1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

documents tips thiet ke quy dao va dieu khien xe tu hanh van chuyen trong kho

7 181 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 1,25 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Giải pháp bao gồm thuật toán thiết kế quỹ đạo 3 spline h với đa thức bậc 7 kết hợp với thuật điều khiển tối ưu theo chuẩn toàn phương để xác định tốc độ góc cần thiết cho rô bốt bám quỹ

Trang 1

Thiết kế quỹ đạo và điều khiển xe tự hành vận chuyển trong kho

Trajectory planning and control of mobile robot for transportation

in warehouse

Nguyễn Văn Tính, Phạm Thượng Cát, Phạm Minh Tuấn, Bùi Thị Thanh Quyên

Viện Công nghệ thông tin, Viện Khoa học và Công nghệ Việt Nam

Email: nvtinh@ioit.ac.vn; ptcat@ioit.ac.vn ; pmtuan@ioit.ac.vn ; quyenbt@pusan.ac.kr

Tóm tắt:

Báo cáo này đề xuất giải pháp thiết kế quỹ đạo và

điều khiển tối ưu xe tự hành cho bài toán vận chuyển

kệ hàng (pallets) trong kho Giải pháp bao gồm thuật

toán thiết kế quỹ đạo 3

spline

h với đa thức bậc 7 kết hợp với thuật điều khiển tối ưu theo chuẩn toàn

phương để xác định tốc độ góc cần thiết cho rô bốt

bám quỹ đạo Ngoài ra việc định vị xe tự hành từ các

tín hiệu đo can nhiễu được xác định bằng phương

pháp lọc Kalman mở rộng Các thử nghiệm trên rô bốt

tự hành Pioneer P3-DX trong phòng thí nghiệm cho

kết quả khả quan

Abstract:

This paper presents methods for trajectory planning

and optimal control of mobile robot for the problem

of pallet’s pick and place in warehouse The

3

spline

h with 7th order polinom is used for

trajectory planning Based on linearized error

dynamic equations and by using optimal control law a

sequence of angular velocities is generated such that

mobile robot always tracks the desired trajectory

Furthermore, we propose an approach of mobile robot

localization using Extended Kalman filter The

implementation of the proposed methods on robot

Pioneer P3-DX gives acceptable results

1 Giới thiệu

Rô bốt di động là một hệ rô bốt có khả năng thực hiện

các nhiệm vụ ở nhiều vị trí khác nhau với khả năng

dịch chuyển bằng bánh xe, xích hay bằng chân phụ

thuộc vào địa hình Khả năng di động làm rô bốt có

nhiều ứng dụng và đòi hỏi phải giải quyết nhiều vấn

đề mới Những vấn đề nghiên cứu đang được nhiều

tác giả trên thế giới quan tâm cho lĩnh vực rô bốt di

động, xe tự hành là khả năng xác định phương hướng

(navigation) của rô bốt, bài toán thiết kế qũy đạo

chuyển động tránh vật cản và điều khiển xe tự hành

tiếp cận quỹ đạo mong muốn

Do mô hình động học và động lực học của rô bốt

di động, xe tự hành thường là mô hình phi tuyến dạng

hệ nonholonomic (có các ràng buộc về tốc độ chuyển

động không khả tích), và có nhiều tham số bất định

nên bài toán thiết kế quỹ đạo và điều khiển đòi hỏi

nhiều nghiên cứu và áp dụng các phương pháp tính

toán phức tạp để bảo đảm xe chạy ổn định trơn tru và

bám quỹ đạo chính xác

Hiện nay, có nhiều nhóm nghiên cứu trên thế giới

đã đạt được những thành tựu đáng kể về điều khiển rô bốt tự hành nâng hạ (forklift) xắp xếp kệ hàng (pallet) trong kho Nhóm tác giả của trường đại học Girona, Tây Ban Nha đã nghiên cứu hệ thống thị giác tìm vị trí 3D của pallet dựa trên màu sắc và đặc tính hình học của nó Từ đó, quỹ đạo tuyến tính được tạo ra để giúp xe nâng hạ có thể di chuyển và tiếp cận pallet [3] Nhóm tác giả của Viện kỹ thuật hệ thống của trường đại học Hannover đã nghiên cứu thành công bài toán nhận dạng/định vị pallet dựa trên hai máy quét laser để forklift có thể tiếp cận và nâng hạ pallet [4] Bellomo và nhóm tác giả đã nghiên cứu phương pháp ước lượng vị trí của pallet dựa vào dữ liệu máy quét laser LIDAR và hệ thống thị giác [5] Ngoài ra bài báo này cũng trình bày thuật toán điều khiển forklift chuyển động tiếp cận để nâng/hạ pallet dựa trên thuật toán “tái lập quỹ đạo dạng polinom” Widyotriatmo và nhóm tác giả đã đề xuất thuật toán

“tiên đoán hướng” (predictive navigation) kết hợp với quỹ đạo ngắn nhất, tránh chướng ngại vật (obstacle avoidance), và sự bất định của các cảm biến,

cơ cấu chấp hành [6] Thuật toán tạo quỹ đạo

3

spline

h được sử dụng cho rô bốt di động loại bánh xe (wheeled mobile robot) được giới thiệu trong [7], [8] và thuật toán mở rộng của nó trong việc tránh các chướng ngại vật khi di chuyển trong [9]

Báo cáo này đề xuất giải pháp thiết kế quỹ đạo và điều khiển tối ưu xe tự hành cho bài toán vận chuyển

kệ hàng (pallets) trong kho Báo cáo gồm 5 phần Phần 2 mô tả thuật toán thiết kế quỹ đạoh3 spline

với đa thức bậc 7 và thuật điều khiển tối ưu theo chuẩn toàn phương để xác định tốc độ cần thiết cho

rô bốt bám quỹ đạo Phần 3 trình bày phương pháp định vị xe tự hành từ các tín hiệu đo can nhiễu được xác định bằng phương pháp lọc Kalman mở rộng Các

thử nghiệm trên rô bốt tự hành Pioneer P3-DX trong

phòng thí nghiệm được mô tả trong phần 4 Phần 5 là một số kết luận và hướng nhiên cứu tiếp tục triển khai trong thời gian tới

2 Bài toán điều khiển rô bốt di động xắp

xếp hàng trong kho

2.1 Xây dựng mô hình động học cho rô bốt di dộng

Rô bốt di động sử dụng trong báo cáo này là Pioneer P3-DX thuộc loại xe chuyển động trên mặt phẳng có hai bánh đẩy và một bánh lái có thể thấy ở Hình 1

Trang 2

(trên) và mô hình của nó có hình dáng hình chữ nhật

(dưới)

H1 Từ trên xuống dưới: rô bốt Pioneer P3-DX và

cấu hình của nó trong hệ tọa độ OXY

Ở đây l1 là chiều dài, l2 là chiều rộng, và lw

khoảng cách giữa 2 bánh xe sau Tọa độ OXY

oxy lần lượt là hệ tọa độ nhà kho và hệ tọa độ cục

bộ gắn trên rô bốt, và (X, Y) diễn tả tọa độ của trọng

tâm rô bốt trong hệ tọa độ nhà kho Góc  biểu diễn

góc quay của trục x-axis so với trục X Tọa độ cục bộ

của rô bốt oxy được thiết lập như sau: vị trí gốc của

tọa độ ở điểm giữa của trục sau và trục x-axis vuông

góc với trục chính của rô bốt Như vậy cặp 3 (X, Y, θ)

mô tả đầy đủ vị trí (X,Y) và hướng  của rô bốt

thường được gọi là cấu hình (configuration) của rô

bốt di động Với giả thiết xe không bị trượt

(no-slippage), rô bốt phải chuyển động với rằng buộc về

tốc độ như sau:

Điều kiện rằng buộc này thuộc dạng không khả tích

(non-holonomic) có nghĩa là ta không thể tích phân để

xác định được quỹ tích những điểm (X,Y) rằng buộc mà

chuyển động của xe phải thỏa mãn Trong thực tế xe

cấu hình của xe (vị trí và hướng) có thể là bất kỳ ở mọi

điểm trong mặt phẳng nhưng khi chuyển động thì tốc độ

của xe phải thỏa mãn điều kiện rằng buộc

non-holonomic (1)

Với điều kiện rằng buộc này, chuyển động của rô bốt có

thể mô tả bới hai biến điều khiển chuyển động (v, ω)

như sau:

cos

sin

 

 

 

(2)

trong đó v là vận tốc tuyến tính (translational velocity) của rô bốt dọc theo trục x-axis và ω là vận tốc góc của

rô bốt Giả định vvmax và   max, trong đó

max

v và max lần lượt là các giá trị lớn nhất của chúng Hệ (2) là hệ động học khá phổ biến cho nhiều loại xe tự hành dùng trong công nhiệp cũng như trong các phòng thí nghiệm

2.2 Bài toán xắp xếp kệ hàng trong kho và thuật toán điều khiển tối ưu

Trong tọa độ toàn cục OXY , rô bốt có cấu hình là (X,Y,), kệ hàng có cấu hình là

) , , ( XP YPP , và cấu hình cần chuyển kệ hàng đến là

) , , ( XG YGG (Hình 2)

H 2 Bài toán xắp xếp pallet trong kho

Cấu hình của kệ hàng trong hệ tọa độ toàn cục có thể được xác định nhờ các cảm biến như máy quét laser, camera gắn trên rô bốt Cấu hình của rô bốt được bộ định vị (localization) ước lượng dựa trên tín hiệu thu

về từ các cảm biến trong của rô bốt Bài toán đặt ra là cần tìm thuật toán để có thể điều khiển rô bốt di chuyển từ vị trí hiện tại tiếp cận kệ hàng và sau đó mang kệ hàng tới vị trí đích đã cho trước Các tác vụ

rô bốt cần thực hiện trong nhiệm vụ xắp xếp này là: I- Di chuyển từ cấu ban đầu tới cấu hình của kệ hàng II- Nhấc kệ hàng lên

III- Di chuyển từ cấu hình đã nhấc kệ hàng tới cấu hình đích

IV- Đặt kệ hàng xuống và đứng nguyên ở vị trí đích

Sơ đồ khối của bộ điều khiển cho rô bốt như trong Hình 3

H 3 Sơ đồ khối của hệ điều khiển

Bộ điều khiển rô bốt bao gồm nhiều khối chức năng, như sau:

Khối định vị có chức năng thu nhận tín hiệu từ các cảm biết trong như gyro, encoder và tín hiệu từ các

X

Y

x y

θ

v

1

l

2

l w l

O

o

Trang 3

cảm biến ngoài như camera, GPS, để ước lượng vị

trí và hướng hiện tại của rô bốt Đây là bộ phận rất

quan trọng trong quá trình rô bốt di chuyển Rô bốt

cần cập nhật vị trí của nó thường xuyên để có hướng

điều chỉnh thích hợp cho quá trình tiếp cận pallet hoặc

di chuyển về đích

Khối nhận dạng môi trường có nghĩa vụ phân tích và

nhận dạng môi trường hoạt động xung quanh rô bốt

dựa trên tín hiệu từ các cảm biến thị giác, và siêu âm

Khối nhận dạng pallet có nhiệm vụ nhận dạng và ước

lượng vị trí và hướng của pallet dựa trên tín hiệu thu

được từ hệ thống thị giác

Khối điều khiển chính là bộ phận có nhiệm vụ tạo và

điều khiển rô bốt bám theo quỹ đạo để rô bốt có thể

tiếp cận và nhấc pallet lên, sau đó điều khiển rô bốt đi

về đích đã định trước Ở đây, chuyển động của rô bốt

sẽ bị hạn chế bởi điều kiện rằng buộc không khả tích

về tốc độ (1)

Hai tác vụ (II) và (IV) sẽ không được đề cập chi tiết

về thuật toán cũng như cách thức thực hiện ở báo cáo

này Báo cáo sẽ đi sâu chi tiết về thuật toán và kết quả

thực nghiệm cho việc thực hiện tác vụ (I) và (III) Để

thực hiện hai tác vụ (I) và (III), chúng ta cần giải

quyết bài toán tìm tín hiệu điều khiển đầu vào v (.) và

(.)

 để rô bốt có thể di chuyển từ vị trí và hướng

ban đầu P X A( (0), (0), (0))Y  tại thời điểm t0 với

(0)

A

vv , v Av(0), A(0), A(0) tới vị

trí và hướng đích P X t B( ( ), ( ), ( ))f Y t ft f tại thời

điểm tt f vớiv Bv t( )f , v Bv t( )f , B ( )t f ,

( )

B t f

3 Thiết kế quỹ đạo và điều khiển tối ưu rô

bốt di động

Để rô bốt thực hiện được các dịch chuyển cần thiết

nêu trên ta cần thiết kế được quỹ đạo chuyển động rồi

tìm thuật toán điều khiển xe bám theo quỹ đạo

3.1 Thiết kế quỹ đạo với đường cong 3spline

Bài toán thiết kế quỹ đạo ở đây nhằm tìm ra một quỹ

đạo trơn đảm bảo điều kiện rằng buộc về tốc độ (1)

cho rô bốt (2) khởi động từ cấu hình ban đầu

( (0), (0), (0))

A

P X Y  di chuyển đến cấu hình đích

( ( ), ( ), ( ))

P X t Y tt trong thời gian t f 0

Ta biết rằng với bất kỳ cấu hình đích

( ( ), ( ), ( ));X t f Y t f q t f t f 0, cũng có thể tạo được một

quỹ đạo 3spline (G3) cho hệ (2) tiếp cận được

bằng các tín hiệu điều khiển v t( ),( )t ;

( ) 0 [0, f]

v t   t t Ngược lại, với quỹ đạo G3 đã

cho trước thì luôn tồn tại cặp tín hiệu điều khiển

( ), ( )

v tt với v t( )  0 t [0,t f] và các điều kiện

ban đầu để hệ (2) bám sát quỹ đạo 3

G đã cho [7]

Giả thiết v A0 và v B0, góc lêch A và B giữa

trục X và các véc tơ đơn vị tiếp tuyến (tangent) phải

trùng với góc lệch của mobile rô bốt tại các điểm ban

đầu và điểm đích (như trong Hình 4) Quỹ đạo 3

G -paths, đường cong nội suy của hàm đa thức bậc 7 đi qua 2 điểm A và B được tính như sau [7]:

( ; )s  p s p s x( ), y( )T

( )

x

( )

y

    , (5)

Trong đó s[0, 1] là tham số quãng đường đã được chuẩn hóa Tại điểm khởi đầu s=0, p s x( )=XA,

( )

y

p s =YA, và tại điểm kết thúc thì s=1, p s x( )=XB,

( )

y

p s =YB Các hệ số của đa thức p s x( ) được tính như sau:

||X A X B,Y A Y B||

0 X A

a ,

1 cos A

a h q , g1 hcosq B ,

a ,

a ,

Các hệ số của đa thức p s y( ):

0 Y A

b ,

1 sin A

b h q , g1B hsinq B ,

b , ,

b , ,

H 4 Quỹ đạo G3 đi qua điểm A và B

Các điểm trên quỹ đạo 3

G còn được gọi là way point (WP) bởi rô bốt có thể di chuyển qua các điểm này để tới điểm đích định trước Giả thiết có N điểm WP trên quỹ đạo 3

G ( số điểm WP N có thể tùy chọn và nằm trong dải giá trị tới hạn), ta có N  1 đoạn thẳng được nối giữa các điểm bao gồm cả điểm đầu và điểm

Trang 4

đích Như vậy để thực hiện tác vụ (I) và (III) trong

bài toán nâng hạ kệ hàng đã đặt ra, bộ tạo quỹ đạo cho quá trình chuyển động sử dụng

3

spline

h là hoàn toàn phù hợp với mô hình rô bốt (2)

H 5 Sơ đồ khối của vòng điều khiển rô bốt di động bám quỹ đạo G3

Chúng ta sẽ sử dụng quỹ đạo 3

G với các thông số được tính theo phương trình (3), (4) và (5) trong việc

tính toán vận tốc tuyến tính và vận tốc góc cho rô bốt

ở phần tiếp theo

3.2 Xác định vận tốc tuyến tính và vận tốc góc

điều khiển rô bốt di động

Sau khi có được tập các điểm WP, ta cần điều khiển

rô bốt di chuyển tuần tự qua các điểm WP để tới đích

Sơ đồ khối của vòng điều khiển kín rô bốt được mô tả

trong Hình 5 Dựa vào sai số giữa quỹ đạo thực tế và

quỹ đạo 3

G đã thiết kế ta có thể sử dụng phương

pháp điều khiển tối ưu để tính vận tốc góc  trong

khi vận tốc tuyến tính của rô bốt được tính toán phụ

thuộc vào vị trí của các chướng ngại vật trong khu

vực môi trường rô bốt hoạt động Vận tốc tuyến tính

và vận tốc góc của rô bốt được đảm bảo luôn nằm

trong vùng giới hạn đã định trước khi được gửi xuống

cơ cấu chấp hành của rô bốt

H.6: Hệ tọa độ quỹ đạo ( O X Y d d d)

Giả thiết (X d,Y d,d) là vị trí và hướng tức thời của

điểm WP trên 3

G Định nghĩa hệ tọa độ quỹ đạo (O X Y d d d)như mô tả trong hình 6 Hệ tọa độ quỹ

đạo thực chất là hệ tọa độ gốc(OXY) bị tịnh tiến một

đoạn X Y d; d theo hướng X, Y và quay xung quanh

trục Z một góc q d Sai số vị trí và góc giữa quỹ đạo

thực của rô bốt và quỹ đạo 3

G tính trong hệ tọa độ

(OXY) là X e X X d;X e Y Y q d; e q q d

Các sai số này nếu nhìn tính trong hệ tọa độ quỹ đạo

(O X Y d d d)sẽ được tính như sau:

d

d

d

d e

 

Gọi ( vd, d)là vận tốc tuyến tính và vận tốc góc mong muốn Mục tiêu điều khiển là xác định tốc độ dàiν và tốc độ góc w của rô bốt sao cho các sai lệnh

về vị trí và góc trong (6) tiến về 0 Chiến lược điều khiển ở đây là đặt ν νd trước và tìmw sao cho rô bốt bám sát quỹ đạo 3

G Đặt e [ ,Y q e e]T là véc tơ sai lệch, bao gồm sai lệch ngangY e và sai lệch góc

e

q Từ hệ phương trình động học (2) và với giả thiết sai lệch góc d

e

q nhỏ ta có thể tính được đạo hàm của véc tơ sai lệch nhìn trông hệ tọa độ (O X Y d d d) như sau:

e d e d

Y v

  , (7)

Hệ phương trình trạng thái của (7) có dạng :

e

u

c c

e = A e + b , (8) trong đó 0

d

v

c

0 1

c

  

 ; u e  d là tín

hiệu vô hướng

Do rô bốt Pioneer P3-DX có cung cấp các số liệu đo dưới dạng số nên ta chuyển hệ phương trình sai số (8) sang dạng rời rạc để có thể tính được tín hiệu điều khiển tốc độ quay của rô bốt trong từng thời điểm cắt mẫu:

(k 1) ( )k u k e( )

trong đó A = I + A cTs, B = B cT s, và Ts là thời gian lấy mẫu Tín hiệu điều khiển tối ưu u k e  được xác định sao cho tối thiểu hóa hàm mục tiêu sau:

     

0

N

k

J e k Q k e k u k R k u k

trong đó Q và R là các ma trận trọng số, Q0,

0

R Ma trận Q được chọn phụ thuộc vào sai lệch

Trang 5

ngang

|

| 50

)

1

,

1

(

2 1 1

e

Y c c

c Q

 trong đó c1, c2là các

hằng số dương Với cách lựa chọn này nếu rô bốt cách

xa quỹ đạo 3

G , trọng số của độ lệch ngang nhỏ hơn,

và nếu rô bốt gần với quỹ đạo thì Q(1, 1) trở nên lớn

hơn Tín hiệu điều khiển u e được tính toán theo luật

điều khiển tối ưu toàn phương:

u k  k k e k (11)

Trong đó véc tơ phản hồi trạng thái tối ưu được tính

ntheo biểu thức

k = b M b + oT o R-1 b M A T o (12)

Ở đây M o là ma trận đối xứng, xác định dương là

nghiệm của của phương trình Ricatti:

R-1

(13)

Từ đó suy ra

     

3 Sử dụng bộ lọc Kalman mở rộng cho

ước lượng vị trí và hướng của rô bốt

Do các số liệu đo từ rô bốt bị can nhiễu nên cần phải

có phương pháp ước lượng phù hợp để có thể xác

định được vị trí và hướng tức thời của rô bốt chính

xác hơn Trong báo cáo này, bộ lọc Kalman mở rộng

được sử dụng do mô hình động học của rô bốt di động

là mô hình phi tuyến Đầu ra của bộ lọc Kalman sẽ

được sử dụng như các giá trị phản hồi (X,Y,) trong

vòng điều khiển ở H.5

Gọi  sLk,  sRk lần lượt là khoảng cách đi được của

bánh xe bên trái và bên phải của rô bốt trong khoảng

thời gian trích mẫu Ts Khoảng cách mà rô bốt đi

được và sự thay đổi hướng của rô bốt trong khoảng

thời gian Ts được tính như sau:

2

Rk Lk

k

w

Rk Lk

k

l

Từ các số liệu này ta có thể tiếp tục tính ra được sự

dịch chuyển của rô bột trong hệ tọa độ cố định là:

w

Rk Lk

k

l

Do các số liệu đo từ các encoder của hai bánh xe bị

cân nhiễu nên các dữ liệu hiệu này là các dữ liệu bị

can nhiễu nên cần có phương pháp lọc phù hợp để có

thế xác định được vị trí và hướng của rô bốt tốt hơn

Ở đây chúng tôi chọn phương pháp lọc Kalman mở

rộng dạng rời rạc với phương trình trạng thái là hệ

động học rời rạc bị can nhiễu của rô bốt Từ hệ

phương trình động học (2) của rô bốt ta có thể xây dựng mô hình rời rạc bị can nhiễu như sau :

k

k

x y

 

 

 

(20)

trong đó

2

(21)

2

(22)

w

f

l

Trong đó ξk  [ x( ), k y( ), k ( )] k là nhiễu hệ

thống, có kỳ vọng là 0 và ma trận hiệp biến là Mk

k s Lk s Rk

u     là tín hiệu đo được từ các encorder

bánh xe trái và phải của rô bốt Tín hiệu đầu ra của bộ

lọc Kalman là:

2k y k 2k

Trong đó zk z1k,z2k,z3k Tlà tín hiệu đầu ra xác định tọa độ và hướng của rô bốt; ζk z z z1k, 2k, 3k T

nhiễu đầu ra có kỳ vọng bằng 0 và ma trận hiệp biến

Nk Ở đây, Các ma trận hiệp biến của các nhiễu

được xác định bằng thực nghiệm: 4

3 3

10

k

2

3 3

10

k

Bộ lọc Kalman mở rộng ước lượng trạng thái của hệ thống x ˆk và ma trận hiệp biến sai lệch trạng thái Pk

dựa trên mô hình hệ thống f(.) trong pha dự đoán:

T

PAP A  M (30) Véc tơ trạng thái ước lượng x ˆk và ma trận hiệp biến sai lệch trạng thái Pk trong pha cập nhật như sau:

 

Trong đó I là ma trận đơn vị Các ma trận A Hk, k là các ma trận Jacobi được tính như sau :

Trang 6

1 1

1

ˆk , k

x u

f A

x (34)

ˆk

x

h H

x (35)

Tính chi tiết các ma trận Jacobi Akvà Hk ta được :

k

A

1 0 sin

2

0 1 cos

2

k

k

s

s

3 3

k

HI

Như vậy bằng phương pháp sử dụng bộ lọc Kalman

mở rộng như trên, ta sẽ xác định được vị trí và

hướng của rô bốt tại thời điểm k chính là véc tơ

ˆ

ˆk xˆ ˆk,y k, k T

x     Tín hiệu ˆ ˆ ˆ, ,ˆ

T

k x k y k k

x     sẽ

được sử dụng trong vòng điều khiển ở Hình 5

4 Kết quả thực nghiệm

Phần này trình bày kết quả thử nghiệm khi áp dụng

thuật toán thiết kế quỹ đạo và điều khiển rô bốt thực

hiện các tác vụ (I) và (III) ở phần trên Thử nghiệm

được thực hiện trên rô bốt Pioneer P3-DX có kích

thước W×H=0,44×38m Tốc độ lớn nhất của vận tốc

tuyến tính và vận tốc góc lần lượt là vmax0.5m/s và

523

0

max

 rad/s Tất cả các quá trình thiết kế quỹ

đạo/điều khiển rô bốt, được thực hiện bởi ngôn ngữ

lập trình C++, thời gian trích mẫu là 100 ms

Giả thiết vị trí và hướng ban đầu của rô bốt tại A, vị

trí và hướng của kệ hàng tại B và vị trí và hướng của

đích cuối cùng là C Rô bốt đi từ cấu hình A(0m; 0m;

0o) B(1,4m; 1,4m; 90o) C(0,2m; 2,8m; 90o) Kết

quả tính toán thu được như sau: B(1,3960m; 1,3947m;

90,0460o); C(0,2030m; 2,7951m; 89,8418o)

Trong thực nghiệm, trước mắt chúng tôi chỉ dung

thiết bị đo duy nhất là encoder (đo tương đối) để tính

vận tốc tức thời và dự đoán tọa độ, hướng rô bốt mà

chưa sử dụng cảm biến ngoài như camera để đo vị trí

tuyệt đối của rô bốt trong không gian hoạt động nên

bộ lọc Kalman mở rộng chưa thể phản ảnh chính xác

vị trí thực của rô bốt Do đó, trên thực tế khi gắp thả

kệ hàng, tọa độ của rô bốt thực bị sai lệch từ 1 đến 3

cm so với mong muốn; hướng thực bị sai lệch vài độ

so với mong muốn

H.7:Quỹ đạo mong muốn và quỹ đạo thực của rô bốt

H.8: Rô bốt Pioneer P3-DX tiếp cận mục tiêu

Trong tương lai, chúng tôi sẽ lắp thêm camera để đo

vị trí tuyệt đối của rô bốt và sẽ áp dụng phương pháp phối hợp cảm biến (sensor fusion) giữa encoder và camera trong bộ lọc Kalman mở rộng Khi đó, đầu ra của bộ lọc Kalman mở rộng sẽ phản ánh chính xác vị trí và hướng của rô bốt hơn

5 Kết luận

Báo cáo đã trình bày phương pháp điều khiển tự động

xe nâng hạ xắp xếp kệ hàng trong kho Phần thiết ké quỹ đạo sử dụng phương pháp thiết kế quỹ đạo

spline

3

 Hai tác vụ (I) và (III) được quy về bài toán thiết kế thuật điều khiển để rô bốt có thể di chuyển từ vị trí ban đầu tới điểm đích cho trước Phương trình động học của rô bốt P3-DX được mô tả ngắn gọn Thuật toán điều khiển được thiết kế theo phương pháp điều khiển tối ưu theo chuẩn toàn phương cho mô hình động học rô bốt rời rạc Các tín hiệu đo được đưa vào bộ lọc Kalman mở rộng dạng rời rạc đẻ xác định vị trí và hướng tức thời của rô bốt Kết qủa thực nghiệm thu được cho thấy thuật toán điều khiển hoàn toàn thực hiện được các nhiệm vụ đã đặt ra như tiếp cận kệ hàng hay trở về một vị trí biết trước

Tài liệu tham khảo

[1] J Pagès, X Armangué, J Salvi, J Freixenet

and J Martis: A Computer Vision System for

Autonomous Forklift Vehicles in Industrial

Trang 7

Environments, Proc of the 9th Mediterranean

Conf on Control and Automation, 2001, pp

379-384

[2] D Lecking, O Wulf, and B Wagner: Variable

Pallet Pick-Up for Automatic Guided Vehicles

in Industrial Environments, Proc of the IEEE

conference on Emerging Technologies and

Factory Automation ETFA’06, Prague 2006,

pp 1169 - 1174

[3] N Bellomo, E Marcuzzi, L Baglivo, M

Pertile, E Bertolazzi, and M De Cecco: Pallet

Pose Estimation with LIDAR and Vision for

Autonomous Forklifts, Proceedings of the 13th

IFAC Symposium on Information Control

Problems in Manufacturing, Moscow, Russia,

June 3-5, 2009, pp 612-617

[4] A Widyotriatmo, B Hong, and K.-S Hong:

Predictive navigation of an autonomous

vehicle with nonholonomic and minimum

turning radius constraints, Journal of

Mechanical Science and Technology, 23

(2009) 381-388

[5] A Piazzi, C Guarino Lo Bianco, and M

Romano: 3-Splines for the Smooth Path

Generation of Wheeled Mobile Robots, IEEE

Trans Robotics, 23 (5) (2007) 1089-1095

[6] J Connors, G Elkaim: Experimental Results

for Spline Based Obstacle Avoidance of an

Off-Road Ground Vehicle, ION Global

Navigation Satellite Systems Conference ION

GNSS 2007, Fort Worth, TX, Sept 25-28,

2007, pp 1484-1490

[7] J H Wei and J S Liu: Collision-free

Composite 3–Splines Generation for

Nonholonomic Mobile Robots by Parallel

Variable-Length Genetic Algorithm, Proc of

the Int Conf on Computational Intelligence

for Modelling Control and Automation,

Vienna 2008, pp 545 - 550

[8] M Hentschel, O Wulf and B Wagner: A

Hybrid Feedback Controller for

Car-Like-Robots, Proc of the Int Conf on Informatics

in Control, Automation and Robotics

(ICINCO), 2006

[9] K Kanjanawanishkul, M Hofmeister: and A

Zell, Path following with an optimal forward

velocity for a mobile robot, Proc of the 7th

IFAC Symposium on Intelligent Autonomous

Vehicles (IAV), pp 1-6, Lecce, Italy, Sept

2010

[10] W H Kwon and S Han: Receding horizon

control: Model predictive control for state

models, Springer-Verlag, London, 2005

Honorary Research Professor in Computational Sciences of Computer and Automation Research Institute of the Hungarian Academy of Sciences He is the Editor-in-Chief of the Journal of Computer Science and Cybernetics of the Vietnamese Academy of Science and Technology (VAST) and a Senior Researcher of the Institute of Information Technology of VAST He

is the representative of the Vietnam NMO at the International Federation of Automatic Control (IFAC) and the Vice President of the Vietnamese Association of Mechatronics His research interests include robotics, control theory, cellular neural networks and embedded control systems He co-authored 3 books and published over 140 papers on national and international journals and conference proceedings

Nguyễn Văn Tính nhận bằng kỹ

sư tại Đại Học Bách Khoa Hà Nội năm 2008 Anh đang làm nghiên cứu viên tại Viện Công nghệ Thông tin thuộc Viện Khoa học Công nghệ Việt Nam, số 18 Hoàng Quốc Việt, Cầu Giấy, Hà Nội

T T Quyen Bui received her B.S

and M.S degrees in Hanoi University of Technology, Vietnam, in 2001 and 2006, respectively She is currently a Ph.D program student in the School of Mechanical Engineering, Pusan National University, Korea Her research interests include robotics, vision systems, and navigation of autonomous vehicles

TS Phạm Minh Tuấn tốt nghiệp Đại học Bách khoa Hà Nội, chuyên ngành Công nghệ Thông tin năm 1997, sau đó nhận bằng Thạc sĩ và Tiến sĩ về Kỹ thuật Điều khiển ở trường Đại học Công nghệ Nanyang, Singapore, vào các năm 2002 và 2006 Từ

2006 đến 2011, ông làm việc tại Phòng Công nghệ Tự động hóa, Viện Công nghệ Thông tin, Viện KHCNVN Hiện tại, ông đang là Phó Giám đốc Trung tâm Điều khiển và Khai thác Vệ tinh nhỏ thuộc Viện Công nghệ Vũ trụ, Viện KHCNVN

Lĩnh vực nghiên cứu chính của ông bao gồm điều khiển xe tự hành, điều khiển tư thế vệ tinh, các hệ nhúng, và hệ thống năng lượng tái tạo Ông đã cho đăng trên 30 bài báo tại các hội nghị, tạp chí trong nước và quốc tế Ông còn là thành viên Hội Cơ điện

tử Việt Nam

Ngày đăng: 07/11/2017, 14:51

HÌNH ẢNH LIÊN QUAN

(trên) và mô hình của nó có hình dáng hình chữ nhật (dưới).   - documents tips thiet ke quy dao va dieu khien xe tu hanh van chuyen trong kho
tr ên) và mô hình của nó có hình dáng hình chữ nhật (dưới). (Trang 2)
(X GY G (Hình 2). - documents tips thiet ke quy dao va dieu khien xe tu hanh van chuyen trong kho
Hình 2 (Trang 2)
( XP YP  P, và cấu hình cần chuyển kệ hàng đến là - documents tips thiet ke quy dao va dieu khien xe tu hanh van chuyen trong kho
v à cấu hình cần chuyển kệ hàng đến là (Trang 2)
PX Y di chuyển đến cấu hình đích ( ( ), ( ), ( )) - documents tips thiet ke quy dao va dieu khien xe tu hanh van chuyen trong kho
di chuyển đến cấu hình đích ( ( ), ( ), ( )) (Trang 3)
T k x k y k k - documents tips thiet ke quy dao va dieu khien xe tu hanh van chuyen trong kho
k x k y k k (Trang 6)
được sử dụng trong vòng điều khiển ở Hình 5. - documents tips thiet ke quy dao va dieu khien xe tu hanh van chuyen trong kho
c sử dụng trong vòng điều khiển ở Hình 5 (Trang 6)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w