Khảo sát sự biến thiên và vẽ đồ thị hàm số.. Viết phương trình tiếp tuyến của đồ thị hàm số C biết tiếp tuyến đi qua điểm M0; 1.. Tính xác suất để trong số bi được chọn không có đủ cả ba
Trang 1NGUYỄN HUỆ
KỲ THI THỬ ĐẠI HỌC LẦN THỨ BA
NĂM HỌC 2014 – 2015
ĐỀ THI MÔN: TOÁN Thời gian làm bài: 180 phút
Câu 1(2 điểm) Cho hàm số y = x4 - 2x2 - 1 có đồ thị là (C).
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số.
2. Viết phương trình tiếp tuyến của đồ thị hàm số (C) biết tiếp tuyến đi qua điểm M(0; 1) - Câu 2(1 điểm)
1. Giải phương trình: s inx( 3 - s inx) - cosx(1 cos x) + = 0
2. Tìm số phức z thỏa mãn: (1 2i) z + 2 + z = 4i - 20 .
Câu 3(1 điểm)
1. Một hộp đựng 5 viên bi đỏ, 6 viên bi trắng và 7 viên bi vàng. Chọn ngẫu nhiên 4 viên bi từ hộp đó. Tính xác suất để trong số bi được chọn không có đủ cả ba màu?
2. Giải phương trình sau: x + + 4 x - 8 = 8 x
2
Câu 4(1 điểm) Tính :
1
2
ln
e
x
= ç + ÷
Câu 5(1 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y + 2 z - = 6 0
và điểm M(1, 1, 2).
a)Viết phương trình đường thẳng đi qua M và vuông góc với mặt phẳng (P)
b)Viết phương trình mặt cầu có tâm nằm trên trục Ox và tiếp xúc với mặt phẳng (P) tại điểm M. Câu 6(1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, đường cao SH với H thỏa mãn HN uuur = - 3HM uuuur
trong đó M,N lần lượt là trung điểm của AB,CD. Tính thể tích khối chóp S.ABCD và diện tích mặt cầu ngoại tiếp S.ABCD biết góc giữa (SAB) và (ABCD) bằng 60 0 .
Câu 7(1 điểm) Cho đường tròn (C) có phương trình : x2+ y2 - 2x - 4y 1 + = 0 và P(2,1). Một đường thẳng d đi qua P cắt đường tròn tại A và B. Tiếp tuyến tại A và B của đường tròn cắt nhau tại M. Tìm tọa độ của M biết M thuộc đường tròn x2+ y2 - 6x - 4y 11 0 + = .
Câu 8(1 điểm) Giải hệ phương trình:
2
ï
í
ï
.
Câu 9(1 điểm) với a, b, c là các số thực thỏa mãn a2+ b2 + c2 = 3 Tìm giá trị lớn nhất của biểu thức P = a4+ b4+ c4 + 3(ab + bc + ca)
Cảm ơn thầy Nguyễn Thành Hiển ( https://www.facebook.com/HIEN.0905112810 ) đã chia sẻ đến
www.laisac.page.tl
ĐỀ THI THỬ KỲ THI THPT QUỐC GIA 2015 - ĐỀ SỐ 83
Thời gian làm bài 180 phút
-oOo -523
Trang 2NGUYỄN HUỆ
KỲ THI THỬ ĐẠI HỌC LẦN THỨ BA
NĂM HỌC 2014 – 2015 ĐÁP ÁN VÀ BIỂU ĐIỂM MÔN: TOÁN
1
(2điểm)
2 1
y=x - x - TXĐ: R
3
' 4 4
y = x - x . ' 0 0
1
x
y
x
=
é
= Û ê = ±
ë
0,25
Giới hạn: lim ; lim
= +¥ = -¥
bảng biến thiên
y’ 0 + 0 0 +
Y
Hàm số đồng biến trên (1;0); (1; +∞). Hàm số nghịch biến trên (∞;1);(0;1)
Hàm số đạt cực đại tại x= Þ0 y = - 1 .
Hàm số đạt cực tiểu tại
= - Þ = -
ì
í
= Þ = -
î
0, 5
Đồ thị
đồ thị hàm số nhận Oy làm tâm đối xứng.
0,25
2 Phương trình tiếp tuyến của (C) tại tiếp điểm N( 4 2
; 2 1
a a - a - ) là:
Tiếp tuyến đi qua M nên : - =1 (4a3-4 )(0a -a)+a4-2a 2 - 1 0,25
0
2
3
a
a
=
é
ê
Û
ê = ±
ê
0,25
524
Trang 3Với 2
3
a = phương trình tiếp tuyến là : 4 2 5
3 3 9
y= - x -
Với 2
3
a = - phương trình tiếp tuyến là : 4 2 1
3 3
y= x -
2
(1điểm)
1
2
Phương trình tương đương 2 2
3 sin x-cos x=sin x+cos xÛ 3 sin x-cos x= 1 0,25
sin x cos x sin(x ) sin 3 (k Z)
x k2
p
é
= + p
ê
= p + p
ë
0,25
Đặt z a bi a b R= + , ( , Î ) Þz= - a bi . Suy ra:
2
(1 2 ) (+ i a bi+ )+ -a bi=4i-20Û -( 2a-4 ) (4b + a-4 )b i=4i - 20 0,25
3
(1điểm)
1 Số cách chọn ngẫu nhiên 4 bi từ số bi trong hộp là: 4
C =
Số cách chọn 4 bi đủ 3 màu từ số bi trong hộp là: 2 1 1 1 2 1 1 1 2
5 6 7+ 5 6 7+ 5 6 7
C C C C C C C C C 0,25
Số cách chọn 4 viên bi để không có đủ 3 màu là: 4 2 1 1 1 2 1 1 1 2
C C C C C C C C C C
Vậy xác suất để trong số bi được chọn không có đủ 3 màu là:
4
18
48, 53%
68
C C C C C C C C C C
C
0,25
2 ĐK: x > 0; x ¹ 1
Phương trình tương đương với: log (2 x+ 3) log + 2 x- 1 = log (4 ) 2 x
Ûlog2ë( +3) -1û = log (4 ) 2 Û (x+ 3)x- 1 = 4 x (1)
0,25
TH1: 0 < x < 1 , suy ra: x x x x x x
x loai)
é = - +
= - -
ë
3 2 3(
TH2: x > 1 , suy ra: x x x x x x
x loai
é =
0,25
4
(1điểm) Ta có :
x
I x xdx x xdx dx
0,25
2
1
I = x xdx= xd x = éêx x - x d x ù ú = x x - xdx = +
2
2
ln
1
e
x
x
1 2
1
4
I=I +I = e +
0,25
5
(1điểm) Đường thẳng d đi qua M và vuông góc với mặt phẳng (P) có VTCP u(1, 1, 2) r -
0,25
Đường thẳng d có phương trình x 1 y 1 z 2
Trang 4Tọa độ điểm I là nghiệm của hệ
x 1 y 1 z 2
y 0
z 0
ì
= =
ï
=
í
ï =
ï
î
Suy ra (S) có tâm O(0,0,0) 0,25
Bán kính mặt cầu (S): R=OM= 6
6
(1điểm)
AB SMH
SH AB
^ ü
ý
Þgóc giữa (SAB) và (ABCD) là góc giữa SM và
MH. Vậy Ð SMH = 60 °.
0,25
Do đó:
3
Gọi I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD, suy ra IO ^ ( ABCD ) .
Do đó:
2
R = x + OA = Þ S = p
0,5
7
(1điểm)
Đường tròn ( ) C có tâm I(1,2),R=2 Gọi M(a,b). Do M Î ( C1 ) Þ a2+ b2 - 6 a - 4 b + 11 0(1) = 0,25
Phương trình đường tròn đường kính IM: x2+ y2 - ( a + 1) x - ( b + 2) y a + + 2 b = 0 0,25
Suy ra phương trình đường thẳng d: ( a - 1) x + ( b - 2) y + - - 1 a 2 b = 0
Từ (1) và (2) suy ra: 4
(4;1)
1
a
M
b
=
ì
Þ
í
=
î
0,25
8
(1điểm) Điều kiện
1
x y
2
³ ³ Đặt a= 2y 1- ³0, b= x-y ³ 0
0,25
Phương trình thứ nhất trở thành a2+b2 + + = a b 4 (3)
Phương trình thứ hai trở thành a b2 2+a2+b2 = 3(4) 0,25
H
N
D
A
S
I
526
Trang 5Giải hệ (3), (4) đặt ( , 0)
S a b
S P
P a b
= +
ì
³
í
=
î
ta được :
2 3 (6)
ì + - =
ï
í + - =
ï Trừ (5) cho (6) ta được S P- 2= Þ1 S=P 2 + 1
Thay vào (6): P2+P4+2P2 + -1 2P = 3 Û(P-1)(P3+P2 +4P +2)= 0
1
4 2 0
P
=
é
Û ê
+ + + =
ë
Kết hợp điều kiên P ³ ta được P=1; S=2 0
0,25
Giải hệ P=1; S=2 ta thu được a = b =1
Suy ra hệ có nghiệm duy nhất (x=2; y= 1) 0,25
9
(1điểm)
P=a +b +c + ab bc ca+ + £a +b +c + a b + b c+ c a
nên ta có thể coi a b c , , ³ 0 giả sử a=m ax{a,b,c} Þ £1 a £ 3 0,25
2
P£a + æç - ö÷ + a -a + æç - ö ÷
Hay 3 4 9 2 ( 2 )
9 3 2 3
2 2
0,25
Xét hàm số ( ) 4 ( 2 )
3 6 2 2 3
f a =a - a+ + a - a trên 0; 3 é ù
ë û
2
2
2
3
2
2
2
4 ' 4 6 2 2 3
2 3
12 8
4 6
2 3
2
4 6
2 3
a
a
a
a
a
-
-
= - +
-
( )
2
2
3
2
a
a
é
=
ê
é - =
ê
ê
ê
= Ûê - = Ûê =
=
ê
ë
ê
(do a ³ ) 0
Ta có bảng biến thiên
a
f’ 0 0 + 0
f
( )
0; 3
1
8
2
a
é ù
ë û
=
é
=
ë
0,25
( )
1
12
2
axP=12
a b c
a
b c
= = =
é
ê
ì =
ê
ê í
ê ï = =
êî
ë
0,25
Cảm ơn thầy Nguyễn Thành Hiển ( https://www.facebook.com/HIEN.0905112810 ) đã chia sẻ đến
www.laisac.page.tl
6
527