1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Extremum sea levels in VietNam coast

17 122 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 1,86 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

YVhen com pute vvith astronom ical param eters of diurnal tide choose f for.

Trang 1

EXTKEMƯM SEA LEVELS IN V1ETNAM COAST

Pham Van ỉỉu a n

D epartm ent o f Hydro Meteorology a n d Oceanology

CoIIegc o f Science, V N U

A b s t r a c t : A revievv ()f th o in v e s tig a tio n s on t.hcì sea le vol changcỉS in S o u th

r h in a soa is presenUỉíl and th e methods o f approxim ate e a U u la tio n o f

th e o retica l tid a l oxtrem cs w crc oxplaineil in (letail

Tho soa level changes ncar V ietnam coast (ỉuo to global w a rm in g and o lh e r

<ìffccts is evaluated to be from 1 to 3 mm per ycar

Kor sevon sta tio n s vvith fu ll sot o f harm onic constants (le tc rm in o tl thc

th e o retica l extrem o heights o f tiíỉa l level by p re d ictin g h o u rly t i do h e ig h ts in a

2 0 -year ptỉriod lf,or o th e r ninctecn stations w ith 1 1 h arm onic constants o f m ain

tid a l co n s titu e n ls the theoretical astronom ical cxt.rome hìvols wortĩ calculatod

by the ito ra tio n mcìthod Thtĩ coniparison showeđ a good agrcỉomen! l)c(wcM n l.wo methods

T he e n ip iric a l oxtrem e analysis was carried out for 25 tid e gaugcs along

V ie tn a n ì coast to e v a lu a tc t h r design values <)f sca lcĩvel <)f ( ỉiffo ro n t ra re fr(?qucncies

T h o a n a lysis a lso show ed th a t th o tiđ a l e xtre in e s and đ csig n le vo l valu o s ()f 20-

y ea r r c tu rn poriod arc of the samc rango 'rhc levcl valuos ()f longer rcĩturn

p e rio d arcì affect.o(J m a in ly hy Hoods and surges

1 In tr o d u c tio n

T h e e x tre m e sea le v e ls a re s tu d y s u b je c t o f m a n v p u rp o s e s T h e m a x im a l a n d

m in im a l v a lu e s o f sea le v e ls a n d t h e ir o c c u rre n c e p r o b a b ilitie s a re ta k e n in to

a c c o n n t in d e s ig n in g h v d ro te c h n ic a l s tru c tu re s

T h e th e o ry o f e x tre m e a n a ly s is o f s ta tis tic a l m a th e m a tic s is a p p lie d to th e

h v d ro m e te o ro lo g y w it h d if fe r e n t d is tr ib u tio n s o f th e o b s e rv e d s e ric s o f c lim a tic a n d

h y d ro lo g ic a l p a ra m e te rs [5 t7 ] T h e m a in c o n c c p ts o f th e s e m e th o d s w ill be

p re s e n te d in s e c tio n 2 1

In th e case t h a t o b s e rv e d se rie s o f sea le v e l a rc n o t lo n g e n o u g h to a p p ly th e

p ro c e d u re s o f e x tre m e a n a ly s is th e o ry , t h a t u s ụ a lly h a p p e n in th e d e s ig n

in v e s tig a tio n s in t h c Coastal zone a n d e s tu a rie s , one m a y use th e o r e tic a l e x tre m e

v a lu e s o f p u re ly t id a l le v e ls

In m a n y p r a c tic a l p ro b le m s th e m in im a l th e o r e tic a l le v e l is a s s u m e d to be th e zero d e p th in t id a l seas T h is le v e l can be c a lc u la te d by s u b tr a c tin g m a x im a l lo w

h e ig h t o f tid e due to a s tro n o m ic a l c o n d itio n s fro m m e a n sea le v e l III so m e c o u n trie s

th is v a lu e is d e te rm in e d b v a n a ly z in g a p re d ic te d s e rie s o f tic ỉa l h e ig h ts 1 9 -y o a r

22

VMU JOURNAL QF SCIENCE, Nat., Sci., & Tech., T XIX NọỊ, 2003 _

Trang 2

E x tv e m u m s c a lc v e ls i n 23

long, o n e ch o ose th e lovvest h e ig h t n m o n g a ll lo w vvatồrs in th e s e rie s III R n s s ia th o

m ỉin m a l th e o r e tic a l le v e l is c le te rm in e d bv k n o w n m e th o d o f V la đ im ir.s k y

V la d im ir s k y m e th ơ d g iv e s an a n a lv tic a l s o lu tio n o f th e p ro b le m w ith

h a rm o n ic c o n s ta n ts o f 8 m a in tid a l c o n s titu e n ts T h o r r s t tid a l c o n s titu c n ts nre

ta k c n in t o a c c o u n t a p p r o x im a te ly lỉe c e n tly th e c a lc u la tio n s can be p e ríb rm e d

ra p id ly in c o m p u t r r s , e v a lu a tin g e x tro m e h e ig h ts o f tid e can be c a r r ie d o u t by m ore íie ta ile d sch e m e s a n d th e a c c u ra c y is im p ro v e d by w ith c lr a w in g a n o n - r e s tr ic te d

n u m b e r o f t id e c o n s titu e n t s ìn to c o n s id e ra tio n [G] S e c tio n 2.2 vvill e x p la in in d e ta ils

a schom e to im p le m e n t th is m e th o d in p ra c tic e a n d in s e c tio n 3 vvill p re s e n te d th e

n p p lic a tio n r e s u lts to o b ta in m a x im a l c h a r a c te r is tic s o f sea le v e l in so m e re g io n o f

V ie tn n m c o a s t

T h e o b s e rv a tio n o f sea le v c l a lo n g V ie tn a m co a s t is m a in ly c a r r ie d o u t by a System o f t id a l g a u g e s o f th e V ie tn a m H v d ro m e te o ro lo g ic a l S e rv ic e G e n e r a lly

s p e a k in g u p to novv t h e n u m b e r o f t iđ a l gauges th a t b e lo n g s to V ie tn a m w a te rs is not m a n v a n d th e n u m b e r o f o b s c rv a tio n y e a rs is n o t lo n g e n o u g h So th e r e is no niuch d e a l w it h th o b e h a v io r o f sea le v e l in g e n e ra l a n d th e e m p ir ic a l e a lc u la tic m s ơf leve l e x tre m e s in s p e c ia l

In so m e r a r e w o r k s th c r e re p o rte d th e r e s u lts o f a n a ly z in g c h a n g e a b le n e s s o f sea le v e l a n d th e e s tim a tin g th e tr e n đ o f.s e a le v e l ris e in th e base o f a n a ly s is o f observed s e rie s o f sea le v e l so m e y e a rs lon g T h e s p e c tru m a n a ly s is [2] s h o w e d t h a t besiđes th e s e m ia n n u a l a n d a n n u a l p e rio d s , in th e a lm o s t o f t i d a l gauges

o á c illa tio n s o f p e rio d o f G to lO y e a r s an d lo n g e r e x is t (íìg u re 1 )

8 < p /

0.0»

(k*.'ỉ

o.c»«

0 0 5 6

txtrb

0.0*0

n t X ‘ 2

ao:-*

mo 4

ii.ođ

Hon 0*1.

\ p‘«ni>d irtiìntt)

0.(1»

0.030

•>.0 'i?

0.024

0.071

0.019 0.015

o.m:

0 t <V J

0 0rtẠ

0 0 0 3

r4 j , Nhon

ỉ L

F igure 1. S p e c tru m o f sea level a t tid a l gauges H on D a u a n d Q u y N h o n

T a b le 1 lis t s th e r e s u lts o f e s tim a tio n o f th e sea le v e l ris e by tr e n d a n a ly s is vv.th m o n th ly m ean le v e l [2 - 4 ] It is fo llo w e d t h a t th e s u m m a ry e ffe c t b y th e g lo b a l vv.irm in g a n d o s c illa tio n s o f sea bed in re g io n o f V ie tn a m c o a s t causes a r a t e o f lc v e l riíe a b o u t 14-3 m tn p e r y e a r

Trang 3

24 P h a m V a n H u a n

T a b le 1 R a te o f sea le v e l ris e a t som e p o in ts a lo n g V ie tn a m c o a s t

y e a rs

T re n d (m m / y e a r)

A f u ll c u m b e rs o m e c a lc u la tio n o f le v e l e x tre m e s vvas p e ríb rm e d in [1 ] I n th is

r e p o r t í ir s t ly lis te d s e rie s o f m o n th ly a ve ra g e , m a x im a l a n d m in im a l le v e ls fo r a ll gauges a lo n g V ie tn a m co a st u p to m id d le o f n in e tie th T h e e x tre m e a n a ly s is w as

c a r r ie d o u t by an a s y m p to tic G u m b e l fu n c tio n o f p r o b a b ility d is t r ib u t io n o f th e

e x tre m e s

2 T h e m e th o d o f s t u d y

2 1 E x t r e m e s a n a l y s i s i v i t h e m p i r i c a l d a t a

A s s u m e VỊ t h e v a lu e s o f in c ic ỉe n ta l v a r ia b le V a t t im e / a n d

A'<m) = m a x {F 1 ) F2 ) )Fm} ; x (m)= m in { F , ,F 2 , ,Vm

O ne is o fte n in t e r e s t in e s tim a tio n th e p r o b a b ility w it h w h ic h m a x im a l o r

m in im aỉ value exceeds a th re s h o ld , Iì{ Xim > x} or P{X(m) < x } If t h e o b serv atio n s

on th e h y d ro m e te o ro lo g ic a l p a ra m e te rs a re in d e p e n d e n t a n d d is t r ib u t e d if fe r e n t ly

due to d istrib u tio n fu n ctio n F{x) - P{Vị < x ) , t h e p recise d is tr ib u tio n of m ax im u m

a n d m in im u m ca n be cxp re sse d :

/ ’ { A '('n) < x } = | / - - ( v ) f a n d < x ) = 1 - |1 - /<-(x)|m (1)

The extrem es a n a ly sis theory says th at w ith th e enough length of sam ple m ,

t h e p r o b a b i l i t y d i s t r i b u t i o n o f t h e n o r m a l i z e d m a x i m u m Y (m)= ( X ' m

bm > 0 c a n b e a p p r o x i m a t e d by o n e o f t h e t h r e e íơ ll ov vi ng f o r m s o f a s y m p t o t i c

function

0*3(v) = c x p |- ( - v ) 1 k K v < 0 k > 0 (Wcibull function)

Trang 4

E x t rem u m SCO ie v e ỉs ỉ n 25

a n d s i m i l a r for t h e m i n i m a l v a l u e

//,(>•) = l - c x p ( - i ' v)

/ / : ( v ) = I - C \ p | - ( - v ) 1 A) V < 0 Ả < 0 (3)

/ /,( > ’) = i - c x p ( - v 1;*), y > 0 * > 0

T hese d if fe r e n t form s o f a s y m p to tic fu n c tio n s a re d e p e n d e n t to th e sh a pe o f

th e t r a i l o f p r o b a b ilìty d is t r ib u t io n F(x) (th e r ig h t sicỉe fo r th e m a x im a a n d th e le ft

s id e fo r th e m in in ia ) I n p ra c tic c th e s a m p le c o n c ỉitio n s (th e h o m o g e n e ity , th e incỉe p en đ o n cc a n d th e d im e n s io n ) in ílu e n c e on th e p re c is io n o f th e a p p r o x im a tio n by

th e above a s y m p to tic íu n c tio n s

A s y m p to tic e x tr e m e c lis tr ib u tio n s in c lu d e th re e p a ra m e te rs : k - s h a p e

p a ra m e te r u m - lo ca l p a r a m e te r a n d hn - scale p a ra m e te r

O fte n , in s te a d o f e s tim a t in g th e d is t r ib u t io n o f m a x im a (o r m i n i m a) t one

e xecutes a d iv e rs e p ro b le m : d e te rm in e a d e s ig n v a lu e , i e a v a lu e x fnii such as

probability o f th e d esig n v a lu e Xp to r e t u r n period T = 1/(1 - p ) , w h e re 7 - th e tinie

to b e e x p e c t e d t h a t t h r e s h o l d X r is e x c e e d e d f o r t h e f i r s t t i m e , o r t h e a v e r a g e t i m e

betvveen tvvo above th r e s h o ld e v e n ts

U s in g th e a s y m p tọ tic e x tre m c d is t r ib u t io n th e d c s ig n v a lu e s can be e a s ily

e xp resse đ K o re x a m p le , v v itlì G u m b e l d is t r ib u t io n , one has:

e x tr e m e variable X m a y b e c a l c u l a t e d k n o v v in g p a r a m e te r s u a n d h :

w here y is also called f,norm alized design value".

A q u e s tio n o f p r in c ip le in th e a p p lic a tio n o f e x tre m e s a n a ly s is th e o ry is th e

p re c is io n o f th c a p p r o x im a tio n (2) 01* (3), i e th e q u e s tio n on th e ra te o f

convergence of p recise d i s t r ib u t i o n of e x tre m e s i ,r’ to th e a sy m p to tic one, in

p rac tic al aspect, th e p re c isio n of design v alu e x p e s tim a te d by asym ptotic

d i s t r i b u t i o n i n c o m p a r i s o n vvith ií's r e a l v a l u e ( b u t o f t e n u n k n o w n ) x ('"].

Trang 5

26 P h a t n V a tì H u n u

T h e m e th o cls o f e s t im a tio n o f e x tre m e d is t r ib u t io n a im a t s e ttle m e n t th e

q u e s tio n on th o i n i t i a l s e rie s , th e r e la t iv e ly s h o r t le n g th o f i n i t i a l s e rie s T ib o r

K a ra g o a n d R ic h a rd w K a ts [5 ] e x p la in d if fe r e n t m e th o d s to e s tin ia te t h e e x tre m e

p a ra m e te rs a n d d e te r m in e d e s ig n v a lu e s a n d t h e ir e s tim a te a c c u ra c y S e c tio n 3.3

p re s e n ts th e r e s u lts o b ta in e đ b y a p p ly in g th e s e m e th o d s to s e rie s o f a n n u a lly

m a x im a l a n d m in im a l le v e ls o f som e t id a l g a u g cs a lo n g V ie tn a m coast

2.2 M e t h o d o f c o ì ì i p u t i n f í e x t r e m e v a lu e s o f t i d c

T h e t id a l h e ig h t a b o ve th e m e a n le v e l m a y be e x p re s s e d by th e fo llo w in g

íb r m u la

I

vvhere f t - th e re d u c e c o e ffic ie n ts d e p e n d e d o n lo n g itu d e o f th e r is in g k n o t o f lu n a r

o r b it ; / / t - th e a v e ra g e a m p litu d e s a n d (pt - th e p h a s e o f t id a l c o n s titu e n ts

D e p e n d in g on t h e t i d a l íe a tu r e , th e h e ig h t o f tid e m a y a c h ie v e th e e x tre m e s

w h c n lo n g itu d e o f th e r is in g k n o t o f lu n a r o r b it N = 0 (fo r d iu r n a l tid e ) o r N = 1800 (fo r s e m id iu r n a l tid e ) I n th e s e c o n d itio n s (7V = 0 ,1 8 0 °) th e phases o f t id a l

c o n s titu e n ts a re e x p re s s e d th r o u g h a s tro n o m ic a l p a ra m e te rs i n ta b le 2

T a b le 2 E x p re s s io n s o f p h a s e s a n d re d u c e c o e ffic ie n ts o f t id a l c o n s titu e n ts [ 6 ]

Tidal

;V = ()• N = 180'

2r + 2h - 3 s + p - g V; 0,963 1,037

t + h - 3.V + p - 90° - g Qí 1,183 0,806

Sa

SSa

Trang 6

E x tv c t ỉiu tt i sca l c v c ls iti 2 7

III ta b le 2 Ị - a v e ra g e zone tim e fro m m ic ln ig h t, a v e ra g e lo n g itu d e o f th e

S u n ; V a v e ra g e lo n g itu d e o f th e M o o n ; p - a v e ra g e lo n g itu d e o f lu n a r o r b it

p e rig ro ; fỉ s p e c ia l i n i t i a l p h a s c r c la te d to th o G re e n vvich lo n g itu d e

T h o e x tre m e h e ig h ts o f tic le m a y be c o m p u te d fro m (7) i f th e v a lu e s o f

a s tro n o m ic a l p a r a m e te r s í lì. V a n d />, vvhich fo rm a c o m b in a tio n c o r re s p o n d in g to

an e x tI ^ m e c o n d itio n , a re k n o w n I n v e s tig a tin g on e x tre m e s th e íu n c tio n z ( í h s p )

fro m (7 ), vve o b ta in a s y s ti m o f fo u r e q u a tio n s w it h fo u r u n k n o w n s í h s a n d /?

w hose v a lu e s d e te r m in e th e e x tr e m e c o n d itio n o f th e t id a l h c ig h t:

I f th e a p p r o x im a te v a lu e s o f a s tro n o m ic a l p a r a m e te r s c o rre s p o n d in g to

e x tr c m e c o n d itio n ( t \ h \ s é % p f) a r c knovvn, w e m a y Ie a d e q u a tio n s ( 8 ) to a lin e a r

fo r m by T a v lo r e x p a n s io n W h c n a p p r o x im a te v a lu o s o f th e u n k n o v v n are

s u ffic ie n t ly close to th e €?xact v a h ie s ụ /? ,.V />,,) th e c x p a n s io n ca n be r e s tr ic te d

in f ir s t o rd e r ite m s

VVith (ie s ig n a tio n s o f c o r r c c tio n s to th e a p p r o x im a te v a lu e s o f a s tro n o m ic a l

p a r a m e te rs as fo llo w in g

th o r e s u lt o f th e e x p a n s io n is a s y s te m o f fo u r lin e a r e q u a tio n s vvith d ia g o n a lỉv

s y m m c tr ic c o e ffic ie n t m a t r ix :

I M 2 sin <pu ^ 4* 2.v: sin (pSs + 2N 2 sin <PX' + 2 K2 sin (pKy +

Kị SIn<pK 4‘ (ỉ ị SIIU/9,, + ì \ s i i í ặ ? , , s i n +

4À /4 sin (pSỊ + 4 M S Ằ sin <PSỊS + 6 M 6 sin <PSỊ = 0

2 M ■ > sin <psr + 2;V, sin <p < % + 2Ả \ sin (pK% + KI sm (pK 4*

(), sin<pa + /* sin + 0 | sinv?£> + 4iV/ 4 sin$?A/ + >

2 A /: sin (pSỊy -f 3 iV , S1I1 (ps% + 2 0 Ị sin (p(ỉ + 3 (/ị sin ^ + 4A/ 4 sin <PA/ 4- 2A/.V4 sin (pSỊSị + 6A /Ố sin - 0

A,r: sin <Pv: + 0 , sin <PC,( = 0,

(8)

vvhcre

Trang 7

P h a m V a n ỉ ỉ u a n

/4

a ) - 4 M 2 c o s<p'm + 4S 2 cos (p's + 4 N 2 cos (p's + 4K 2 co s<p'Kĩ +

+ K | c o s ^ í + 0 ị COSỰ)'0 +P\ COS{?Ị» + ( í| COSộ?£ + + 1 6 A /4 cos +16M S 4 cos <p'KiS + 3 6 A /6 cos •

/?ị = 4jV/2 cos<Pv/ + 4/V, cosợ?Y + 4 /v 2 c o s(p'K + ATj c o s(p’K +

+ ƠJ co s - 1\ co s ợ?), + Ọj cos <Pọ + 16;V/4 co s +

+ 8 A / S 4 c o s ọ 9 m s + 3 6 M ỗ cos<p'ví ;

Cị = - 4 A / , COS0>Ú - 6 ^ 2 cos (p'Ni - 2 0 ì cos <Pq - 3 Ộ | cosợ?£

- 16A-/, CCS «?;,4 - U í S A cos íỡ;,Í4 - 3 6 M 6 cos <?;,6 ,

í/, = 2 N 2 cos + 01 cos ;

/j = 2 M 2 s i n + 2 5 2 s i n (p's + 2 / V 2 s i n + 2AT2 s i n (p'K + + K x sin (p'K + 0 ] sin + l\ sin + (>! sin + + 4A* 4 sin ^ ; Í4 + 4M S 4 sin ^ + 6 M6 sin <p;,6 ;

b 2 = 4 A / : C0S(p's1 + 4 j V 2 cosợ?v + 4 / ^ c o s ộ \ + Ả 'j c o s p í +

+ ƠJ cosọ>'0 +!\ cos (p'j +Qị cos<Pq + ỉ 6A/ 4 cos<Pv/ +

+ 4MV4 cos + 36M ố cos + Sa cos <pýa + 4&SV7 cos <p'SSa;

c 2 = - 4 A / : c o s ọ h - 6 N 2 c o s ^ v - 2 ơ | cos <P o - 3 ( P ị C0SỘ?£

- 16A /4 cos - 4MV4 cos <P v ,v< - 3 6 A /6 cos <p v,A;

d 2 = 2 iV: cos{?v + (?! cosỌọ ;

/ 2 = 2 A / 2 sin + 2/V-, sin + 2/w 2 sin + Áf| sin +

+ ()] sin sin ự Ị, + Qx sin (pQ 4- 4A/ 4 sin + + 2M V4 sin + 6A/ 6 sin (pu + SV/ sin -f- 2 XVc7 sin ;

c 3 = 4 A / 2 c o s (p fM + 9 N : c a s ọ ' s + 4 Ơ , c o s t p ý + 9 Q ị c o s ( p ọ

+ 16A f4 cos + 4M V 4 cos^ /5 + 3 6 A /Ố cos ạ>Ệ Xi ,

J 3 = - 3 W 2 c o s (p \^ - 3 ( ^ J cos<pộ ;

/, = - 2 A / : sin^>v/j ” 3^2 s i n f v 2 - 20j s i n ^ -3Ợj s i n ^

- 4 A í4 sin - 2A/.V4 sin - 6jW() sin <p'M ;

J 4 = /v 2 cos V + ộ j cos ;

/ 4 = N z costpl/ + Q \ cos<Pọt ;

p h a s e o f th e t i đ a l c o n s t it u e n ts c o m p u te d t h r o u g h a p p r o x im a te v a lu e s o f th e

a s t r o n o m ic a l p a r a m e te r s í \ h \ s ' a n d p '

Trang 8

E x t r e m u m s c n lc v c ls i n . 2 9

I n o r d e r to c o m p u te th o v a lu e s o f a s tro n o m ic a l c o rre s p o n d in g to e x tre m c

concỉition (tt,,h0 s 0, pv) w ith a given accuracy t h e ite ra tio n m eth o d m ay be u sed If

m a g n itu d e a g iv e n v a lu e \ổ\ th e s o lu tio n w ill re p e a te d a n d th e n in o rd e r to c o m p u te

th e c o efficien ts of e q u a t io n s (9) vve will u se th e p h a se s (p' co m p u ted t h r o u g h th c

va lu e s c o r re c te d o f a s tr o n o m ic a l p a ra m e te rs :

/ ' = /' + A/' v" = v' + Av', h n = h ' + A h '%p* = p ' + Ap'

step k o f system (9) becom e less th a n ổ :

T a b le 3 V a lu e s o f a s tr o n o m ic a l p a ra m e te rs a p p ro x im a te ly c o rre s p o n đ in g e x tre m e

c o n d itio n [ 6 ]

S e m id iu rn a l tid e

A s tr o n o m ic a l

p a ra m e te rs

M in im a l leve l

c o n d itio n

M a x im a l le ve l

c o n d itio n

r

I f i n i t i a l a p p r o x im a te v a lu e s ( í \ h \ s \ / / ) close to re a l v a lu e s (ía,h f),sa , pa ) th e ite r a tio n r a p id ly c o n v c rg e s T h e se v a lu e s o f a s tro n o m ic a l p a ra m e te rs c o r re s p o n d in g

to e x tre m e c o n d itio n m a y be c a lc u la te th ro u g h fo u r d iu r n a l o r s e m id iu r n a l t id a l

c o n s titu e n ts d e p e n d in g o n tid e fe a tu re T h e e x tre m e c o n d itio n fo r fo u r s e m iđ iu r n a l tid a l c o n s t itu e n t s a n d d iu r n a l c o n s titu e n ts is d e te rm in e d by th e íb llo v v in g

e x p re s s io n s :

- F o r s e m id iu r n a l tid e : <PKU = (ps = (pN =(pKĩ = <p

- F o r d a u rn a l tid e : ỌK = (pQ =<pr = Ọọ - (p,

w h e re (p = 180° + 2mi - fo r th e lo w c s t le v e l a n d (Ọ = 360° + 27U1 - fo r th e h ig h e s t le v e l

F ro m th e s c e x p re s s io n s fo llo w th e ío rm u la e fo r c o m p u tin g th e a p p r o x im a te

va lu e s o f a s tr o n o m ic a l p a ra m e te rs \ i \ h \ s \ p ) c o rre s p o n d in g th e e x tre m e

c c n d itio n s ( ta b le s 3 - 6 )

Trang 9

30 P h a m V a n H u a n

In o rd e r to c o m p u te a p p ro x im a te v a lu e o f a ve ra g e zone t im e / ' th e r e a re tw o

e x p re s s io n s fo r th e lovvest c o n d itio n a n d h ig h e s t c o n đ itio n s e p a r a te ly , s in c e fo r

s e m iđ iu r n a l tid e o n e day has tw o ' h ig h w a te rs a n d tw o lo w vvaters T h e ch o ic e o f

ío rm u la used in c o n c re te case m u s t be re fe re n c e to th e s ig n o f s u p p le m e n ta r y

c o e ffic ie n ts B a n d c (ta b le 4) C o e ffic ie n ts a n d c a re c o m p u te d b y following

fo rm u la e :

t ì - 0 J cosơị +1\ cos a 2 +Q\ COSƠ3 + KJ cosa4|

c = ƠJ sin ơ| + pI sin a 2 + Q\ sin a 3 + K ] sin ữ A J

= g Mỉ c, - g o , " 9 0 °; a ì= s.w , - ° ’58k, - g Ql - 9 0 ^ |

(11)

« 2 = « 5, - 0 f5 g JCi - g p> - 9 0 ° , a 4 = 0 , 5 * ^ - g ^ + 9 0 c

T a b le 4 C o n d itio n s o f th e lo w e s t a n d h ig h e s t le v e l [6 ]

C o n d itio n s o f th e lovvest le ve l C o n d itio n s o f th e h ig h e s t le ve l

w h e n c > 0

t 2 w h e n c < 0

/j w h e n B < 0 /2 w h e n B > 0

T a b le 5 V a lu e s o f a s tro n o m ic a l p a ra m e te rs a p p r o x im a te ly c o rre s p o n d in g to

e x trc m e c o n d itio n [6 ]

D iu r n a l tid e

A s tro n o m ic a l p a ra m e te rs C o n d itio n s o f th e lo w e st

leve l

C o n d itio n s o f th e

h ig h e s t le v e l

T h e choice o f re d u c e c o e ffỉc ie n ts to c o m p u te v a lu e s / / / is d e p e n d e d o n th e tid e

íe a tu re :

1) F or s e m id iu m a l tide, i f { h £ + H G ) ỵ H M < 0,5 th en f is chosen fo r iV = 180 ;

2) F o r d iu r n a l tic ỉc , i f [h K + / / ỡ ) / H K1 > 1,5 th e n f is chosen fo r N = 0*;

o f a s tro n o m ic a l p a ra m e te rs fo r b o th s e m id iu r n a l tid e (ta b le 3) a n d d iu r n a l tid e

(table 5) YVhen com pute vvith astronom ical param eters of diurnal tide choose f for

Trang 10

E x t r c r n u r n s e o l c v c l s ỉ tì 31

;V = 0 , vvhen c o m p u te w it h a s tro n o m ic a l p a ra m e te rs o f s e m id iu r n a l t id e choose /

fo r N 0 a n d N = 180 T h e h ig h o s t le v e l a n d th e lo w e s t le v e l o b ta in e d by th re e

v a r ia n ts vv ill bo a c c e p te d to be th e e xtre m e s

\V e also c o m p u tc th e a p p ro x im a te v a lu e s o f a s tro n o m ic a l p a ra m e te rs

c o rre s p o n d in g th e e x tr e m e c o n đ itio n s by V la c ỉim ir s k y m e th o d ; t h is m e th o d a p p lie d

fo r 8 t id e c o n s titu e n ts In V la d im ir s k y m e th o d th e e x tre m e h e ig h ts o f tid e is

d e te rm in e d by c o n s e q u e n tlv c h o o sin g v a lu e s (pK in th e in t e r v a l fro m 0° to 3G0°:

T h e choice o f re d u c e c o e ffic ie n ts to c o m p u te v a lu e s / / / is also macỉe as th e above re c o m m e n d a tio n s , i e w it h th e s e m id iu r n a l t id c / is chosen fo r yV ^lX O ,

w it h d iu r n a l tid e f is chosen fo r N = 0 W it h m ix e d t id e th e c o m p u ta tio n is

p e río rm e d w it h f f o r N = 180 a n d /V = 0 a n d th a n th e lovvest a n d h ig h e s t va ỉu e s

in tw o v a r ia n ts w il l b e th e e x tre m e lc v e ls

I f c o m p u te e x tr e m e le v e ls vvith 8 tid e c o n s titu e n ts th e n th e la s t re s u lts are

o b ta in e d d ir e c t ly fr o m th e e x p re s s io n s ( 1 2 ) In th e case o th e r c o n s titu e n ts a re ta k e n

in t o th e c o m p u ta tio n s , we m u s t re íe re n c e to v a lu e s (<pK )mm a n d ((pK )mxx fro m

a n a ly z in g ( 1 2 ) to c o m p u te th e a s tro n o m ic a l p a ra m e te rs c o rre s p o n d in g e x tre m e

c o n d itio n s í j ụ s \ p a n d u s c th e m as th e a p p ro x im a tio n s to c o m p u te th e c o e ffíc ie n ts

o f e q u a tio n s (9)

T h e c o n d itio n s o f th e lovvest le v e l:

H = A'j cosỌị + K c o s(2 Ọ K + a A ) +|/ỈJ 4- 7Ỉ, 4- / Ỉ 3Ị

/ = Ả' jC 0s ^ A + K : cos(2<pk + ơ 4 ) - | / { 1 + / ỉ 2 + / ỉ 5|

(12)

w h e re

/í, =y[M Ỉ +()■' + 2 M , O xc o s r J ;

Ngày đăng: 29/10/2017, 19:15

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm