Sampleswereuniformlydepositedontotheglasssupportso that illuminated area wasabout 3.1cm2 for acetone oxidation and7cm2 for cyclohexaneoxidation.Photocatalyst densitywas 1mg/cm2toprovidec
Trang 1Chemistry
j o u r n al hom ep age : w w w e l s e v i e r c o m / l o c a t e / j p h o t o c h e m
D.S Selishchev, P.A Kolinko, D.V Kozlov∗
Boreskov Institute of Catalysis, Novosibirsk 630090, Russian Federation
a r t i c l e i n f o
Article history:
Received 14 June 2011
Received in revised form 5 December 2011
Accepted 10 December 2011
Available online 19 December 2011
Keywords:
Gas-phase photocatalysis
Adsorption
Titanium dioxide
Activated carbon
a b s t r a c t
© 2011 Elsevier B.V All rights reserved
1 Introduction
Well-knownmethodsforwaterandairpurificationarebased
onthe usageof certain types of adsorbents.The most popular
adsorbent isactivatedcarbon(AC)due toitshighporevolume
andsurfaceareaandhighadsorptioncapacity[1].Maindrawback
ofpollutantsremovalwithadsorbentisthedecreaseof
purifica-tionefficiencywithtimeandimportanceofregularregeneration
Therealsoexistsaproblemoffurtherutilizationofaccumulated
pollutants
Heterogeneous photocatalytic oxidation (PCO) is promising
methodtoremovevolatileorganiccompounds(VOCs)fromindoor
airespeciallyatlowconcentrations,becauseitallowsalotof
pollu-tantstobeoxidizedwithformationofCO2andH2Oasfinalproducts
[2,3].MostofresearchesarefocusedontheapplicationofTiO2as
photocatalystduetoitshighactivity[4–6].Titaniumdioxideallows
manytypeoforganiccompoundtobedecomposedeffectivelyboth
inairandinwater[7–9].However,therearesomelimitationsof
TiO2-mediatedphotocatalyticoxidation.Thefirstdrawbackisthe
∗ Corresponding author Tel.: +7 383 3331617; fax: +7 383 3331617.
E-mail address: kdv@catalysis.ru (D.V Kozlov).
lowadsorptioncapacityofTiO2andinsufficientPCOrate.Asaresult
itisusuallyrequiredalongtimetomineralizeorganicadmixtures completely.Theseconddrawbackisaformationofintermediates, whichcouldcausephotocatalystdeactivation,forexample,inthe caseofaromaticandheteroatomcontainingorganiccompounds PCO[10,11].Sometimesintermediatescouldbemoreharmfulthan startingpollutant[12],andinthiscasethePCOcouldbecomethe sourceofevenhigherairorwaterpollution
Photocatalyticprocesscouldbeconsideredassubstrate adsorp-tiononthecatalystsurfaceand subsequentoxidationbyactive speciesformingunderUVirradiation.Onthisbasisitispossible
tomodifyphotocatalysts toincreaseefficiencyofphotocatalytic oxidationprocessateverystep:adsorptionandoxidation.Kinetic constantcouldbeincreased,forexample,bynoblemetals depo-sitionsonthecatalystssurface[13].In thiscasemetalparticles accumulateelectronsimprovingchargeseparationandreducing electron–hole recombination rate giving the overall enhance-mentofphotoreactionsefficiency.Adsorptionconstantcouldbe increasedbyH2SO4treatmentoftheTiO2surface[13]
An alternative way of improving photocatalyst adsorption ability is additionof adsorbent in thephotocatalytic systemor makingTiO2/adsorbentcompositesystem,inwhichTiO2 would
bedepositedonadsorbentsurface.Inthefirstcasephotocatalyst 1010-6030/$ – see front matter © 2011 Elsevier B.V All rights reserved.
Trang 2time of substrate removal could be decreased [17] Supported
TiO2/adsorbentphotocatalystshavebeenextensivelyinvestigated
intherecent time.A numberof materialswereusedas aTiO2
support:glass[18],organicandinorganicfibers[19],activated
car-bon[20],SiO2[18]andAl2O3[21].Torimotoandco-workers[22]
demonstratedthattherateofCO2accumulationforpropyzamide
oxidationover70%-TiO2/adsorbentphotocatalystswasreducedin
theadsorbentsequenceAC–SiO2–mordenite–pureTiO2.It
corre-latedwithamountofadsorbedsubstrate.Takedaandco-workers
[23]reportedthatthehighest formationrateoffinal product–
CO2inthephotodecompositionofgaseouspropionaldehydewas
observedforaTiO2/adsorbentphotocatalystswithmedium
adsorp-tionconstant
Manyresearchersinvestigatedcarbonmaterials,andACin
par-ticular,incombinationwithTiO2.Alotofmethodswereapplied
topreparephotocatalyticallyactiveTiO2/ACsamples:aggregation
intosolution[24],sol–gel[25],hydrothermalsynthesis[26],CVD
[27].Somegoodreviewsregardingpreparationroutesandtheir
effectsonphotocatalyticactivityofTiO2/AChavebeenpublished
recently[28,29].Mostinvestigationsaredevotedtophotocatalytic
oxidationofpollutantsoverTiO2/ACinwatersolutions[26,27,30]
EnhancedphotocatalyticactivityofTiO2/ACincomparisontoTiO2
alone(synergism)areoftenexplainedbyadsorptionofsubstrate
onACsurfacefollowed bysurfacetransfertophotocatalytically
activeTiO2.Thisconclusionisoftenbasedontheanalysisof
sub-strateremovalkineticcurveonly.Accordingtoouropinionsuch
approachisnotsufficientbecausefastersubstrateremovalcould
beexplainedbyadsorptionwhereasphotocatalyticactivityof
com-positeTiO2/ACsystemcouldbedecreased.Inthiswayanalysisof
productsaccumulationkineticcurvesshouldbedonealso
Aquantity of papers aboutgas-phase oxidation withmixed
TiO2/adsorbent photocatalysts is much smaller.Kuo et al [31]
usedTiO2(P25)/ACphotocatalystinafluidizedbedphotoreactorfor
tolueneoxidationat200–1000ppmtolueneconcentrationinflow
reactor.TheyrevealedthatTiO2/ACcatalystshadhighadsorption
capabilityandsteady-statetolueneconversionwasabout3times
higherwithTiO2/ACphotocatalystthanwithpureTiO2.Insome
conditionstolueneconcentrationcouldbereducedtothe
maxi-mumcontaminantlevel(about100ppm)andkeptinthisstagefor
atleast11h.Otherresearchers[32]immobilizedTiO2onan
acti-vatedcarbon(TiO2/AC)filterinstalledinacommercialaircleaner
andtesteditinthePCOofNOandtolueneremovalatppblevel
Bouazzaandco-workers[33]preparedpelletsofTiO2P25and
pel-letsof70%-TiO2/ACandusedtheminphotocatalyticoxidationof
propeneandbenzeneindryandhumidifiedconditions.In
humid-ified air theagglomerated TiO2/AC photocatalyst wasthemost
activeforbenzene PCO.On theotherhandTorimotoetal [34]
reportedthatin gaseous dichloromethaneoxidation the
photo-catalyticactivityofchemicallyprepared80%-TiO2/ACcatalystwas
lowerthanforunmodifiedTiO2
To summarize it could be concluded that presence of AC
inphotocatalysts composition couldbepositive ornegative for
2.1 Reagents Activatedcarbonpowder(SORBENTInc.,Russia)waschosenasa poroussupportforTiO2deposition.Beforesynthesisitwaswashed outthoroughlybydistilledwater.Theotherreagentswerepurity grade andused forsynthesis of catalystsand oxidation experi-mentsaspurchased:sulfuricacid(H2SO4,93.5–95.6%,PKFANTInc., Russia),titanylsulfate(TiOSO4·2H2O,>98%,VEKTONInc.,Russia), acetone(CH3COCH3,>99.8%,MOSREAKTIVInc.,Russia), cyclohex-ane(C6H12,>99%,PIRIMIDINInc.,Ukraine)
Titanylsulfatewatersolutionusedforthermalhydrolysis syn-thesiswasapproximately10wt.%concentrationandwasprepared
bydissolution of 50–55gof TiOSO4·2H2Oin 450ml of distilled waterduring24hatconstantmixing.Finally,smallamountofthe undissolvedTiOSO4wasseparatedbycentrifugation.Asprepared solutionwasthenstabilizedbyadditionofH2SO4toadjustits con-centrationtoabout0.1Mvalue.FinalTiOSO4solutionwaskeptin cold
2.2 Catalystspreparation Briefdescriptionofthermal hydrolysissynthesisis shownin
Fig.1.ThemainvaryingparameterwastheTiO2 contentinthe sample.Toprepare1gofTiO2/ACsamplewithXwt.%TiO2 con-tent(1−(X/100))gofACweresuspendedintotheV=(X/8C)mlof TiOSO4watersolutionwithconcentrationC(mol/l).Samplesinthis seriesweremarkedasX-TCwhereXwastheTiO2content(wt.%) TiO2sample(withoutAC)synthesizedbythermalhydrolysiswas markedass-TiO2
2.3 Characterizationofcatalysts TiO2 content in X-TC series was measured using the X-ray fluorescencespectrometerVRA-30withchromicanode.The mor-phologyofsampleswasstudiedbyscanningelectronmicroscopy (SEM)usingtheLEO-430spectrometer(CarlZeiss).N2adsorption isothermsweremeasuredat77KusingaMicromeriticsASAP2020 instrument.ThespecificsurfaceareawascalculatedbytheBET method.Forporevolumecharacterizationwasusedsinglepoint adsorptiontotalporevolumeat(P/Po)∼1.Thecrystalphase iden-tificationwascarriedoutbytheX-raypowderdiffractionwitha X’tra(Thermo)diffractometerusingCuK␣radiationandscanning
inthe2 rangeof15–85◦.The(200)planediffractionpeakfor anatase(2=48.09◦)wasusedtocalculateTiO2crystallitesizeon theassumptionofsphericalshape.UV–visdiffusereflectance spec-traweremeasuredusingLambda35spectrophotometer(Perkin Elmer)equippedadiffusereflectanceaccessorywithreferenceto MgOpowder
2.4 Kineticmeasurements
Inthepresentworktwotypesofreactorwereusedforkinetic experiments
Trang 3Fig 1.Brief description of TiO 2 /AC photocatalysts preparation by TiOSO 4 thermal
hydrolysis.
Staticreactor (Fig 2)wasused for acetoneand cyclohexane
vaporPCOkineticmeasurements.Thisreactorwasinstalledinthe
cellcompartmentofNicolet380(Thermo)FTIRspectrometer
Sampleswereuniformlydepositedontotheglasssupportso
that illuminated area wasabout 3.1cm2 for acetone oxidation
and7cm2 for cyclohexaneoxidation.Photocatalyst densitywas
1mg/cm2toprovidecompletelightabsorption.Beforethe
begin-ningofeveryexperimentphotocatalystsampleswereirradiated
withUVlightduring3–4hinordertocompletelyoxidizesome
pre-viouslyadsorbedsurfacespecies.Thenacertainamountofliquid
acetone(0.4l)or cyclohexane(0.8l)was injectedand
evap-orated for 30min until adsorption–desorption equilibrium was
established.Finallytheilluminationwasturnedonandgas-phase
IRspectraweretakenperiodically
Steady-statevaluesofcyclohexanePCOrateweremeasuredin
aflow-circulatingreactor(Fig.3).ThecyclohexanePCOwasstudied
atsubstrateconcentrationrange0–30mol/l.Otheroperational
parameterswere:temperature–40◦C,relativehumidity(RH)–
46±2%,volumetricflowrate(U)– 28cm3/min,Phillips9W365nm
UV-Alightsource,irradiatedareaofthesample∼7cm2,sample
density–1mg/cm2
TheCO2andcyclohexaneconcentrationsweremeasuredusing
gascell(Fig.3(7))installedinthecellcompartmentofNicolet380
Fig 2. The static reactor for kinetic measurements Experimental conditions: reac-tor volume 300 cm 3 ; temperature 25 ◦ C; optical path length 10 cm; irradiation by light of 1000 W high pressure Hg lamp DRSH 1000 (Russia) which was passed through a BS-4 300 nm cutoff filter, UV light intensity 13 mW/cm 2
Table 1
TiO 2 content and textural properties of TC series samples.
Sample TiO 2 content
(wt.%)
BET surface area,
A (m 2 /g)
Single point total pore volume, V (cm 3 /g)
SEMphotographsofAC,TiO2andsomeTiO2/ACdemonstrate thattheoriginalACpowderconsistsoffragmentsofcarbonized matter (Fig.4A).The synthesized TiO2 particles have spherical shape Small TiO2 particles with sizes in the range from 3 to
8mformlargeagglomerateswithaveragesizeabout50–200m (Fig.4B)
SEMphotosillustratethatTiO2depositionbythermal hydroly-sisofTiOSO4solutionleadstoformationof3–5msizecrystallites
ontheACexternalsurface(Fig.4C)whichbecomescompletely cov-eredwithTiO2particlesastheTiO2contentreaches80wt.%value (Fig.4D)
XRDpatternsofTiO2andsomeTiO2/ACsamples(Fig.5) demon-stratethatpureanddepositedTiO2haveonlyanatasemodification Rutilephasewasnotobserved.ItistypicallyforTiO2preparation
by TiOSO4 thermal hydrolysis [35].The sizeof TiO2 crystallites remainsapproximatelyconstantinthes-TiO2and80-,70-TC sam-plesandisequaltoabout6nm.ItindicatesthatTiO2depositedon theACsurfaceinthecaseofhighTiO2contentisthesameass-TiO2 sample,anditshouldnotbeexpectedchangeofTiO2itselfspectral characteristics
Trang 4Fig 3.Flow-circulating setup: (1) – air purification system; (2)–(3) – mass flow controllers, (4) – saturator with distilled water, (5) – saturator with cyclohexane, (6) – microdispenser, (7) – gas cell installed in an IR spectrometer.
Fig 4.SEM photographs of activated carbon (A), s-TiO 2 (B), 50-TC (C) and 80-TC (D) samples.
AccordingtoN2 isothermsanalysis(Table1)thes-TiO2
sam-plehaslargespecificsurfaceareaSBET=167m2/gandporevolume
V=0.20cm3/g The AC specific surface area is equal 825m2/g
whereas microporesurface areacalculated by t-plotanalysis is
equal614m2/g.ItmeansthatACstructuremainlyconsistsof
micro-pores.SpecificsurfaceareasandporevolumeofTCseriessamples
areasuperpositionoftheTiO2 andACindividualcharacteristics
(Fig.6)
Invisibleregion(>400nm)reflectionintensityforTCseries
islowerthanfor thepures-TiO2 sample(Fig.7).Thereasonof
suchbehaviorislight absorptionbyACparticles,which arenot
completelycoveredwithTiO2,becauseACabsorbslightbothin
vis-ibleandUVregions.Probably,itisoneofthereasonsofreducing
oxidationratesforthesecompositecatalystsasitwillbe demon-stratedlater
Resultsofthephysical–chemicalanalysesindicatethatthere doesnotoccurconsiderableblockingofACsurfacewithsupported TiO2particlesandthereisnodifferencebetweenthepure synthe-sizedTiO2powderandTiO2particlessupportedontheACsurface becauseTCseriespropertiesareasumofs-TiO2andACproperties 3.2 Photocatalyticoxidationexperiments
3.2.1 Acetonevaporoxidationinthestaticreactor
InthebeginningallsynthesizedsamplesweretestedinthePCO
ofacetonevaporinthestaticreactortochoosethemostactive
Trang 5Fig 5.XRD patterns of s-TiO 2 , 80- and 70-TC samples.
Fig 6. Dependencies of specific surface area and pore volume on the TiO 2 content
for TC series.
Fig 7.Pure TiO and TiO /AC diffuse reflectance spectra.
Table 2
Reaction parameters of acetone vapor PCO in the static reactor.
Sample C/C 0 (%) a W Ac (ppm/min) W CO 2 (ppm/min)
a Amount of acetone adsorbed on the sample after establishment of adsorption–desorption equilibrium.
samples.Onlywater,carbondioxideandCOweredetectedas prod-uctsofoxidation.AmountofformedCOwasabout15–30ppmand wasmuchlowerthanthefinalamountofevolvedCO2∼1250ppm
sowedidnottakeitintoaccountinmass-balance
TheexperimentaldataofacetonevaporremovalandCO2 accu-mulation during acetone photooxidation on the TC series and s-TiO2samplearepresentedinFig.8
It could be seen that for s-TiO2, 80- and 70-TC samples
CO2 concentration reachedconstant value after 60min of irra-diation (Fig 8) and this value was slightly less than 100% of acetoneconversionlevel.Therestcarbonwasinformsofgaseous
CO and carbonates adsorbed on the catalyst surface Samples with20,30 and 50wt.%TiO2 contentdemonstrated low oxida-tion rates therefore PCO reactions for these samples were not completed
Table2summarizestheinitialratesofacetoneremoval(WAc) and CO2 accumulation (WCO 2)calculated by linear approxima-tion of experimental data for the first 40min of PCO reaction Amountofacetoneadsorbedonthecatalystsurfaceafter establish-mentoftheadsorption–desorptionequilibrium(C/C0)increased withincreasingACcontentinthesample.Atthesametimethe rates of acetone removal (WAc) and CO2 accumulation (WCO2) became less In the other words the higher ACcontent corre-spondedtohigheradsorptioncapacityandlowerphotocatalytic activity
Acetoneisapolarsubstance,probablythatisareasonofthe negativeinfluenceof ACcontentincomposite photocatalyston thekineticsof acetonevaporremoval.Sothenextexperiments wereconductedwithcyclohexanewhichadsorptivityontheAC surfacehastobehigherthanforacetone
Trang 6Fig 8.Acetone vapor PCO in the static reactor with TC1 series photocatalysts and s-TiO 2
3.2.2 Cyclohexanevaporoxidation
CyclohexanevaporPCOonthecompositeTiO2/AC
photocata-lystswasinvestigatedinthestaticandflowreactors.Thepurpose
ofexperimentsinthestaticreactorwastounderstandthe
influ-enceofACpresenceonthereactionkineticswhereasflowreactor
wasusedformeasuringrateandadsorptionconstants
3.2.2.1 Kinetics in the static reactor Water, CO2 and CO were
detectedasproductsofcyclohexanePCO.Finalconcentrationof
evolvedCOinthestaticreactorwasabout60–80ppm whereas
thefinalCO2 concentrationwasabout3500ppmthatiswhyCO
formationwasneglectedinmass-balancelikeinpreviouscase
Kinetic curves of C6H12 removal and CO2 accumulation are
showninFig.9fors-TiO2,70-TCsamplesandforcontrol
exper-iment The reason of control experiment was to understand
differencebetweensupportedTiO2/ACandspacedTiO2+ACcases
Thiscontrolexperimentwillbedescribedindetaillater
StartingC6H12concentrationhadtobeC0=603ppmiftoneglect
adsorption.Inthecaseofs-TiO2samplethisstartingconcentration
wasdecreasedbyC=39ppmsothatC/C0∼6.5%whereasinthe
caseofcompositephotocatalyststheinitialconcentrationdropwas
aboutC∼210ppm,C/C0∼35%(Table3).ItmeansthatTiO2has
loweradsorptioncapacityinrelationtononpolarsubstrate–
cyclo-hexane.ThecompositeTiO2/ACcatalystsdemonstratedsubstrate
adsorptionincreasedanditsconcentrationinthegasphasewas
lowerduringtheinitialtimeperiodofphotocatalyticreactionfor
70-TCsamplethanfors-TiO2sample.Howeveritshouldbenoted
thatthatthereexistsacross-pointtimets∼39.2minwhengaseous
cyclohexaneconcentrationbecomehigherfor70-TCthanfors-TiO2
samples.InotherwordsthePCOratebecomeslowerwithTiO2/AC
photocatalyst
Importantcharacteristicofphotocatalyticprocessisthetimeof
maximumcontaminantlevel(MCL)establishment(tMCL)instatic
conditions.AccordingtoRussiansanitary regulationsthe
cyclo-hexaneMCLforworkingareasis80mg/m3whichcorrespondsto
24ppmconcentration.Theprolongationofcyclohexaneremoval
kineticsfor70-TCphotocatalystsandtheincreaseoftMCLtimefrom
55to60minalsoindicatethat70-TCsampleislessefficient
Activatedcarbonfiltersareoftenusedincombinationwith
pho-tocatalyticfiltersincommercialaircleaningdevices todecrease
concentrationof pollutants byadsorption.It was interestingto comparethiswayofadsorbentusagewiththecaseofdeposited TiO2/ACphotocatalyst.Thereforewecarriedoutacontrol exper-iment,inwhich4.8mgofs-TiO2and2.2mgofACpowderswere placedseparatelyinthestaticreactor.TiO2andACweretakenin thesameamountsasitwasinthe7mgof70-TCsample
KineticscurvesofcyclohexaneremovalandCO2accumulation duringthecontrolexperimentarepresentedinFig.9alongwith thedatafors-TiO2 and70-TCsamples.Asignificantdecreaseof theinitialsubstrate concentrationwasobserved:C∼296ppm
C/C0∼49% This value is even higher than for 70-TC sample althoughBETanalysisdemonstratedthatspecificsurfaceareaof 70-TCisequaltothealgebraicsumofACands-TiO2surfaceareas (Fig.6).ToouropiniontheexplanationisthatN2isasmallmolecule andtheentiresurfaceof70-TCsampleisavailableforitwhereas cyclohexanemoleculeisbiggerandapartof70-TCsamplesurface
isinaccessibleduetopartialblockingofACwithTiO2particles
Incontrolexperimentcyclohexaneconcentrationingasphase waslowestduringtheinitialtime periodof thePCO and max-imum contaminant level wasreached rapidly – tMCL=51.8min (Table3).Ontheotherhandtherewasalsoobservedacross-point timets=57.6min.Afterthat timecyclohexaneconcentrationin thecontrolexperimentbecamehigherthaninthecaseofs-TiO2 sampleanddecreasedveryslowly.After80minofPCOforalong timeperioda tracelevel ofcyclohexanevapor(about 3–7ppm) wasdetected,whereasincaseofs-TiO2or70-TCsamplesitwas removedfromgasphasecompletelyafter90minofthePCO.Itis thefirstdifferencebetweencompositeTiO2/ACphotocatalystand simplecombinationofTiO2andAC
The second observed difference could be seen from kinetic curvesofCO2formation.Inthecontrolexperiment(Fig.9)theinitial rateofCO2formation(WCO2)was57ppm/minbutafter30minof thePCOCO2formationratedecreasedrapidly.Evenafter4hofthe cyclohexanePCOcarbondioxideconcentrationinthestaticreactor reachedonly3070ppmlevelwhichcorrespondedto85% mineral-izationratio.Itindicatesthatevenafter4hpartofcyclohexanewas remainedadsorbedontheACsurface.Inthecaseof70-TCsample expectedCO2levelwasalmostachievedafter120minofthePCO
Itistobenotedthattotaldecreaseofphotocatalyticactivityin caseofcompositecatalystortheseparateuseofTiO andACcould
Trang 7Fig 9.Kinetics of C 6 H 12 PCO (unfilled markers) and CO 2 accumulation (filled markers) in the static reactor for s-TiO 2 , 70-TC samples and control experiment.
Table 3
Characteristics of cyclohexane PCO kinetic curves presented in Fig 9
d (ppm/min)
a The amount of acetone adsorbed on the sample after establishment of adsorption–desorption equilibrium.
b The cross-point time of cyclohexane kinetic curves for TiO 2 and 70TC or TiO 2 + AC photocatalysts.
c The time of maximum contaminant level establishment; the MCL for cyclohexane is 24 ppm d The initial rate of CO 2 formation for the first 40 min of the PCO.
beexplainedbythedecreaseofeffectivegaseoussubstrate
con-centrationduetoitsadsorptiononACsurface.Thisphenomenon
hasbeenpreviouslystudiedbycomputersimulationofthePCO
usingL.-H.model[17].Butwhyisthereexistsdifferentbehaviors
of70-TCandseparateTiO2–ACsystems?WhenTiO2 andACare
usedseparatelythensubstratecouldtransferfromadsorbentonto
theTiO2surfaceonlythroughgasphaseandinthecaseof
compos-iteTiO2/ACphotocatalystsinadditiontherecouldoccurasurface
migrationofsubstrateandintermediates.Forexample,
cyclohex-anone,carbonylandcarboxylcompounds[36]weredetectedas
intermediatesofthecyclohexanePCO.Therebytheseparateuseof
photocatalystandadsorbentresultsinconsiderableprolongation
ofsubstrateremoval
Experimentsdescribedabovedemonstratethatadsorptionof
oxidizingsubstratestronglyinfluencethekineticsofPCOinstatic
conditions.Thereforetoexcludethisinfluenceanddeterminethe
activityofTCsamplesexperimentswerecarriedoutinflow
condi-tions
3.2.2.2 Kineticsintheflowreactor Dependenciesofcyclohexane
steady-statePCOrateonitsconcentrationfors-TiO2,80-TCand
70-TCsamplesintheflowreactorarepresentedinFig.10.Rateof
CO2formationwastakenastherateofthePCO.Effectiverateand
adsorptionconstantswereofinterestinthesesteady-state
experi-ments.L.-H.kineticmodelwasusedtocalculatethem.Thismodel
correspondstothefollowingrateequation:
WCO2 = kr·Kads·C
1+Kads·C,
where(WCO2)istherateofCO2,(kr)iseffectiverateconstant,(Kads)
iseffectiveadsorptionconstant,(C)isthesteady-state
concentra-tionofcyclohexane
Experimentaldatafor70-TCand80-TCaswellasfor unmodi-fiedTiO2weregoodapproximatedbytheL.-H.equation.Resulting approximationcurvesareshowninFig.10bydashedlines.Values
ofcalculatedeffectiverateandadsorptionconstantsarepresented
inTable4 AccordingtopresenteddataTiO2/ACsamplesrevealedlower activity towards s-TiO2 during cyclohexane oxidation in flow conditions if compare with experiments in the static reactor:
Fig 10.Dependencies of cyclohexane steady-state oxidation rate on its concen-tration in the flow reactor Dashed lines correspond to the approximation of
Trang 8R= kapp (TiO 2 +AC)
k app (TiO 2 )
CyclohexanekineticcurvesfromFig.9couldbeusedfor
esti-mationof R-factorin thefirst-order assumption.Apparent rate
constantvaluesfors-TiO2,70-TCandcontrolexperimentareequal
to0.044,0.040and 0.048min−1 respectively.Thecorresponding
R-factorvaluesare:
R1= kapp (70 −TC)
k app ( s−TiO 2 )=0.91 and R2=kapp (control exp )
k app ( s−TiO 2 ) =1.2
Although control experiment revealed that C6H12 traces
remainsforaverylongtimethecalculatedsynergyeffectwasR2>1
R-factorforcompositesample(R1)wascloseto1.Howeverifwe
willuseL.-H rateconstantforproductformationinsteadysate
experimentsasactivitycriteriaofthesamplesthenthisvaluewill
belower:Rflow
1 =(0.040/0.115)=0.35(Table4).Thisshort
exam-plesupportsthestatementthatcorrectR-factorhastobecalculated
onlyfromproductformationkineticcurves
Inourworkwehavemanagedtoincreaseadsorptionconstant
forcompositeTiO2/ACsystemascomparedwithunmodifiedTiO2
Toouropinionlowervalueofrateconstantsisexplainedbylesser
quantaquantityabsorbedby ACparticlesincompletely covered
withTiO2
3.3 Suggestionaboutstructureofphotocatalyticallyactive
TiO2/ACcatalystswithimprovedadsorptionproperties
Activatedcarbonsstillremainthemostwidelyusedadsorbents
forairandwaterpurificationsincethismaterialhasunique
mor-phologicalpropertieswhichprovideitshighadsorptioncapacity
againstmanytypesoforganicmolecule.Butthereexistscertain
difficultiesofitswideapplicationasasupportforTiO2toprepare
compositephotocatalysts[29].ThemaindrawbackistheUVlight
absorbancebyACparticles.Asitwasdemonstratedinthepresent
work,allpositiveeffectsofACarediminishedbydecreaseofthe
oxidationrateduetolesseramountoflightquantaabsorbedby
supportedTiO2.Toimprovethesituationwesuggestto
synthe-sizecompositesystemsbasedonspeciallystructuredorgranulated
activatedcarbon.ExternalsurfaceofsuchACparticlesshouldbe
entirelycoveredwithporousTiO2film.Itisnecessaryforcomplete
UVlightabsorptionjustbysupportedTiO2.Thereforeitsthickness
shouldbenolessthan1morabout2–3wavelengthsofabsorbing
light.IfthicknessofTiO2filmwouldbelessthatapartofincident
lightwillpassthroughthisfilmandwillbeabsorbedbyAC.Itis
alsonecessarythatinternalsurfaceofAC(surfaceofmesopores
andmicropores)wouldbeunoccupiedandunblockedbysupported
TiO2particlesinordertoenlargeadsorptionoforganicsubstrate
tobeoxidized.ProposedmodelisschematicallyshowninFig.11
Inouropinionsuchstructureofcompositephotocatalystparticles
Fig 11.Model of TiO 2 /AC composite photocatalyst with increased photocatalytic and adsorption properties.
wouldbeavoidedofdecreasingratesofphotoreactionandwould
beabletoimprovetheadsorptionpropertiesofphotocatalysts
4 Conclusions
Inthepresentworkasynthesisofphotocatalyticallyactive com-positeTiO2/ACcatalystswithTiO2inanataseformwascarriedout PhotocatalyticactivitywasinvestigatedinthePCOofacetoneand cyclohexanevaporinthestaticandflowreactors.Complete pho-tocatalyticmineralizationofbothmodelpollutantswasobserved without forming gaseous intermediates Increase of adsorption capacitywasobservedforTiO2/ACcatalysts.Thiseffectwas pro-nouncedinthecaseofnonpolarsubstrate–cyclohexane
ThesameamountsofTiO2wereusedforPCOofequalportions
ofcyclohexaneinthestaticreactorbutinthefirstcasethisTiO2 amountwasdepositedonto theACand inthesecond casethe sameACquantitywasplacedseparately.Asynergisticeffectwas observedanditwasconsistedinhigherrateofCO2 formationin thecaseofsupportedsystemwhereasinthesecondcasecomplete mineralizationofcyclohexanewasnotachievedevenafter4hof thePCO.Themostlikelyreasonofsuchdifferenceisthereversible surfacetransferofreagentsandintermediatesbetweenTiO2and
ACsurfaces.SuchsurfacetransferwaseliminatedwhenTiO2and
ACwereusedseparately
Approximationofsteady-statekineticdatawiththeL.-H.model demonstratedthateffectiveadsorptionconstantsforTiO2/AC pho-tocatalystsbecameabout2timeshigherthanforpureTiO2during cyclohexanePCO
ToouropinioncompositeTiO2/ACparticles,whichwill demon-strateincreaseofbothcharacteristics–adsorptioncapacityand mineralizationactivity–shouldbeconstructedofACgranuleswith availableinternal surface(micro-and mesopores)covered with porousTiO2 layer.ThethicknessofthisTiO2layershouldbeno lessthan1–2mtoabsorbUVlightcompletely
Acknowledgements
WegratefullyacknowledgethesupportoftheFederalSpecial Program“ScientificandEducationalCadresofInnovativeRussia”
Trang 970and36,PresidiumRASgrant27.56aswellastheMinistryof
EducationandScienceofRussiaviacontract16.513.11.3091
One of the authors (D.S.) appreciates the grant program
“U.M.N.I.K.”of“TheFundofAssistancetoDevelopmentSmallForms
oftheEnterprisesinScientificandTechnicalSphere”
References
[1] D.R.U Knappe, Chapter 9: Surface chemistry effects in activated carbon
adsorp-tion of industrial pollutants, in: G Newcombe, D Dixon (Eds.), Interface Science
and Technology, vol 10, 2006, pp 155–177.
[2] D.F Ollis, H Al-Ekabi (Eds.), Photocatalytic Purification and Treatment of Water
and Air, Elsevier, 1993.
[3] M Kaneko, I Okura (Eds.), Photocatalysis: Science and Technology, Springer,
2002.
[4] A.L Linsebigler, G Lu, J.T Yates, Chem Rev 95 (1995) 735–758.
[5] O Carp, C.L Huisman, A Reller, Prog Solid State Chem 32 (2004) 33–177.
[6] A Fujishima, T.N Rao, D.A Tryk, J Photochem Photobiol C 1 (2000) 1–21.
[7] H Einaga, S Futamura, T Ibusuki, Appl Catal B 38 (2002) 215–225.
[8] P.A Kolinko, D.V Kozlov, A.V Vorontsov, S.V Preis, Catal Today 122 (2007)
178–185.
[9] K.Y Foo, B.H Hameed, Adv Colloid Interface Sci 159 (2010) 130–143.
[10] M.D Hernández-Alonso, I Tejedor-Tejedor, J.M Coronado, M.A Anderson,
Appl Catal B 101 (2011) 283–293.
[11] D.V Kozlov, A.V Vorontsov, P.G Smirniotis, E.N Savinov, Appl Catal B 42
(2003) 77–87.
[12] H.-H Ou, S.-L Lo, J Hazard Mater 146 (2007) 302–308.
[13] D.V Kozlov, A.V Vorontsov, J Catal 258 (2008) 87–94.
[14] W.-K Jo, Ch.-H Yang, Sep Purif Technol 66 (2009) 438–442.
[15] F Shiraishi, S Yamaguchi, Y Ohbuchi, Chem Eng Sci 58 (2003) 929–934 [16] J Matos, J Laine, J.-M Herrmann, D Uzcategui, J.L Brito, Appl Catal B 70 (2007) 461–469.
[17] D.S Selishchev, P.A Kolinko, D.V Kozlov, Appl Catal A 377 (2010) 140–149 [18] P Pucher, M Benmami, R Azouani, G Krammer, K Chhor, J.-F Bocquet, A.V Kanaev, Appl Catal A 332 (2007) 297–303.
[19] B Herbig, P Löbmann, J Photochem Photobiol A 163 (2004) 359–365 [20] Q Zhang, J Liu, W Wang, L Jian, Catal Commun 7 (2006) 685–688 [21] X Zhang, M Zhou, L Lei, Appl Catal A 282 (2005) 285–293.
[22] T Torimoto, S Ito, S Kuwabata, H Yoneyama, Environ Sci Technol 30 (1996) 1275–1281.
[23] N Takeda, T Torimoto, S Sampath, S Kuwabata, H Yoneyama, J Phys Chem.
99 (1995) 9986–9991.
[24] T Guo, Z Bai, C Wu, T Zhu, Appl Catal B 79 (2008) 171–178.
[25] B Tryba, A.W Morawski, M Inagaki, Appl Catal B 41 (2003) 427–433 [26] S.X Liu, X.Y Chen, X Chen, J Hazard Mater 143 (2007) 257–263.
[27] X Zhang, L Lei, J Hazard Mater 153 (2008) 827–833.
[28] G.L Puma, A Bono, D Krishnaiah, J.G Collin, J Hazard Mater 157 (2008) 209–219.
[29] R Leary, A Westwood, Carbon 49 (2011) 741–772.
[30] R Yuan, R Guan, J Zheng, Scr Mater 52 (2005) 1329–1334.
[31] H.P Kuo, C.T Wu, R.C Hsu, Powder Technol 195 (2009) 50–56.
[32] C.H Ao, S.C Lee, Chem Eng Sci 60 (2005) 103–109.
[33] N Bouazza, M.A Lillo-Rodenas, A Linares-Solano, Appl Catal B 84 (2008) 691–698.
[34] T Torimoto, Y Okawa, N Takeda, H Yoneyama, J Photochem Photobiol A 103 (1997) 153–157.
[35] D.M Bavykin, V.P Dubovitskaya, A.V Vorontsov, V.N Parmon, Res Chem Intermed 33 (2007) 449–464.
[36] A.R Almeida, J.A Moulijn, G Mul, J Phys Chem C 115 (2011) 1330–1338 [37] J Matos, J Laine, J.-M Herrmann, Carbon 37 (1999) 1870–1872.