n
)
Môn - – 2017 : (5
1/ y = x3 – 3x2 – 7 2/ y = x4 – 2x2
: (1,5
y = 3x 2 2x 1
x 0;3
y = 4x 5
x 2
y = 3 x – 2sinx
:
y = f(x) = 3 x 6 x (3 x)(6 x) x 3;6
HD Đặ = 3 x 6 x )
5 Cho a 6, b– 8, c 3 C ằ x 1 ta có:
x4 ax2 + bx + c
Trang 2– – 2017
(
5 = 3
– 3x2 – 7 D = ’ = 3 2 – 6x ’ = 3x2 – 6x = 0 x 0; y(0) 7 x 2; y(2) 11 - 0 2 +
’ – 0 +
y
H –;0), (2;+ H
H = = –7
H = = – 11
0,25 0,5 0,5 0,75 0,25 0,25 2/ (2,5 = 4 – 2x2 D = ’ = 4 3 – 4x ’ = 4x3 – 4x = 0 x 0 ; y(0) 0 x 1 ; y(1) 1 x 1; y( 1) 1 – –1 0 1 +
’ – 0 + 0 – 0 +
y H –1;0), (1;+ H –;–1), (0;1) H = =
H = = – u y(–1) = y(1) = –1 0,25 0,5 0,5 0,75 0,25 0,25
(1,5
y = 3x 2
2x 1
x[0;3]
’ = 7 2
(2x 1) ’ > x [0;3]
+ y(0) = –2 ; y(3) = 1
+
x [0;3]
max y y(3) 1
x [0;3]min y y(0) 2
0,5
0,5 0,5
Trang 3
+ y =
4x 5
x 2
D = \{2}
+
x 2 x 2
4x 5 lim y lim
x 2
+
x 2 x 2
4x 5 lim y lim
x 2
V x = 2
+
x(4 ) 4
lim y lim lim 4
x(1 ) 1
x(4 ) 4
lim y lim lim 4
x(1 ) 1
,
V y = 4
0,5
0,5
+ y = 3 x – 2sinx
D =
’ = 3 – 2cosx
’ = cosx = 3/2 x k2 ; x k2
’’ =
+ ’’ k2
6
) = 1 > 0
H = k2
6
, y( k2 6
) = ( k2 ) 3 6
– 1
+ ’’ k2
6
) = –1 < 0
H = k2
6
6
)= 1 + ( k2
6
0,25 0,25
0,25
0,25
y = 3 x 6 x (3 x)(6 x)
Đặ = 3 x 6 x
+ t2 = 9 + 2 (3 x)(6 x)
+ 9t2 9 2 (3 x)(6 x) 9 9 18 nên t 3;3 2
+F(t) = 1t2 t 9
t 3;3 2
0,5
0,25
Trang 4F’ = –t + 1; F’ = t = 1
+ F(3) = 3 ; F(3 2) 6 2 9
2
+
3 x 6 3 t 3 2
max f (x) max F(t) F(3) 3
khi 3 x 6 x = 3x=–3, x = 6
+
3 x 6 3 t 3 2
6 2 9 min f (x) min F(t) F(3 2)
2
khi 3 x 6 x = 3 2 x = 3
2
0,25
Xé f = 4
– ax2 – bx – 1
f’ = 4 3
– 2ax – f’’ = 2 – 2a + Vì a 6 nên x 1 f’’ d ó f’ 1
+ x 1 ó f’ f’ = 4 – (2a + b)
+ Do a 6 và b –8 f’ 0 x 1 d ó f 1
+ x 1 ta có f(x) f(1) = 1 – (a + b + c)
+ Vì a 6, b –8 và c 3 nên f(x) 0, x 1
+ Hay x4 ax2 + bx + c, x 1
0,25
0,25