Neu ba mat phang cSt nhau theo ba giao tuyen phan biet t h i ba giao tuyen ay hoac dong quy hoac doi mot song song... T a t ca cac canh khong thuoc hai day deu song song vdri nhau.. Goi
Trang 2mm i I tiJHG THIG VA HJT PHIB TRDNE KHONG emii
B A I T O A N 1 QUAN H E SONG SONG
Hai diTofng t h a n g phan biet cung song song vdfi mot di/dng t h a n g thuf
ba t h i song song vdi nhau
Neu ba mat phang cSt nhau theo ba giao tuyen phan biet t h i ba giao tuyen ay hoac dong quy hoac doi mot song song
He qua
Neu hai mat phang phan biet Ian lirgt d i qua hai du'&ng t h a n g song song t h i giao tuyen ciia chiing (neu c6) song song vdi hai diTdng t h a n g
do (hoac trijng vdi mot trong hai diTdng thSng doj
2 Dvfcfng t h ^ n g song song vdfi m a t p h ^ n g
Trang 3g a song
song v
di mo
t m at p hd ng (P) th
g (Q ) chiif
a a m
a c
at (P ) t
hi cS
t (P ) t he
o gia
o t uy en song song
i m at p hS ng p ha
n bie
t cu ng song song v
di mo
n cii
a ch iin
g (n eu c6) cu ng song song v
di diTdn
g t ha
ng
do
3 Ha
i m at p ha ng s on
g so
t p ha ng g
oi la song song k
hi ch un
g kh on
g c
6 d ie
m chung
b) Dieu
kien de hai mat
phdng song song :
Dinh li :
Ne
u mo
t m at p ha ng ( P) chijf
a ha
i d iid ng t ha ng
a va
b ca
di ma
t p ha ng ( Q) th
i ( P) son
g son
g v
di (Q )
m ng oa
i mo
t m at p ha ng c6 m ot v
a c
hi mo
t m at
p
ha
ng
song song v
di ma
t p ha ng
g th an
g a song song v
di ma
t p ha ng ( Q) th
i q ua
t m at p ha ng ( P) son
g son
g v
di ma
t p ha ng ( Q)
He qua
2
Ha
i ma
t p hd ng p ha
n bie
t cii ng song song v
di mo
t m at
ha ng
di nh au
Tinh chat
2
Ne
u ha
i m at
ha ng (P) va (Q) son
g son
g th
i m
oi ma
t p ha ng (R) d
a ca
t
(P) th
i p ha
i c
at (Q ) v
a ca
c gia
o t uy en ciia chun
g son
g song
d) Dinh
li Ta-let trong khong
gian :
Dinh li thuan
Ba m at
ha ng d
oi mo
t son
g son
g ch an r
a t re
n ha
i c
at tu ye
tin
g
ti le
Dinh li ddo
Gia sijf tr en h
ai dii dn
g th an
g a v
a a ' I an li id
t l ay
ai b
o d ie
A
B BC C
A'B ' B'
C CA '
Kh
i d
o ba d ud ng t ha ng A A' , B B' , C
C ctin
g son
g son
g vd
g
e) Hinh
Idng tru
va hinh hop :
Binh nghla hinh Idng
tru
Hi nh l an
g tr
u l
a h in
h c
6 h
ai da
y l
a h
ai da giac na
m t ro ng
u Th6 ' Ha
u NguySn VTn
-h CJ
n
Trang 4phSng song song T a t ca cac canh khong thuoc hai day deu song song vdri nhau
H i n h lang t r u c6 :
- Cac canh ben b&ng nhau
- Cac mat ben la cac h i n h h i n h hanh
- Hai day la hai da giac bang nhau
Dinh nghia hinh hop
H i n h lang t r u c6 day l a h i n h b i n h hanh diTcfc goi la h i n h hop
H i n h hop c6 sau m a t deu l a h i n h b i n h hanh, cac m a t doi dien t h i song song vdri nhau
Cac diJcfng cheo ciia h i n h hop cdt nhau t a i t r u n g diem ciia moi di/dfng
II CAC DANG BAI TAP VA PHl/dNG PHAP GIAt
1 C a c d a n g b a i t^p
a) Cac bai t a p trong muc nay, chii yeu la chijfng m i n h hai dudng t h a n g cheo nhau, h a i di/dng thang song song, diicJng t h a n g va m a t phSng song song, h a i m a t phang song song De giai cac b a i t a p n a y ta thifdng suf dung cac t i n h chat ciia quan he song song va t r o n g nhieu
triidng hgfp t a suf dung phiCang phdp chiing minh phdn chiJcng
b) Ngoai ra cac t i n h chat ciia h i n h lang t r u , h i n h hop cung giup t a giai cac bai t a p ve quan he song song (cac canh ciia h i n h lang t r u , h i n h hop, cac mat ben ciia h i n h hop v.v )
^ B a i t ^ i p
du'cfng thang sau la cac cap dudng thang cheo nhau :
A B va CD A D va BC AC va BD
Chi dan : Suf dung phi/cfng phap phan chufng
diem ciia cac canh SA, SB, SC
a) Chufng m i n h mp (MNP) // mp (ABCD)
b) Chufng m i n h giao diem ciia mp (MNP) vdi SD l a t r u n g diem Q cua
doan thang SD
c) Goi O la giao diem ciia A C va BD, O' l a giao diem cua MQ va N P
Chufng m i n h ba diem S, O, O' thSng hang
Chi dan : Doc gia tir giai
theo thuf tir la t r u n g diem ciia hai canh SB, SD
Hpc va on luyen theo CTDT mon Toan THPT 195
Trang 5^^^^^^^^^
a) Chirn
g min
h M
N / / (ABCD)
b) Ne
u eac
h xa
c din
h gia
o die
m P cua m
p (AMN) vdf
i can
h SC
e) Xa
c din
Ch
i dS
n : Doc gi
a tii
giai
4 Ch
o hin
h ho
p ABCD.A'B'C'D'
; O la giao diem eiia A
a) Chufn
g min
h m
p (AB'D') /
/ mp(C'BD)
b) Chijfn
g min
h AO/
/CO'
Chi da
n : Doc gi
h ho
p ABCD.A'B'C'D': go
i O, O' the
a) Chufn
g min
h mp(AB'D') /
/ mp(C'BD)
b) Chijfn
g min
h A'
O / / CO'
Chi da
n : Doc gi
h tij
f mp
t di em d en mpt ma
t ph an
g
Cho ma
t phan
g (P) v
n (P)
Khoang each
tii die
m O den
m
at
phang (P) l
a d
p da
i doa
n thang
OH /p\
2
d(d, (P)) = d(0
e d, (P))
196 tJ.
; TS , V
Q Th
e Hu
u Nguygn VTnh Can
Trang 6-3 K h o a n g e a c h givia h a i dxXdng t h a n g c h e o n h a u
cheo nhau la do d a i doan vuong goe
ehung eiia hai di/ofng t h ^ n g
diidng t h a n g cheo nhau a; b t h i bSng
khoang each tCr mot diem A e a den
mot m a t phang (P) qua b va song
song vdri difcfng t h a n g a
Chuy :
a) Ngoai ba trUcfng hcrp t r e n day, ta con c6 k h o a n g each giiJa hai diTcrng
thang song song, khoang each giiJa h a i m a t phang song song Cac
khong nhae l a i of day
b) De dung mat phang (P) qua b va song song vdfi a, ta lam nhii sau :
dinh bofi hai dUcfng t h i n g b va a ' chinh la mat phang (P)
II CAC BAI TAP VA PHl/dNG PHAP GlAi
Lj C a c d a n g b a i t a p
a) Bai tap ve tim khoang each tit mot diem den mot mat phang
De t i m khoang each ttr diem O den mat phang (P), triTdrc het ta t i m h i n h chieu H eiia O tren (P), sau do t i n h do dai doan thang OH
Bai toan nay lien quan den v a n de difofng thang vuong goe vdfi m a t phang va k h i t i n h OH, thiTcfng ta phai sijf dung den cac kien thiife ve he thufc Itfofng trong tam giac, nhat la he thijfe lUgfng trong tam giae vuong
b) Bai tap ve khoang each til mot diCang thang den mot mat phang song song
Ta t i n h khoang each gi-iifa ducfng t h a n g A den mot mat phang (P) song
song vdi A bang each t i m khoang each tiT mot diem M G A den m a t
phang (P) Dieu quan t r o n g trong viee giai bai toan nay la of cho chon diem M e A mot each thich hgp, giup t a suf dung het cac gia t h i e t ciia bai toan t i n h duoe d(M, (P))
e) Bai toan ve khoang each giita hai duang thdng cheo nhau
De t i m khoang each giOfa hai diTcfng t h a n g cheo nhau a; b, t a thiidfng lam nhif sau :
Hoc va on luyen theo CTDT mon Toan THPT , 1 9 7
Trang 7- Ti
m mo
t ma
t phan
g (P) chuf
a a va song
s on g
vdi b (hoac chijf
at phan
g (P) thiicfng
- Tim mot die
m M thich
hop thup
c a
va tim khoang eac
h ti
r M den
c on g
thijfc, h
e thijfc
liTpfng
trong ca
c ta
m giac
2 Ca
c b
ai ta
p
6.
Cho hin
h cho
p tam giac S.ABC, ha
i m
at phan
g (SAB) v
a (SAC) vuon
h A
t re n
mat phan
g (SBC)
b) Bie
t A
B = 13cm, B
C = 14em, C
A = 15cm va SA = 16em Tin
h A den m
at phan
g (SBC)
CH
I DA
N
(SAB) 1
(ABC)
a) Ta
CO
: (SAC
) 1
(ABC) ^ SA
± (ABC)
(SAB) n
(SAC) =
SA
Trong tam giac AB
C, ke
diiomg ca
o A
M
AM ± BC
SA
1
(ABC)
AM ±
BC
Tir SM
1
BC
(Dinh
li
3
diTotng v uo ng g oc )
Trong
t am g ia c
SAM ke
M
BC ± (SAM)'
AH
cz
(SAM)J
TCr (1) v
a (2) t
at phan
g (SBC),
b) Trirdt
c het, t
a tin
h die
n tic
h tam giac AB
C the
o cong
1
suy r
a p
- a = 8
; p
- b = 7
; p
- c = 6
SABC =
V21.8.7.6 =
84 2S M = o A a e y t Tir da
^ABC _
u Th
e Hi;
u Ng
-u ye
n V
T nh CJn
Trang 8Tarn giac S A M vuong t a i A va A H la di/dng cao thuoc canh huyen
Theo he thiic li/gfng trong tarn giac vuong ta c6 :
1 Ta CO the t i n h A H theo each khac
Trirdrc het, ta t i n h S M tiT tam giac vuong S A M
2 Ta cung c6 the dirng diem H theo each l i luan sau :
Do SA 1 (ABC) =^ SA 1 BC Dirng qua SA mot mat phang (P) vuong goc vdri BC; mSt phang nay cat BC tai M Trong mat phang (P), ta ke
nen A H 1 (SBC) hay H la h i n h chieu ciia A tren mat phang (SBC)
7 Cho h i n h chop S.ABC; hai mat phang (SAC) va (SAB) vuong goc v6i
mat day (ABC) va SA = a V 2 T i n h khoang each tCr dinh A den m a t
phang (SBC) trong cac trudng hop :
a) Day ABC la tam giac deu canh a
b) Day ABC la tam giac can dinh A, goc A - 120° va A B = AC = a
c) Day ABC la tam giac vuong t a i B; AC = 5a, BC = 4a
Trang 9AH'' (aV2)'
• +
AH =
iV66
11
b) Go
i M la
trung die
m cii
a BC
Trong tam giac SA
1 (SBC)
Trong tam giac SA
M t
hi
11
1
AH
^ AS' AM'
vdi A
S aV2 v
-a A
M = AB.coseO" =
-2
ta tin
C O
: S
A ± (ABC)
BC ± (SAB)
Trong tam giac SAB, k
e A
H 1
SB
^ AH ± (SBC) v
De tha
y AB' = 9a'
13
8 Ch
o hin
h cho
p S.ABCD, chie
u ca
o bSn
g a\/3, ha
A = 60"
SB
CH
I DA
N
Ta C O
: Go
i O la giao die
200 ,
.' TS V
u Th
e Hi/
u Nguy§n VTn
-h Ca
n
Trang 109 Cho tuf dien A B C D H a i m a t ben ABC va DBC n a m trong hai m a t
phang hop \6i nhau mot goc 60° M a t ben ABC la mot t a m giac deu
con m a t ben DBC la mot t a m giac vuong can, dinh D Biet D B = a Goi M la trung diem cua canh BC
Trang 11=>
AM
D 60°
-CH
I DA
N
1.
M l
a tru
C
Tam giac DB
2
Ta
m gia
c ABC deu, can
h
li cosi
n va
o ta
m gia
c AMD :
AD^
= AM' + DM' 2AM.D
M.C
0S AM D
y d(A, (DBC)) =
A
H
Trong tam giac vuon
g AHM, A
M = ; A
MH = 60
°
AH = AM.sin60
° =
> A
H = 3a
V2
Ta cung c6 B
C 1 (AMD) ^
(ABC) 1
(AMD) Tron
g tam giac AM
K 1 (ABC)
DK = d(D, (ABC))
Trong tam giac vuon
g DKM, D
M =
1V2
va AMD = 60
°
DK = DM.sin60
° ^ D
K =
3 Go
i J la giao die
D t
ai I hay MI
1 A
D
Ta l
ai c
6 B
C ± (AMD) m
a MI
c :
(AMD) MI ± B
C
=> MI la doan vuong
AAIM
c/5
AAK
D IM A
D
AM K
D IM = AM.A
D
KD
=> IM = aV8-2V
3
Trong m
at phan
g (DBC), ti
r C ta
ke C
x // DM t
hi ma
t phan
g
(A, Cx) l
M, (A, Cx))
Ta lay mot die
m tu
y y tren D
M, die
m H chang ha
M, (A, Cx)) = d(H, (A, Cx))
-n
Trang 12Tong hop cac t h o n g t i n t r e n , ta c6 :
d(DM, AC) = d ( D M , (A, Cx)) = d ( H , (A, Cx)) = H P
1 1 1 Trong t a m giac vuong A H K t h i
HK^
Suy ra H P =
10
Chii y : V i A H i (DBC) =^ A H 1 Cx, do do ta c6 the xac dinh mat phang
(AHK) bSng each diing qua A H mot m a t phSng vuong goc vdi Cx, m a t
phang nay cat Cx t a i K va ta c6 A K _L Cx, H K 1 Cx
a) T i m khoang each tii d i n h C den m a t phang (C'BD)
b) T i m khoang each giiifa hai difcirng t h a n g A D ' va CB'
c) * T i m khoang each giiifa hai dLforng t h a n g A B ' va B C
a) Ti^ CB = C C = CD va A ' C = A'B' = A D t a suy ra CA' 1 (C'BD)
Goi H la giao diem ciia CA' vdti mp
Tam giac deu C'BD c6 canh la aV2
nen chieu cao
Trang 13Chii y
: C
o th
e tin
h C
H the
o eac
h khac
6 can
h aV
2 nen
S CB
U = =
4 2
Ma
t khac
V
c.c BD =
^.
CH S CB
D CH
= ^iXtoe =
e) T
a C O
AB' // C
D ne
n m
at phSn
g (C'BD) l
i I la giao die
m cu
a AB' v
a BA' t
hi I thuoe AB
a B
C th
i b^n
g khoan
g
each giCfa difcfn
g than
g AB' vdr
i ma
t phSn
g (CBD) v
a cun
g bSn
g
khoang each
i\i die
m I den mp (C'BD) :
d(AB', BC) = d(AB', (C'BD)
) = d(I, (C'BD))
Ta xac din
h hin
h chie
u J ciia die
m I tren mp (CBD)
Vi CA' i (CBD) m
a (A'BC) 3
CA' ne
n t
a e
o (AB
C) L
(C'BD)
Ta la
i C O (A'BC) n
c (A'BC) ne
n hin
h chie
u J ciia I tren mp
(C'BD)
phai na
m tre
n diicfn
g thang B
H
A'C
L
(CB
IJ // A'C
Trong tam giac A'B
H t
hi IJ
diicrng trun
g bin
h nen
J = —
AH 2
Vi A'
C = aV3;
CH = ^ nen
A'H
D c
6 h
ai ma
n ma
t
ben DBC la tam giac vuon
g ca
n ta
i din
h D va DB = a
a) Tin
at phSn
g (DBC) v
b) Tin
D v
a BC, khoan
C v
a DM; M la trung die
m cii
a can
h BC
204
'; TS , V
u Th
e Hif
u NguySn Vin
-h Ca
n
Trang 14CHI D A N
a) Goi M la trung diem ciia canh BC t h i A M 1 BC; D M 1 BC
=:> A M D = 60"
Ta cung c6 BC ± (AMD) ^ (AMD) ± (DBC)
Trong tam giac A M D , ke A H 1 M D x> A H 1 (DBC)
=> A H la khoang each tii diem A den mp<DBC)
Trong tam giac DBC t h i DB = a => BC = aV2
Tam giac ABC la tam giac deu canh
Trong tam giac vuong A H M ,
T i n h A D tCr tam giac A M D vdri
AD^ = A M ' + M D ' - 2 A M M D C 0 S A M D =0 A D = -Vs - 2^3
2
Trang 15Til da
y t
a tin
h dirg
e
MI 3a
V8-2V3
Chu y : C
o th
e tin
h MI theo each MI
AD = AH
MD = 2SAMD-
TCr C ta
ke C
x / / MD t
hi ma
t phan
g (A, Cx) l
a
vi H
e MD nen ta c6
d(
MD, AC) = d(M
D, (A, Cx)) = d(H, (A
, Cx))
Ke HF ± C
g tam giae AHF
ke HE ± A
F ^ H
E J (A, Cx)
a e
o d(D
M, AC) = d(H, (A
, Cx)) =
H
Trong tam giae vuong
AHF, t
a e
o :
H E*
- ^ HA' HF'
^ , „
3aV
2 -
.^
aV2 _ 2V5
BAITOAN 3.
CAC BAITOAN
VE G
OC
I- CA
C KIE
N THLT
C C d BAN
De xa
e din
t die
m O thuoc a
a v
a b' l
g a, b
b) Goc
giUa duang thdng va
a v
a ma
g a
va hin
h
chieu a' eii
a a tre
n m
at phSn
g (P)
r sa
u :
+ La
y mo
t die
m A thuoc a
mat
phang (P) : A
H ± (P)
+ Gi
a sij
f a cat (P) t
ai die
m O t
hi go
e AO
at phSn
g (P)
c) Goc
giQa hai mat phang
Gia
SLf
hai ma
t phan
g (P), (Q) gia
Trang 16dinh goc giufa hai mat phang (P), (Q) nhu sau :
- Lay mot diem O thuoc giao tuyen d
- Trong mat phing (P), ke tia Ox vuong goc
vdfi giao tuyen d va trong mat phSng (Q), ke
tia Oy vuong goc vdi giao tuyen d Goc
(P), (Q) Doi khi ta cung noi goc xOy la goc
mat phang (P) tao vdi mat phang (Q) T a
cung CO the phat bieu each xac dinh goc
xOy nhif sau :
- Qua mot diem O thuoc giao tuyen d cua hai mat phang (P), (Q) ta difng mat phang (R) vuong goc vdi d Mat phang (R) cat (P) theo giao tuyen Ox va cSt mat phang (Q) theo giao tuyen Oy Goc xOy e [0°; 90°]
2 Chii y Cac bai toan ve goc, trong phan Idn trtfcfng htfp, c6 lien he den quan he vuong goc giOfa diXofng thang va mat phang
II- CAC DANG BAI TAP VA PHLfdNG PHAP OIAI
l ] C a c d a n g b a i t|lp v a phifofng phap c h u n g de giai
- Viec xac dinh cac goc, nhat la xac dinh goc giOfa difdng thang va mat phang, goc giOra hai mat phang, thifcfng la mot trong nhufng cong viec dau tien khi bat dau giai bai toan hinh, khong gian va cong viec nay
nhieu khi c6 tinh chat quyet dinh vi neu khong xac dinh dMc cac goc
hoac xac dinh sai cac goc thi ta khong the tinh difcfc hoac tinh sai cac ket qua khac
- Viec tinh toan cac yeu to c6 lien quan den cac goc, cac do dai thtfcfng lien quan den :
+ Cac he thufc Itfqng trong tam giac vuong
+ Cac ti so ItfOng giac cua goc nhon
+ Dinh li sin, cosin
Do vay, co gang tim ra tren hinh ve cac tam giac vuong c6 chufa cac goc da cho va nhieu khi ta phai ve them cac diTcfng phu de tao ra cac tam giac vuong ay
Trang 17y de
n ma
t ben
CH
I DA
N
1 a) Hinh cho
SO
1 (ABCD) =
b) S
O 1 (ABCD)
c go
c SAO, SB
B, SD vdfi ma
t phan
g day ^
c) Go
i M la trung die
C, OM ± B
C
=> goc
S 'M O
la go
c giiJf
a ma
t ben
(SBC)
voi ma
t phan
g day
(A BC
D)
d) Goc
O SM
la goc giCif
a chie
u cao
O
va ma
t ben
( SB C)
e) Tron
g ta
m gia
c SOM, k
e O
H ± S
M =
^ O
H 1 (SBC)
=> H la hinh chieu cua O tren m
p (SBC) =
S A BC
la
hinh chop ta
la
tam giac deu, ta
m O la trong ta
m cu
a
day Go
i M la trung die
m can
h BC t
hi
AM la trung tuyen
AM
=
^5 :^
;A 0=
^ AM
AM
1
B C;
SM ± B
C
a) SO J- (ABC) ^ S
b) SA
c) SM
i ma
t phan
g day
d)
O SM
la goc giOr
a diTofn
g cao
S O
va ma
t ben
( SB C)
e) Tron
g ta
m gia
c SOM ke
H ± S
M t
hi OH ± (SBC)
each tir diem
O
den mp
( SB C)
Chii y : K
n th
OH la
khoang
20
8
;T S.
Vu The Hij
u -
N gu
y gn Vfnh Ca
n
Trang 18YtNfini.TH'E'TiCHCIlCKil
BAI TOAN 4 TINH THE TICH CAC KHOI DA DIEN
The tich h i n h hop chOf n h a t V = abc
Cong thufc (**) cung diing vdi triTorng hop k h o i lang t r u xien
II- CAC BAI TAP VA CACH GIAI
1 C a c l o a i b a i t^p
a) Cac bai tap chu yeu l a t i n h the t i c h va dien t i c h xung quanh cac k h o i
da dien, doi k h i k e t hop vdi viec t i n h mot so yeu to ve khoang each
Cung can biet t h e m cong thijfc : Stp = S d + Sxq
Dien t i c h toan phan = dien t i c h day + dien t i c h xung quanh
b) De t i n h the t i c h cac k h o i da dien, t a thiTcfng phai l a m hai viec :
- Xac d i n h va t i n h chieu cao ciia k h o i da dien
h i n h dac biet de tiet k i e m thcfi gian k h i l a m toan
HQC va on luyen theo CTOT mon Toan THPT 2 0 9
Trang 19la :
S = ^pCp -
a)(p b)(p - c) (con
-g thuf
c Heron)
vdri a + b + c = 2
c ma
t be
n SAB, SA
2
SsBc = -SB.SC.sinS
2
^ -aV2.aV2.sinS
= =
> sin
S = — ^
S = 60°
^B
C =
AM' = a' -
1 V2 2a^
4
>AM-
Vs.AB C
Vu The Huu
- Nguyi
n VTn
h C0
n
Trang 20b) Goi H l a h i n h chieu cua A t r e n m a t phSng (SBC) => A H l a chieu cao
ke tif d i n h A trong h i n h chop A.SBC
VA.SBC = — A H S S B C = VS.ABC
Goi M la t r u n g diem ciaa canh BC
S M I B C
=> (SAM) 1 (SBC)
Trong m a t phang (SAM) ke A H 1 SM A H ± (SBC)
Trong t a m giac vuong S A M t h i
Trong t a m giac vuong D ' l A : A D ' =
•ong t a m giac vuong D'DA : D'D'
a' = ( 2 x ) 2 - x ^ ^ a ' = 3 x 2 ^ x =
D ' l
= 2x sin45°
Trong t a m giac vuong D'DA : D'D^ = D'A^ - DA^
Trang 216 can
h be
n AA' =
aV? Ti
SMN
CO ch
u v
i la 54a v
a ca
c can
h SM, MN, N
N = 12x v
CO
: 25
x + 12x + 17x = 54a x
CO
: S
M = 25a, MN = 12a, N
) 1
(B CC 'B ')
Ke
diXfSng
cao
S H
cua ta
m giac
S MN
thi
H =
(S MN )
1
B B'
^ (BCC'B'
) 3
B B'
(S MN ) ± (BCC'B')
Ta la
i C
O
(S MN
1
(B CC 'B ')
hay
S H
S.BCC'B'
Tuf giac
B B'
= aV
7 v
a chie
u cao
Suy r
a VS.BCCB'
= -S BC CB -S
a) Ta
m gia
c AB
C c6 canh A
B = 3a, B
C = 4a, C
A = 5a tron
- Nguyi
n VTn
h CJ
n
Trang 22BC ± ABJ
Trong tarn giac vuong SAB : SA = ABtan30°
B
SA = aVs (dvtt)
Goi M la trung diem ciia BC t h i A M = — — va A M ± BC
Tam giac ABC can, vuong dinh A cho ta => AC = a
Tam giac vuong SAC cho ta :
Goi H la hinh chieu ciia A tren m a t phSng (SBC) t h i A H l a khoang
each tii A den mp (SBC) hay A H la chieu cao ciia h i n h chop A.SBC
Trang 232aS
Ma
t khac
VA.SBC = VS.AB C
= a'
-TCr da
y t
a c
6 : -
a' Vs
nhiT
sau :
j
AH^
AS^
AM^
c) D
e tha
y tam giac AB
C can, din
h A Go
i M l
1
BC va BAM = 60
°
a
AB =
BM
iV3
sin60° V S
3
Trong tam giac vuon
g SA
B :
SA' = SB' - AB'
=i>
SA = •
Die
n tic
h tam giac AB
C :
= -AB.AC.sin
Goi H l
a hin
h chie
u cii
a A tren m
p (SBC) th
A S
S BC
la tam giac de
u can
h a nen
SSBC =
VA.SBC = VS.AB
C =
^V2
36
(1) (2)
TCr (1) v
a (2) t
a c
6 : -AH.-
o th
e tin
M, k
e A
H ± SM ^ AH
J (SBC)
Trong ta
m gia
c vuon
g SAM t
hi AH la difofng ca
a C
O : AM=
Trang 24AH^ A H ' =
6a^
d) Ke dircyng cao A D cua tarn giac ABC: A D i BC
Tarn giac vuong SBC vdti BC = a
SDA = 30°
va B = 60" SB = BCcos60° =
-2 Tarn giac SDB vuong t a i D
va CO B = 60° => SD = SB.sin60° =
Trong t a m giac SAD, ke A H 1 SD
Ta chOfng m i n h de dang A H 1 (SBC)
^ A H la khoang each tiT A den mp (SBC)
8 3a Trong t a m giac vuong A H D , A D = — va D = 30° n e n
(ABC) doi k h i dtfoc cho dirdri dang :
- H a i m a t ben (SAB) va (SAC) vuong goc vdfi m a t phang day
- Hai t a m giac SAB va SAC la cac t a m giac vuong goc t a i d i n h A
phang vuong goc vdi nhau, goc nhon A ciia h i n h thoi bang 60° Goi I ,
J , K theo thur tiT la trung diem ciia cac canh A B , A D va SD
a) T i n h the tich khoi chop K C I J
b) T i n h goc tao bofi m a t ben (SCD) va day (ABCD)
c) T i n h khoang each giOfa hai dLfomg t h a n g SD va A B
HQC va on luyen theo CTDT mon Toan THPT 2 1 5
Trang 25SI 1
(ABCD)
CH
I DA
u = SABCD
- (SAI
J + SCBI+
SCDJ)
vdi SABC
D = a^Vs
g (ABCD) t
hi H
e
DI;
H
3a
2
VK CI
a (ABCD
)
SI = I
c) Ma
t phan
g (SDC)
la m
1
(SCD)
d(AB, SD) = d(AB, (SCD)
) = d(I, (SCD)) =
K
aVe ) = d(I, (SCD)
18 Cho hin
g vuon
g t
ai A va D, c
6 A
D = A
B = 2a va CD = a M
CH
I DA
N
Tam giac SA
D can, din
h S ma
D ne
n t
a
suy ra S
I ± (ABCD) ha
y S
I l
a
chieu cao cu
a hin
h cho
p S.ABCD
Ttr I
ke IK ± CB, t
a c
6 :
D
216 :.': TS
V u The ' Hi/
u Nguyin Vin
-h Ca
n
Trang 26SI 1 (ABCD)l
Ta tinh IK Vi I K J BC nen Smc = - I K B C
=> SiBc = SABCD - (SIAB + SIDC) = — — - => SIBC = — —
Goi E la trung diem ciia AB ^ CE = AD = 2a va E B = a
Trong tam giac vuong CEB ta c6 :
hay IH la khoang each ti^ diem I den mat phang (SBC)
Trong tam giac vuong SIK, IH la difdng cao thupc canh huyen nen
1 1
IH^ I S ' IK^
Ta tinh difoc IH =
1 , 3V15 3V5 vcfi IS = a v a IK = a
Trang 27la ta
m gia
c de
u A'B = A'
C
=> AA BC
la ta
m gia
c can
S AB
C =
A'l ±
BC x^V3
AB =
AC
A'lA = 30
°
A'I = A'I =
x^ = 3a^
3aV3
>AA = 3a
AI = A'Icos30°
AI =
Vdri B
C =
X = aVs v
a A
I =
SA BC
= ^BC.A
I
8 3aV3
thi
'A BC =
16 9a=
(A 'B C)) = dd' , ( A'B C))
Hai ma
t phang (AA'I'I)
va
(A 'B C)
F = AA') v
a go
c I'lH
= 60
°
I'H
= ri sin60" =>r
H
3aV3
Chti y : C
u Th
e Hii
u Nguyin
-V Fn
h Ca
n
Trang 2820 Cho l a n g t r u t a r n giac deu A B C A ' B ' C Duorng t h a n g A ' B tao v d i m a t
p h a n g (BCC'B') m o t goc 30° G o i I ' l a t r u n g d i e m cua c a n h B ' C ; t a m giac A ' l ' B CO d i e n t i c h l a ^
8 a) T i n h t h e t i c h k h o i l a n g t r u theo a
b) T i n h k h o a n g each giiifa h a i difdng t h a n g A ' B va B ' C
b) M a t p h a n g ( A ' B C ) l a m a t p h a n g chufa A ' B v a song song v6i B ' C
Goi I l a t r u n g d i e m ciia canh BC T r o n g t a m giac A T I ke I ' H J A ' l t h i
2 1 Cho h i n h l a n g t r u A B C D A ' B ' C ' D ' , day A B C D l a h i n h t h o i , canh a, goc
n h o n A = 60° D i n h A ' ciia day t r e n each deu ba d i n h A , B , D thuoc day
dii6i C a n h ben ciia l a n g t r u tao vdti m a t p h a n g day cac goc 45°
Trang 29I DA
N
a) Go
i H la hin
h chie
u cii
a din
h A' tre
n
mat da
y (ABCD)
Ta
CO
A'A = A'
B = A'D ^ H la tam
ciia ta
m gia
c ABD Ta
m gia
c ABD
la
tam giac de
u
3 2 AH
=
AH ± (ABCD)=
> A'A
b)
Ta la
i c
6 SAB
D =
A'H ± (ABCD)
i^V3
^ VAAB
D =
A'H S
-ABD
12 (dvtt)
DB
1
A'H
ABCD la
Ti^ (1)
va (2) suy r
a hin
1
BB'
c) BB' =
AA' =
DB
1 (ACC'A'
) cosA'AH
(BDD'B) = 00' ne
n ne
u ti
T A' k
e A'l
= A'l.OO' =
AO.A'H=>
A'l = AO.A'H
00'
o hin
M,
N, P theo thu
a) Tin
b) Tin
c) Tin
g S
C v
a AB
u The ' H
i /u
- Nguyg
n V
T nh Can
Trang 30ke M J 1 S N thi d(AB, SC) = d(AB, (SCD)) = d(M, (SCD)) = M J
b) Chil y : Trong cac cong thOfc tren, ta k i hieu h, r, I theo thuf tyt la
chieu cao, ban kinh day va diicfng sinh, vdfi dieu can nhd la trong mot hinh tru tron xoay thi diicfng cao va dirdng sinh thi b^ng nhau
C A C BAI TAP VA CACH GIAI
[l^ Cac dang bai tap
a) Phan lorn bai tap trong muc nay tap trung vao viec tinh the tich cac khoi va tinh dien tich xung quanh cac hinh
Trang 31u ca
o h, diTcfn
g sin
h / B
2] Ca
c ba
6 die
n tic
h
la 4a^V3
Tinh the tic
a c
6 : ^ ^ = 4a^V
3 x = 4a
T Cf day su
x ^
r = 2a =
^ V = -
n r\
dLTorng
sinh /, go
c giufa
difcfng
sinh va
h no
n :
h = Zcos30° =
Ban kin
h da
y :
r = /sin30° =
7:; V = (dvtt)
; S
.q
= (dvtt)
7
AB : B
C : CA = 9 : 1
Suf dun
g con
g thuf
c Heron, t
a tin
h
d iTg
r c x = 2
a 18a, 20a, 34a
Ap dun
g con
g thuf
c S = pr, t
222
O J TS V
Trang 32Mot hinh tru c6 thiet dien qua true la mot hinh chiif nhat c6 di§n tich
40a'^; hai canh ciia hinh chijf nhat t i le vdi 2 va 5
Tinh dien tich xung quanh hinh tru va the tich khoi tru
Goi canh cua hinh chuf nhat la 2x va 5x Ta c6 : 2x.5x = 40a^
=> x^ = 4a^ =>x = 2a => cac canh cua hinh chOf nhat la 4a va 10a
Ta xet hai trifdng hcfp :
a) 2r = 4a va h = 10a => r = 2a, h = 10a
b) 2r =10a va h = 4a => r = 5a, h = 4a
Sxq = 40Tia^ (dvtt); V = lOOna^ (dvtt)
28 Cho mot tam nhom hinh chOf nhat, dien tich 18a^, c6 chieu rgng va
chieu dai t i le vdi nhau theo t i so 2 : 3 Ttr tam nhom nay ngiTcri ta cuon
tron theo mot canh ciia hinh chiif nhat de tao thanh mot chiec hop tron,
hinh tru (khong ke nap va day) Hoi phai uon theo canh nao de difcrc
chiec hop tron c6 the tich lorn nhat ?
C H I D A N
Goi cac canh cua hinh chiif nhat la 2x, 3x ta tinh dxiac hai canh ciia
hinh cha nhat la :
chieu dai : 3a\/3 ; chieu rong : 2aV3
aVs
29
71 n
Neu uon theo chieu dai, ta di/gfc hinh tru chieu cao h2 = 2a\f3 va ban
kinh V2 = va duac thi tich V2 = ^ ^ ^ ' ^ (dvtt)
271 • n
Vi V2 > Vi nen uon theo chieu dai cua hinh chijf nhat ta se dUtfc mot
chiec hop hinh tru c6 the tich I6n nhat
Chufng minh rSng neu ban kinh cua ba hinh cau t i le v6i nhau theo
1 : 2 : 3 thi the tich cua khoi cau Idrn se gap 3 Ian tong the tich cua
hai khoi cau nho
C H I D A N
hai khoi cau thi bang lap phtfofng cua hai ban kinh Goi cac ban kinh
Trang 33=> = SC
30.
Trong m
at phan
g (P), ch
o ta
m gia
c ABC, bie
t A
B = 10cm, B
C =
6cm,
CA = 8cm Mo
t ma
t ca
u c
6 ta
m I each
mat phan
g (P) mo
CH
I DA
o difcfn
g tro
a tin
p tam giac AB
C l
a R = 5cm
h ma
t ca
u :
r^ = d*^
+ =
^ r
^ = 12''^ + 5^ =
169 =
^ r = 1
(cm'); V =
^
^7 r
(c m=
^)
3
31.
Cho hin
h vuon
g ABCD, can
h 2a Diin
g du'orn
g tron ta
h vuong Ch
o hin
B, t
a difo
c mo
t hin
h tru
va mo
t hin
h cau
N
Vt , = 27ia^
; Ve^
u = ^ Tia
^ V = Vt
™ V cS = ^ rr
32.
Cho ta
m gia
c ca
n ABC, AB = A
C =
a v
a A = 2a K
h non
a) Tin
h non
b) Tin
h th
e tic
h kho
i ca
u d
o diiofn
g tro
i qua
y hin
h v
e xun
g quan
h AH
CH
I DA
a =
h CH = asin
a =
r
Vn on =
— J rr
'h
= — a^
sin'a
COS
a = — a
^ sin2a.sin
b) Go
i r' l
a ba
n kin
K = r'
Tacd: B = 15°
l^
= 90 A;
224
El TS V
D Th
e Hu
u Nguygn Vin
-h Ca
n
Trang 34- 1 - A
B i = B = 4 5 °
-2 4 Trong tarn giac vuong B I H :
33 Cho h i n h chop S.ABC, c6 canh ben SA vuong goc v6i m a t phang day,
SA = a\l2, day A B C l a t a m giac vuong can t a i dinh B Canh
canh SB, SC
a) T i n h the tich khoi chop
b) Chufng m i n h n a m diem A, B, C, D, E nSm t r e n mot m a t cau
c) T i m tam va ban k i n h mat cau Tinh the tich va dien tich h i n h cau
=> Tam giac ADC vuong t a i D
Gpi M la trung diem ciia canh AC
AABC vuong t a i M nen B M = A M = C M
AADC vuong t a i D nen D M = A M = C M
AAEC vuong t a i C nen E M = A M = C M
TCr cac ket qua t r e n suy ra A M = B M = C M = D M = E M hay n a m
c) Trong t a m giac vuong SAC, c6 SA = a\[2, SC = a\f5 n e n
Trang 35- V EC TO CUNG
1 Ca
c q uy t dc c an nhcf
a) Quy
tdc tam giac doi
voi phep cgng vecto
AC = A
B + B
C
Qu
y tS
c ta
quy tdc
ba diem
b) Quy
tdc hinh binh hdnh
2
AB CD la
h in
h bi nh h an
h
AB + AD
-
AC
Nh ie
u kh
h ha
nh
cu ng d if
Oc go i
la
quy tdc dudng cheo
hinh binh hdnh
c) Quy
tdc ba diem doi
vai phep trii vecto
Vdri b
a di em
A ,
B, C
b at
i, ta l uo
n c
6 : A
B = C
B C
-A
d) Nhdn
mot vecto voi mot
so
Ti ch
c ua
v ec to
u (
u ? t
0) la
mot vecto,
k
i
hi eu
k
u :
+ k > 0
t
hi
ku
C li ng h ii dn
g vd
i u
+ k < 0
t
hi
ku
n gif cf
c hi Td ng v
di u
+ ku
CO do d
ai !ku
| |k|.|u
-e) Vecto
cung phuang
Di eu k ie
n ca
n va
d
ii de
h
ai ve ct
o a , b (b 0) cu ng p hi/
g) Trung
diem cua doan thdng
M la
t ru ng d ie
m cu
a do an t ha ng
B =
0
h) Trong
tam cua tam giac
G la
t ro ng t am c ua t am g ia
B + G
C =
0
Ve ct
cf va t oa d
p
Cdc phep todn
Ch
o ha
i v ec to
u =
(Uj; U2) , v
= v^)
226 :.':
TS Vu The Hi;u
- Nguyg
n Wn
h Ca
n
Trang 36+ Tga do vecta tong : ( u + v ) = ( u i + v f , U2 + V2)
+ Tga do vecta hieu : ( u - v ) = ( u i - V i ; U2 - V2)
+ Toa do vecta tick ciia mot vecta vai mot so : k u = ( k u i ; k u 2 )
b) Toa do cua vecta : A ( X A ; Y A ) , B ( X B ; Y B ) = > A B = ( X B X A ; ye Y A )
-c) Dp dai cua vecta u = ( U j ; U 2 ) = >
d) Tga do trung diem cua doqn thdng
M la trung diem ciia doan thang A , B :
M A + M B = 0 o
y.M = ^ ^ ( y A + y B )
e) Tga do trgng tdm ciia tam gidc
G la trong t a m cua tam giac ABC :
- ( x ^ + X 3 + X c )
C A C D A N G BAI TAP V A PHOONG PHAP GIAI
y C a c b a i tap
ta suf dung cac quy tac ba diem, quy tdc h i n h b i n h hanh, cong thufc trung diem
b) Tim toa do cac vectcf, cac diem : Ket hcfp giufa viec chufng m i n h cac dang thufc vecto v6i toa do ciia cac tong, hieu, tich mot so v6i mot vecto
c) Trong cac bai tap ve chufng m i n h cac difcfng thang song song hoac chufng minh cac diem thang hang, ta suf dung k i ^ thufc ve vecto ciing phiJcfng
2] B a i tap
34 a) Chufng m i n h rang neu M la trung diem cua doan thang A B t h i v6i
moi diem N trong mat phang, ta luon c6 he thufc 2 N M = N A + N B b) Chufng m i n h rang neu G la t r o n g t a m ciia t a m giac ABC t h i vdfi moi diem N trong mat phang, ta luon c6 he thifc 3NG = N A + N B + NC
Trang 37M =
0 (2)
TiT (1) v
a (2) su
y r
a dpcm
b) Do
c gi
a ti
T giai
35.
Cho tij
f gia
c ABCD Go
i M, N, P, Q theo thii
D v
a DA Chufn
D + BC + B
A +
CH
I DA
N
Doc gi
a t
ii giai
A +
MB 3MC, tron
b) Dirn
g die
m I sao ch
o v = CI
c) M' l
CMng min
h :
v = 2M'A
+ SWC
WB-CH
I DA
N
a)
S iJf dung : MA = M
C + CA ; M
B MC + CB
va CB
c) Ta
CO :
2MA = 2MM' +
2WA
MB = MM' + M'B
-3MC = -3MM' - 3M'C
V
= 2M'
A + M'B - 3M'C
; 1), C(2
; 4)
g hang
CH
I DA
N
a) Ta
CO
:AB = (-1
; -4), A
C = (-4; -1)
De tha
y A
B ^ k.AC , V
k
b) Ta
CO
: AB
^ = 17; AC
C can, din
h A
38.
Cho na
m die
m A(l;
-2), B(3
; 0), C(4
; 3), D(2
; 1), E(-2
; -3)
CH
I DA
N
a) Ta
a die
m C, D, E thang hang
c) F(-3;-2)
-n
Trang 38BAI TOAN 7 TICH V6 Hl/CfNG CUA H A I VECTCl
I- CAC KIEN THLfC C d BAN
1 T i c h v 6 hvtdng c i i a h a i vectcf
a) Binh nghla H a i vectof a, b deu khac vectcf 0 Tich vd hicdng cua a va
b la mot so, k i hieu a.b diiac xac d i n h bofi cong thufc :
- Goc giOfa hai vectcf : cos(a, b) =
- Dieu k i e n can va dii de hai vectof vuong goc vdi nhau :
a l b o a b = 0
2 B i e u thiic t o a dp c i i a t i c h v 6 hifdng
a) Bieu thiic toa do :
Cho hai vectcf a = (ai; a2), b = (hi; b2) t h i : a.b = aibi + a2b2
b) He qua
= V ^ [ 7 b f
- Do dai ciia vectof
- Khoang each giOfa hai diem A(XA; YA), B(XB; ys)
A B = I A B I = V ( x B - x J ^ + { y 3 - y J ^
ajbj + agb^
- Goc giCfa hai vectof : cos(a, b) = , ,
- Dieu kien can va dii de hai vectof vuong goc : a _L b <=> aibi + a2b2 = 0
li- CAC DANG BAi TAP VA PHLfdNG PHAP GiAl
t i n h chat cua tuf giac De giai cac bai tap nay, t a cung thi/cfng difa ve chufng m i n h cac vectcf bSng nhau, cac vectof cung phiTofng va cac vectcf vuong goc vdfi nhau
Hoc va on Itiyen theo CTDT m6n Toan THPT Jl 229
Trang 392 Ba
t A(6
; 5), B(5
; 1), C(2
; 4) Chufn
N
Cdch 1.
Ta tirth dUgfc, the
g A
B = AC
= 1
7
=> AA BC can, din
h A
Ta CO
: BA =
(1; 4), B
C (-3; +3)
-l.(-3) +
VF 74^.VG
^37^
V34
CA = (4
; 1), C
B = (3; -3)
cosC = cos(CA, CB
) = 4.3 +
(-l).(-3)
V34
Do d
o : cosB = cosC, v
i 0 < B < 90°
, 0 < C < 90° ne
C can, din
h A
40 Ch
o ha
i die
m A(-2
; 1), B(4
; 3) v
a die
m C(-l; y) Xa
N
a) Ta CO : AB = (6
; 2), A
C = (1; y
- 1)
^ 6
1 + 2(y - 1) =
0 =: > y = -
2 ha
y C(-l; 2)
C = (-5; y
- 3)
2(y 3) =
0 =
> y = 1
8 =
> C(-l; 18
)
c) Ta CO : C
A = (-1; 1
- y), C
B = (5; 3
- y)
i C
A i C
n die
u kie
n AAB
C vuong
Ci(-1; 2 + V6), C2(-l; 2
- V6)
CH
I DA
m gia
c A BC v uo ng can, din
h C Nhu
f vay, t
a ca
n c
6
fCA I
CB = C CA
B
CA IC
B
CA
| = |CB
CA.CB
0
CB CA (*)
230 L'
; TS V
D Th
e Hu
u Nguygn VTn
-h Ca
n
Trang 40Ta C O : CA = (4 - x; 3 - y), CB = (2 - x; 5 - y)
CA Tif dieu kien (*), ta c6 :
42 Cho tam giac ABC v6i A(3; 1), B(0; 7), C(5; 2)
a) Chufng minh tam giac ABC vuong
b) Tinh dien tich S cua tam giac
c) Tinh do dai diidng cao ke tU dinh A
a) AABC vuong tai C
b) AABC la tam giac c6 ba goc nhon
c) AABC CO goc A la goc tti
Vdi cac goc B, C ta cung xet tiiofng tif
Trong cau c) vi AB.AC = -15 < 0 ^cosA < 0 =>A > 90°
44 Chufng minh tuf giac ABCD v6i A(2; 6), B(5; 0), C(-3; -4), D(-6; 2) la
hinh chuf nhat