho hàm số

1

x y x

+

=

- có đồ thị ( )C Gọi d là tiếp tuyến của ( )C , biết d đi qua điểm

( 4; 1 )

A - Gọi M là tiếp điểm của d và ( )C , tọa độ điểm M là:

Trang 6

C M(0; 1 ,- ) M(- 2;1) D ( )

3

2

Mæç-ççè ö÷÷÷ø M -

Câu 42 Đường thẳng y3x m là tiếp tuyến của đường cong y x 32 khi m bằng

A 1 hoặc -1 B 4 hoặc 0 C 2 hoặc -2 D 3 hoặc -3

Câu 43 Cho hàm số y = –x³ – 3x² + 3 có đồ thị (C) Viết phương trình tiếp tuyến d của đồ thị

(C) tại điểm A(1; –1)

A d: y = –9x + 8 B d: y = –3x – 4 C d: y = –3x – 2 D d: y = –9x – 8

Câu 44 Cho hàm số y = x³ – 3x + 2 có đồ thị (C) Viết phương trình tiếp tuyến d của đồ thị (C)

biết tiếp tuyến đó song song với đường thẳng y = –3x

A d: y = –3x – 2 B d: y = –3x + 4 C d: y = –3x + 2 D d: y = –3x – 4

Chủ đề 7: Đọc đồ thị Câu 45: Đồ thị sau là của hàm số nào?

8

6

4

2

2

4

6

1 O

A

1

1 3

yxx

B yx33x2 2

C

1

1 3

yxx

D

1

1 3

y xx

Câu 46: Đồ thị sau là đồ thị của một trong bốn hàm số được nêu ra ở A; B; C; D Vậy hàm số

đó là hàm số nào?

8

6

4

2

2

4

6

3

-1

O

Trang 7

A yx48x21 B y x 4x2 2

C

1

1 2

yxx

D

1

4

y xx

Câu 47: Đồ thị sau là đồ thị của một trong bốn hàm số được nêu ra ở A; B; C; D Vậy hàm số

đó là hàm số nào?

8

6

4

2

2

4

6

8

0

-1 3 1

A

1

3

x

y

x

B

1 3

x y x

C

1 3

x y

x

D

2 3

x y

x

Chủ đề 8: Mũ và Logarit

Loại  BIẾN ĐỔI LŨY THỪA

Câu 48 (ĐỀ THPT QG 2017) Tìm tập xác định D của hàm số y(x2  x 2)3

A D R B D (0;)

C D     ( ; 1) (2; D ) D R \{ 1;2}

Câu 49 (ĐỀ THPT QG 2017) Rút gọn biểu thức

1 6

3

Px x với x 0

A

1

8

Px B Px2 C Px

D

2 9

Px

Câu 50 Tập xác định của hàm số y=(x3 - 27)2p

là:

A D= ¡ \ 2{ } B D = ¡ C D=[3;+¥ )

D D=(3;+¥ )

Câu 51 (ĐỀ THPT QG 2017) Tìm tập xác định D của hàm số

1 3

yx

A D   ( ;1) B D  (1; ) C D R D DR\{1}

Câu 52 Tập xác định của hàm số ( ) 2

là:

A D = ¡ B D= ¡ \ 2{ } C D= - ¥( ;2) D.

Trang 8

( )

Câu 53 (ĐỀ THPT QG 2017) Rút gọn biểu thức

5 3

3 :

Q bb với b 0

A Q b 2 B

5 9

Q b

C

4 3

Q b 

D

4 3

Q b

Loại  BIẾN ĐỔI LÔGARIT

Câu 54 (ĐỀ THPT QG 2017) Với mọi số thực dương a và b thỏa mãn a2 b2 8ab, mệnh đề dưới đây đúng ?

A

1 log( ) (log log )

2

a b  ab

B log(a b ) 1 log  alogb

C

1 log( ) (1 log log )

2

a b   ab

D

1 log( ) log log

2

a b   ab

Câu 55 (ĐỀ THPT QG 2017) Cho a là số thực dương khác 2 Tính

2 2

log

4

a

a

I   

A

1

2

I 

1 2

I 

D I 2

Câu 56 (ĐỀ THPT QG 2017) Cho loga b 2 và loga c 3 Tính Plog (a b c2 3)

2

log b c

Câu 58 (ĐỀ THPT QG 2017) Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây

đúng ?

A log2a log 2a B 2 2

1 log

log

a

a

C 2

1 log

log 2a

a 

D log2a log 2a

Loại  TẬP XÁC ĐỊNH HÀM SỐ LÔGARIT

Câu 59 (ĐỀ MINH HOẠ QUỐC GIA NĂM 2017) Cho hàm số ( 2 )

2

- Tìm tập xác định D của hàm số

Trang 9

Câu 60 Tập xác định của hàm số 2

1

y

x là:

A (0;1) B (1;+¥) C ¡ \ 0{ } D (- ¥;0) (È 1;+¥ )

Câu 61 (ĐỀ THPT QG 2017) Tìm tập xác định của hàm số 5

3 log

2

x y

x

C D  ( 2;3) D D    ( ; 2)[4;)

Câu 62 Tập xác định của hàm số y= 2 ln- ( )ex là:

A (1;2) B (1;+¥) C (0;1) D (0;e]

Câu 63 (ĐỀ THPT QG 2017) Tìm tập xác định D của hàm số y log ( 3 x2  4x 3)

A D  (2 2;1)(3; 2 2) B D (1;3)

C D   ( ;1)(3;) D D    ( ; 2 2)(2 2;)

Câu 64 Tập xác đinh của hàm số y= log 2(x+ - 1 1) là:

A (- ¥;1] B (3;+¥) C [1;+¥ ) D ¡ \ 3{ }

Loại  ĐẠO HÀM HÀM SỐ MŨ & LÔGA

Câu 65 (ĐỀ THPT QG 2017) Tính đạo hàm của hàm số ylog 22 x1

1

2 1 ln 2

y

x

 

2

2 1 ln 2

y x

 

2

2 1

y x

 

1

2 1

y x

 

Câu 66 Đạo hàm của hàm số y=(2x2 + -x 1)23 bằng:

A

2 3

'

x y

+

=

3

'

x y

+

=

+

-

C

2 3

'

x y

+

=

3

'

x y

+

=

+

-

Câu 67 (ĐỀ MINH HỌA QUỐC GIA NĂM 2017) Tính đạo hàm của hàm số y=13x

A y'=x.13x-1 B y =' 13 ln13x C y =' 13x D

13 ' ln13

x

y =

Câu 68 Đạo hàm của hàm số y=2x2 bằng:

A

2

1

.2

'

ln2

x

x

y

+

=

B y'=x.21+x2.ln2 C y =' 2 ln2x x D

1 2 ' ln2

x x y

+

=

Trang 10

Câu 69 (ĐỀ MINH HỌA QUỐC GIA NĂM 2017) Tính đạo hàm của hàm số

1

4x

x

A

( ) 2

'

2x

x

( ) 2

'

2x

x

C

( )

2

'

4x

x

( )

2

'

4x

x

LOẠI 6: PHƯƠNG TRÌNH MŨ – LOGARIT Câu 70: Ph¬ng tr×nh 2 x 3 4 x

4  8  cã nghiÖm lµ:

A

6

2

4

Câu 72: Ph¬ng tr×nh: ln x 1  ln x 3   ln x 7   cã nghiÖm lµ:

Câu 73: Ph¬ng tr×nh: log x log x log x2  4  8 11

cã nghiÖm lµ:

Câu 74: Giải phương trình:

25xx 24.5xx  1 0

A

1 4

x

x

 

1 4

x x



 

Câu 75: Cho hàm sốyln(4 x2) Tập nghiệm của bất phương trình y ' 0là

A 0; 2 B 0;2 C 0;2 D 0; 2 Câu 76: Phương trình 2x7 2 x32 0 có bao nhiêu nghiệm

Câu 77: BÊt ph¬ng tr×nh: log4x7log2x 1  cã tËp nghiÖm lµ:

A 1; 4 B 5; C (-1; 2) D (-; 1)

Ngày đăng: 12/12/2017, 22:41

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w