Tính các giới hạn của các dãy số sau: a.. Tính các giới hạn của các dãy số sau: a.. Tính các giới hạn của các dãy số sau: a.. Tính các giới hạn của các dãy số sau: a.. Cho hình chóp
Trang 1ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II
Môn: TOÁN Khối: 11
A PHẦN ĐẠI SỐ & GIẢI TÍCH
I GIỚI HẠN DÃY SỐ
Bài 1 Tính các giới hạn của các dãy số sau:
a) 2
lim(n 4n 5) b) 2
lim(n 2n n 1) d) 4 2
lim( 2 n n 3n 4)
Bài 2 Tính các giới hạn của các dãy số sau:
a) lim6 1
1 3
n n
b)
2 2
lim 4
n n n
lim
d) lim 33 1
2
n
n n
e)
2
lim
n n n
f)
3
3 2
lim
n n
n n
Bài 3 Tính các giới hạn của các dãy số sau:
a) lim 5 1
3 2.5
n
n n
b)
3.4 1 lim
n n
c)
1
lim
1 7
n n n
Bài 4 Tính các giới hạn của các dãy số sau:
a) 2
lim( n 3nn) b) 2
lim( n 3nn) c) 2
lim( n n 1 5 )n d) 2
II GIỚI HẠN HÀM SỐ
Bài 5 Tính các giới hạn của các hàm số sau:
a) lim ( 4 2 2)
b) 2
c) lim ( 3 2 5 1)
x x x x
d) 4 2
Bài 6 Tính các giới hạn của các hàm số sau:
a) lim 8 3
5 4
x
x x
b)
2 2
lim 4
x
x x x
c)
2
lim 3( 2)( 5)
x
x x
d) lim 2 2
1
x
x
x x
e)
3
lim
x
x x x
f)
3 2
3
lim
x
x x
x x
Bài 7 Tính các giới hạn của các hàm số sau:
a)
2
2
lim
2
x
x
lim
x
x x
2 3
lim
3
x
x
2 2 1
lim
x
x x
e)
2 2 1
lim
1
x
x
lim
x
x
1 lim
1
x
x x
h)
2 3
9 lim
3
x
x x
i)
3 2
8 lim
2
x
x
x
3 2 1
1 lim
1
x
x
Bài 8 Tìm giới hạn của các hàm số sau:
a)
3
6 3 lim
3
x
x
x
b) 2
2 lim
7 3
x
x x
c) 1 2
lim
1
x
x x
1 2 lim
9
x
x x
Trang 2e)
1
1
lim
1
x
x x
lim
x
x x
2 lim
x
x
3 1 lim
6 2
x
x x
Bài 9 Tìm giới hạn của các hàm số sau:
a)
2
lim
2
x
x x
b)
2 1
lim
1
x
x
2 ( 1)
lim
1
x
x x
2
lim
x
x x
III HÀM SỐ LIÊN TỤC
Bài 10 Xét tính liên tục của các hàm số sau trên TXĐ của chúng:
a)
2
1 2
khi x
khi x
2
4
x
khi x
khi x
c)
2
2
2
x x
khi
x khi
d)
2
1
khi
Bài 11 Xét tính liên tục của các hàm số sau:
a)
2
4
x
khi x
f x x
khi x
tại x 0 = 2 b)
2
2 - 4 3
khi x
tại x 0 = 3
Bài 12 a) Xác định m để hàm số
2
1 1
x x
khi x
liên tục tại x0 1
b) Xác định a để hàm số
2
4 ( )
4
x
khi x x
f x
ax
khi x
liên tục tại x0 4
Bài 13 CMR:
a) Chứng minh rằng phương trình sau có ít nhất hai nghiệm: 3
2x 10x 7 0
b) Chứng minh rằng phương trình 4 2
2x 4x x 3 0 có ít nhất hai nghiệm trong khoảng 1;1
c) Chứng minh rằng phương trình 5 4
x x x có ít nhất ba nghiệm thuộc khoảng 3;5
d) Chứng minh rằng phương trình x sinx có nghiệm
IV ĐẠO HÀM
Bài 14 Tính đạo hàm các hàm số sau:
1) 3 2 10
2
y
3) y 2 32 53
4) y(x2 5)3
Trang 35) y(5x3 x2 x 1)4
6) y5x2(3x1)
7).y(x2 1)(53x2)
8).yx( 2x 1 )( 3x 2 )
1
x
y
x
10)
2 2 3
1
y
x
11)
2
2
x
y
x
12)
x
13)
2 2
3
y
14)
3 2
2 1
y
x x
y
2
y x
3
y x x 18) y x2 6x7 19) y x1 x2 20) y(x1) x2 x1
21)
1 2
3 2 2
x
x x y
22) y 1 x
1 x
2
y x x 24) 2 2
1
yx x 25) 3
1
yx x x
Bài 15 Tính đạo hàm các hàm số sau:
1) y3sinx2cosx 2) ysin 3xcos 2x 3) yx2sinx
4
9) ysin (cos3 )2 x
10) y 3sinx cos2x 11) y3sin2 x.sin3x 12) y 2 tan x 2 13) y 1 2tanx 14) 12
1 sin 2
y
x
15)
y
16)
xsin x y
y
Bài 16 Viết phương trình tiếp tuyến với parapol (P): yx2 3x 1 trong các trường hợp sau : a) Tại M (1;-1)
b) Tại điểm có hoành độ bằng 2
c) Tại điểm có tung độ bằng 1
d) Biết hệ số gốc của tiếp tuyến bằng 5
e) Biết tiếp tuyến song song với đường thẳng y 5x 1
f) Biết tiếp tuyến vuông góc với đường thẳng 1 2016
7
y x
Bài 17 Viết phương trình tiếp tuyến với đường cong (C): y x3 2x21 trong các trường hợp sau:
a) Tại điểm có hoành độ bằng -1
b) Tại điểm có tung độ bằng 1
c) Biết tiếp tuyến song song với đường thẳng y x 1
Bài 18 Viết phương trình tiếp tuyến với đường cong (H): 2 1
1
x y x
trong các trường hợp sau :
Trang 4a) Tại điểm có hoành độ bằng 4
b) Tại điểm có tung độ bằng 1
c) Biết tiếp tuyến vuông góc với đường thẳng 1 9
3
y x
Bài 19 Chứng minh các đẳng thức sau :
a) Cho y x3 x 1 Chứng minh rằng: 9(y 1) 3 x y' y'' 0
b) Cho 1
1
x y x
Chứng minh rằng:
y x y c) Cho yxsinx Chứng minh rằng: (x22)y2xy'x y2 '' 0
d) Cho ytan 2x Chứng minh rằng: 2y2 y' 2 0
B PHẦN HÌNH HỌC Bài 1 Cho tứ diện ABCD có AB = AC và mặt phẳng (ABC) vuông góc với mặt phẳng (BCD)
Gọi I là trung điểm của cạnh BC Chứng minh AI vuông góc với mặt phẳng (BCD)
Bài 2 Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O; SA vuông góc với mặt
phẳng (ABCD) Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A trên SB, SC, SD a) Chứng minh rằng BC(SAB) và CD(SAD) và BD(SAC)
b) Chứng minh rằng AH, AK cùng vuông góc với SC Từ đó suy ra ba đường thẳng AH,
AI, AK cùng nằm trong một mặt phẳng
c) Chứng minh rằng HK(SAC) Từ đó suy ra HK vuông góc với AI
Bài 3 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật Mặt SAB là tam giác cân tại S
và mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD) Gọi I là trung điểm của đoạn thẳng
AB Chứng minh rằng:
a) BC và AD cùng vuông góc với mặt phẳng (SAB)
b) SI (ABCD)
Bài 4 Cho tam giác ABC vuông góc tại A; gọi O, I, J lần lượt là trung điểm của các cạnh BC,
AB, AC Trên đường thẳng vuông góc với mặt phẳng (ABC) tại O ta lấy một điểm S khác O Chứng minh rằng:
a) (SBC)(ABC);
b) (SOI)(SAB);
c) (SOI)(SOJ)
Bài 5 Hình chóp S.ABCD có đáy là hình thoi ABCD tâm O, có ACa 3, BDa Đường
cao SO vuông góc với mặt phẳng (ABCD) và đoạn SO =
4
a
Gọi E là hình chiếu vuông góc của
O trên BC
a) Chứng minh (SOE)(SBC) và (SAC)(SBD)
b) Tính khoảng cách từ O đến mặt phẳng (SBC)
Trang 5Bài 6 Cho hình chóp S.ABCD, có đáy ABCD là hình vuông cạnh a; SA (ABCD); góc hợp
bởi cạnh bên SC và mặt phẳng chứa đáy bằng 30 0
a) Chứng minh tam giác SBC vuông
b) Chứng minh BD SC và (SCD)(SAD)
c) Tính khoảng cách từ A đến mặt phẳng (SCD)
Bài 7 Cho hình chóp S.ABC, đáy ABC là tam giác đều cạnh a, 3
2
a
SA và SA(ABC) Gọi I
là trung điểm cạnh BC
a) Chứng minh rằng BC(SAI)
b) Tính góc hợp bởi hai mặt phẳng (SBC) và (ABC)
c) Tính khoảng cách từ A đến mặt phẳng (SBC)
MỘT SỐ ĐỀ THAM KHẢO
Đề 1:
Câu 1: Tính giới hạn các dãy số sau:
a) lim6 1
1 3
n n
2
lim( n 2nn)
Câu 2: Tính giới hạn các hàm số sau:
a)
2 2
lim
1
x
x x x
2 4
lim
4
x
x
1 2 lim
3
x
x x
Câu 3: Xác định m để hàm số sau liên tục tại x0 2
2
4
x
khi x
mx khi x
Câu 4 Chứng minh rằng phương trình 5 4 3
5x 3x x 1 0 có ít nhất một nghiệm
Câu 5 Viết phương trình tiếp tuyến với đồ thị (C): 3 2
y x x Biết tiếp tuyến song song với đường thẳng (d): y9x1
Câu 6 Tính đạo hàm của các hàm số sau:
a)
4 2
4
x
y x x b) 3 1
2
x y x
c)
2 sin 2
yx x
Câu 7 Cho yx22x1 Chứng minh rằng: 2(y 1) x y( 'y'')0
Câu 8 Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh bằng a, có SAa 6 và SA
vuông góc với mặt phẳng đáy
a) Chứng minh rằng: BC(SAB) và BD(SAC)
b) Tính khoảng cách từ A đến mặt phẳng (SBC)
c) Tính góc hợp bởi đường thẳng SC và mặt phẳng đáy
-
Trang 6Đề 2:
Câu 1: Tính các giới hạn sau:
a) lim4 3
1 8
n
n
2 2
6 lim
2
x
x x x
2 1
lim
1
x
x
d). 4
4 lim
5 3
x
x x
Câu 2: Xác định a để hàm số sau liên tục tại x0 1
2
2
1
x
khi x
a khi x
Câu 3 Chứng minh rằng phương trình 4 3
3x x x 1 0 có nghiệm
Câu 4 Viết phương trình tiếp tuyến với đồ thị (H): 7 1
2
x y x
tại điểm có hoành độ bằng 1
Câu 5 Tính đạo hàm của các hàm số sau:
a)
3 2 5
1
x x
yx x b) y (x 1) x21 c) ysin 3 cosx x
Câu 6 Cho 3 2
x y x
Chứng minh rằng:
y x y
Câu 7 Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh ABa 3 , ADa , có
SA vuông góc với mặt phẳng đáy, góc hợp bởi đường thẳng SC và mặt phẳng đáy bằng 600 a) Chứng minh rằng: CD(SAD) và BC(SAB)
b) Tính độ dài đoạn thẳng SA
c) Tính khoảng cách từ A đến mặt phẳng (SCD)
-