NGHIÊN CỨU VỀ ĐỘ BỀN VÀ CẤU TRÚC ELECTRON M = Sc – Ni BẰNG PHƯƠNG PHÁP HÓA HỌC TÍNH TOÁN Promoter : Assoc.. Nguyễn Tiến Trung Students : Phan Đặng Cẩm Tú Nguyễn Thanh Thảo Tú Trần Tường
Trang 1NGHIÊN CỨU VỀ ĐỘ BỀN VÀ CẤU TRÚC ELECTRON
(M = Sc – Ni) BẰNG PHƯƠNG PHÁP HÓA HỌC TÍNH TOÁN
Promoter : Assoc Prof Dr Nguyễn Tiến Trung Students : Phan Đặng Cẩm Tú
Nguyễn Thanh Thảo Tú Trần Tường Sơn
QUY NHON UNIVERSITY Chemistry Department
A STUDY ON STABILITY, ELECTRONIC STRUCTURE OF DOPED GERMANIUM CLUSTERS
Ge 12 M (M = Sc – Ni) USING COMPUTATIONAL CHEMICAL METHOD
Trang 2• Introduction
• Theoretical method
• Results and discussion
• Conclusions
• Petitions
OUTLINE
Trang 3Spectroscope
Optical cable
Medicines IC
Trang 4Ge12Cr: Neha Kapila et al.:
Ge13 structure with C2v
symmetry with one Ge atom
replaced by Cr
John E McGrady: the perfect
icosahedra.
Kapil Dhaka and D
Bandyopadhyay: HP.
1.José M Goicoechea, John E McGrady, Dalton Trans, The Royal Society of Chemistry, 2015, 44, 6755-6766.
2.Debashis Bandyopadhyay, Prasenjit Sen, J Phys Chem., A 2010, 114, 1835-1842.
3.Kapil Dhaka, Debashis Bandyopadhyay, RSC Adv., 2015, 5, 83004–83012.
Ge12Ni: Neha Kapila et al and
Jing Lu: HP.
John E McGrady et al.: BPP.
Trang 5NGHIÊN CỨU VỀ ĐỘ BỀN VÀ CẤU TRÚC
(M = Sc – Ni) BẰNG PHƯƠNG PHÁP HÓA HỌC TÍNH TOÁN
A STUDY ON STABILITY, ELECTRONIC STRUCTURE OF DOPED GERMANIUM CLUSTERS
Ge 12 M (M = Sc – Ni) USING COMPUTATIONAL CHEMICAL METHOD
Trang 6THEORETICAL METHOD
• Computational method BP86; the Lanl2dz basis set
• Some other softwares: Gaussian 03, GaussView 05, Corel Draw, Origin, JMol, NBO 5.G …
Trang 7Ge12Ti cluster
1 Low-lying isomers of Ge12M (M = Sc-Ni)
RESULTS AND DISCUSSION
Ge12Sc cluster
Sc-1
Doublet [C s; 2A’; 0.00]
Quartet [C1; 4A; 0.20]
Sextet [C s; 6A’; 1.10]
Sc-2
Doublet [C s; 2A’; 0.02]
Quartet [C1; 4A; 0.48]
Sextet [C s; 6A’’; 0.02]
Sc-3
Doublet [C1; 2A; 0.08]
Quartet [C1; 4A; 0.79]
Sextet [C1; 6A; 1.53]
Sc-6
Doublet [C1;2A; 0.70]
Quartet [C1; 4A; 1.30]
Sextet [C1; 6A; 2.14]
Ti-1
Singlet [C1; 1A; 0.00]
Triplet [C 2h; 3Bg; 0.22]
Quintet [C1; 5A; 1.31]
Ti-3
Singlet [C1; 1A; 0.31]
Triplet [C s; 3A’’; 0.63]
Quintet [C s; 5A’’; 1.33]
Ti-4
Singlet [C s; 1A’; 0.47]
Triplet [C1; 3A; 0.94]
Quintet [C1; 5A; 1.75]
Ti-6
Singlet [C1; 1A; 2.19] Triplet [C1; 3A; 2.30] Quintet [C1; 5A; 2.78]
Trang 8Doublet [C i; 2A; 0.00]
Quartet [D 3d; 4A1g; 0.65]
Sextet [C s; 6A’; 1.64]
V-3
Doublet [C 2v; 2A1; 0.78]
Quartet [C1; 4A; 1.51]
Sextet [C1; 6A; 1.36]
V-4
Quartet [C s; 4A’’; 0.96]
Sextet [C s; 6A; 1.49]
V-5
Quartet [C1; 4A; 1.08] Doublet [C1; 2A; 1.14]
Sextet [C1; 6A; 1.87]
Ge12V cluster
Ge12Cr cluster
Cr-1
Singlet [D 3d; 1A1g; 0.00]
Triplet [C1; 3A; 0.01]
Quintet [C1; 5A; 0.78]
Cr-3
Singlet [C1; 1A; 0.53]
Triplet [C1; 3A; 0.61]
Quintet [C1; 5A; 0.79]
Cr-4
Triplet [C1; 3A; 0.56]
Quintet [C1; 5A; 0.77]
Singlet [C1; 1A; 1.20]
Cr-5
Triplet [C1; 3A; 2.36] Quintet [C1; 5A; 2.42] Singlet [C1; 1A; 3.16]
Trang 9Ge12Mn cluster
Ge12Fe cluster
Mn-1
Doublet [D 3d; 2A1g; 0.00]
Quartet [C i; 4Ag; 0.64]
Sextet [C1; 6A; 1.22]
Mn-2
Doublet [C s; 2A”; 0.75]
Quartet [C2; 4A; 0.90]
Sextet [D2; 6B3; 1.64]
Mn-4
Quartet [C1; 4A; 1.29]
Sextet [C i; 6Ag; 0.80]
Mn-5
Doublet [C1;2A; 0.85]
Quartet [C1; 4A; 0.90]
Sextet [C s; 6A’; 1.32]
Fe-1
Triplet [C1; 3A; 0.00]
Singlet [D 3d; 1A1g; 0.20]
Quintet [C1; 5A; 0.47]
Fe-3
Triplet [C1; 3A; 0.38]
Singlet [C1; 1A; 0.40]
Quintet[S4; 5B; 0.75]
Fe-4
Triplet [C1; 3A; 0.87]
Quintet [C1; 5A; 1.71]
Fe-5
Singlet [C1; 1A; 0.45]
Triplet [C1; 3A; 0.56]
Quintet [C1; 5A; 1.03]
Trang 10Ge12Co cluster
Ge12Ni cluster
Co-1
Doublet [C1; 2A; 0.00]
Quartet [C1; 4A; 0.66]
Sextet [C1; 6A; 1.56]
Co-2
Doublet [C 2h; 2Abg; 0.06]
Quartet [C1; 4A; 0.37]
Sextet [C1; 6A; 1.73]
Co-3
Doublet [C1; 2A; 0.09]
Quartet [C 2v; 4A2; 1.29]
Sextet [C 2v; 6B2; 2.11]
Co-4
Doublet [C s; 2A’’; 0.11]
Quartet [C1; 4A; 0.70]
Sextet [C1; 6A; 1.53]
Ni-1
Singlet [D 2d; 1A1; 0.00]
Triplet [D2; 3B1; 0.53]
Quintet [C1; 5A; 1.15]
Ni-3
Singlet [C s;1A’ ; 0.16]
Triplet [C s; 3A’’ ; 0.54]
Quintet [C1 ; 5A ; 1.38]
Ni-4
Singlet [C1 ;1A ; 0.26]
Triplet [C1; 3A ; 0.30]
Quintet [C 2h; 5Bu; 1.66]
Ni-6
Triplet [C1; 3A ; 0.58]
Quintet [C1 ; 5A ; 1.38]
Trang 11Ge 12 Sc-1
Doublet [Cs; 2A’; 0.00]
Ge 12 Sc-2
Doublet [C s; 2A’; 0.02]
Ge 12 Sc-3
Doublet [C1; 2A; 0.08]
Ge 12 Ti
Singlet [C1; 1A]
Ge 12 V
Doublet [C i; 2A]
Ge 12 Cr
Singlet [D 3d; 1A1g]
Ge 12 Mn
Doublet [D 3d; 2A1g]
Ge 12 Fe
Triplet [C1; 3A]
Ge 12 Co-1
Doublet [C1;2A; 0.00]
Ge 12 Co-2
Doublet [C 2h; 2Abg; 0.06]
Ge 12 Ni
Singlet [D 2d; 1A1]
There is a change of structures of Ge12M (M = Sc - Ni) series.
With M = Sc – Fe: the hexagonal prism
(HP).
With M = Sc – Fe: the hexagonal prism
(HP).
With M = Co, Ni: the bicapped pentagonal
prism (BPP).
With M = Co, Ni: the bicapped pentagonal
prism (BPP).
Trang 12Binding energy of Ge12Ti and Ge12Cr clusters are larger than the
series.
2.1 The Average Binding Energy (BE)
Table 1 Total energy (hartree) of Ge, M, Ge 12 M clusters
and the average binding energy (eV) Ge 12 M clusters.
M E(M) E(Ge12M) BE(Ge12M)
Sc -46.383887 -92.234244 2.93
Ti -57.563391 -103.903463 3.96
V -71.2276617 -117.169488 3.13
Cr -86.0482997 -132.146831 3.46
Mn -103.797821 -149.795072 3.25
Fe -123.293246 -169.328687 3.33
Co -145.074091 -190.979333 3.05
Ni -169.165082 -215.228832 3.39
2 Stability of clusters
Trang 132.2 Embedding Engergy (EE)
Table 2 Embedding enery of Ge 12 M clusters
(M = Sc – Ni).
M E(M) E(Ge12M) EE(Ge12M)
Sc -46.383887 -92.24453497 6.53
Ti -57.563391 -103.9145169 19.14
V -71.2276617 -117.1807734 8.10
Cr -86.0482997 -132.1589141 12.94
Mn -103.797821 -149.8071398 10.12
Fe -123.293246 -169.340142 10.31
Co -145.074091 -190.9903935 7.53
Ni -169.165082 -215.2398543 11.64
others in series This conclusion consistents with the analysis of the BE above.
Trang 142.3 NBO analysis
The maximum of s, d are attained at M = Ti, Cr The bonds between Ti,
It confirms that Ge12Ti and Ge12Cr are more stable than the others in Ge12M series, once more.
M
Electronic
configuration
on M
Electronic configuration on M
(Ge12M)
s d
Sc 3d1.94s1.9 3d3.764s0.344p1.46 1.56 1.86
Ti 3d2.174s1.83 3d5.344s0.424p1.38 1.41 3.17
V 3d3.84s1.2 3d6.324s0.414p1.34 0.79 2.52
Cr 3d4.044s1.96 3d7.084s0,404p1.24 1.56 3.04
Mn 3d5.994s1.00 3d7.314s0.414p1.17 0.59 1.32
Fe 3d6.984s1.00 3d7.694s0.454p1.18 0.55 0.71
Co 3d7.994s1.00 3d9.114s0.414p1.21 0.59 1.12
Ni 3d10.004s0.00 3d9.604s0.464p1.22 0.46 0.40
Trang 15(M = Sc – Ni) at different spin states by using computational method
BP86 and Lanl2dz basis set.
lying completely in the cage and the substitution rule is no longer
appropriate.
which, M=Sc-Fe: Hexagonal Prism, M=Co, Ni: Bicapped
Pentagonal Prism.
(M = Sc - Ni) series.
Trang 16FUTHER WORK
higher level to confirm reliability of the results.
at different charge states, such as: cation or anion, to find out low-lying isomers with high symmetry.
• Do further research on electron distribution and dependence of stability on geometrical and electronic structures to find out the rule which has an affect on the stabilities of these clusters.
Trang 17Thanks for your attention!