Nội dung nghiên cứu thực hiện trong văn này là thiết kế, tính toán mô phỏng cảm biến đo vận tốc góc hay con quay vi cơ kiểu tuning fork hoạt động dựa trên nguyên lí hiệu ứng Coriolis với
Trang 1-
NGUYỄN VĂN QUỲNH
ĐỀ TÀI: NGHIÊN CỨU THIẾT KẾ MÔ PHỎNG CẢM BIẾN ĐO VẬN TỐC GÓC DỰA TRÊN CẤU TRÚC TỤ RĂNG LƯỢC
LUẬN VĂN THẠC SĨ KHOA HỌC
Trang 2Nguyễn Văn Quỳnh – ITIMS 2008 1
MỤC LỤC
CHƯƠNG I TỔNG QUAN VỀ CON QUAY (GYROSCOPE)
1 Con quay cơ cổ điển 8
2 Các loại con quay hiện đại 9
2.1 Con quay quang (optical gyroscopes) 10
2.2 Con quay vi cơ (MEMS Gyroscopes) 11
2.2.1 Công nghệ MEMS 12
2.2.2 Nguyên lí hoạt động và nguyên lí cấu trúc 14
2.2.3 Phân loại và quá trình phát triển 19
2.2.4 Những vấn đề còn tồn tại 28
CHƯƠNG II THIẾT KẾ CON QUAY VI CƠ KIỂU TUNING FORK 1 Mục tiêu thiết kế 30
2 Cơ sở thiết kế về tĩnh điện 31
2.1 Lực tĩnh điện cho cấu trúc tụ phẳng 31
2.1.1 Lực tĩnh điện pháp tuyến ( Fn ) 31
2.1.2 Lực tĩnh điện tiếp tuyến ( Ft ) 33
2.2 Lực tĩnh điện cho cấu trúc hệ tụ kiểu răng lược 35
2.3 Nguyên lí đo tín hiệu lối ra trên hệ tụ răng lược 37
3 Cơ sở thiết kế về cấu trúc đàn hồi 41
3.1 Dầm treo thẳng (single fixed-guided beam) 43
3.2 Dầm treo gập (folded beam) 44
Trang 3Nguyễn Văn Quỳnh – ITIMS 2008 2
4 Ảnh hưởng của ma sát không khí đến hoạt động của cấu trúc 45
4.1 Ma sát do sự trượt của các lớp không khí 47
4.2 Ma sát do sự nén của các lớp không khí 49
5 Các mô hình thiết kế 49
CHƯƠNG III MÔ HÌNH HÓA VÀ MÔ PHỎNG CẤU TRÚC 1 Phương pháp tính toán 54
1.1 Phương pháp FEM và phần mềm ANSYS 54
1.2 Phần mềm MATLAB và SIMULINK 56
2 Cấu trúc bài toán mô phỏng 58
2.1 Bài toán mô phỏng cấu trúc cơ học 58
2.2 Bài toán mô phỏng các đặc trưng điện của cấu trúc 61
3 Kết quả mô phỏng 66
3.1 Các đặc trưng cơ học 66
3.1.1 Mô hình thiết kế 1 66
3.1.2 Mô hình thiết kế 2 68
3.1.3 Mô hình thiết kế 3 74
3.2 Các đặc trưng điện của mô hình thiết kế 77
CHƯƠNG IV KẾT LUẬN VÀ ĐỊNH HƯỚNG NGHIÊN CỨU 1 Kết luận 82
2 Định hướng nghiên cứu 83
Trang 4Nguyễn Văn Quỳnh – ITIMS 2008 3
DANH MỤC HÌNH VẼ
Hình 1.1: Con quay cơ học kiểu cổ điển 8
Hình 1.2: Mô hình công cụ dẫn hướng sử dụng trong lĩnh vực hàng hải 9
Hình 1.3: Fiber optical gyroscopes 10
Hình 1.4: Ring laser gyroscope 11
Hình 1.5: Cách xác định gia tốc và lực Coriolis 15
Hình 1.6: Nguyên lý cấu trúc và hoạt động của con quay dao động 16
Hình 1.7: Con quay dầm dao động chế tạo bằng phương pháp vi cơ khối 22
Hình 1.8: Gimbal gyroscopes chế tạo bằng phương pháp vi cơ bề mặt 22
Hình 1.9: Tuning fork gyroscopes chế tạo trên phiến SOI 23
Hình 1.10: Tuning fork gyroscopes với hệ số Q cao 24
Hình 1.11: Ring gyrocopes 25
Hình 1.12: Gyroscopes 2 trục ( dual – axis gyroscopes): 27
Hình 2.1: Lực pháp tuyến với bản tụ 32
Hình 2.2: Lực tiếp tuyến trên bản tụ 34
Hình 2.3: Cấu trúc hệ tụ răng lược (a) và mô hình hoạt động nguyên lý (b) 36 Hình 2.4: Hệ dẫn động kéo đẩy bằng cấu trúc tụ kiểu răng lược 37
Hình 2.5: Cấu trúc nguyên lý đo tín hiệu lối ra (CS: sensitive capacitance) 38
Hình 2.6: Bố trí hệ răng lược dẫn động 39
Hình 2.7: Bố trí hệ răng lược cảm ứng tín hiệu đầu ra 40
Hình 2.8: Minh họa kiểu dầm thẳng 43
Hình 2.9: Cấu trúc dầm treo gập (a), đáp ứng với tải dọc và ngang (b) 44
Hình 2.10: Minh họa kiểu dầm gập kép 45
Hình 2.11: Đặc trưng biên độ tần số của hệ cộng hưởng 47
Hình 2.12: Ma sát không khí do chuyển động trượt của 2 bản cực 48
Hình 2.13: Trường hợp hai bản cực tiến gần lại nhau 49
Hình 2.14: Mô hình thiết kế con quay vi cơ kiểu tuning fork thứ nhất 50
Trang 5Nguyễn Văn Quỳnh – ITIMS 2008 4
Hình 2.15: Mô hình thiết kế con quay vi cơ kiểu tuning fork thứ hai 51
Hình 2.16: Mô hình thiết kế con quay vi cơ kiểu tuning fork thứ ba 52
Hình 3.1: Mô hình mạch điện tương đương 62
Hình 3.2: Mô hình cấu trúc và cách bố trí hệ răng lược 63
Hình 3.3: Sơ đồ thuật toán SIMULINK 65
Hình 3.4: Các dạng dao động tự nhiên của mô hình thiết kế 1 68
Hình 3.5: Sơ đồ nguyên lí cấu trúc tuning fork gyrosope 69
Hình 3.6: Kết quả mô phỏng chuyển vị các dầm ứng với lực 1 N 70
Hình 3.7: Cấu trúc khử bỏ phương dẫn động đồng pha – 2D 71
Hình 3.8: Các mode dao động tự nhiên của thiết kế 2 73
Hình 3.9: Cấu trúc khử bỏ phương dẫn động đồng pha – 2D 74
Hình 3.10: Các Mode dao động tự nhiên của thiết kế 3 77
Hình 3.11: Đáp ứng tần số của mode dẫn động 78
Hình 3.12: Đáp ứng tần số của mode cảm ứng 79
Hình 3.13: Đáp ứng phụ thuộc thời gian của mô hình thiết kế 3 tương ứng quá trình thay đổi của vận tốc góc 80
DANH MỤC BẢNG BIỂU Bảng 1.1: Các đặc trưng của con quay vi cơ cho các ứng dụng 20
Bảng 2.1: Thông số kích thước răng lược trong hệ dẫn động 39
Bảng 2.2: Thông số kích thước răng lược cảm ứng 40
Bảng 3.1: Kích thước các chi tiết của mô hình thiết kế 60
Bảng 3.2: Tính chất vật liệu và kiểu phần tử xây dựng mô hình 61
Bảng 3.3: Trị tần số dao động riêng của mô hình thiết kế 1 68
Bảng 3.4: Trị tần số dao động riêng của mô hình thiết kế 2 74
Bảng 3.5: Trị tần số dao động riêng của mô hình thiết kế 3 77
Bảng 3.6: Các đặc trưng cấu trúc và đáp ứng lối ra của mô hình thiết kế 3 81
Trang 6Nguyễn Văn Quỳnh – ITIMS 2008 5
LỜI CẢM ƠN
Trước hết, tôi xin chân thành cảm ơn thầy giáo, TS Trịnh Quang Thông, người trực tiếp hướng dẫn tôi làm luận văn Với kiến thức sâu rộng, cùng với lòng nhiệt huyết và sự chỉ bảo tận tình, thầy đã truyền lại cho tôi, giúp tôi rất nhiều trong quá trình thực hiện luận văn này
Kết quả đạt được trong luận văn này còn có sự đóng góp to lớn của thầy giáo PGS TS Vũ Ngọc Hùng, Viện trưởng, đồng thời là trưởng nhóm nghiên cứu phát triển công nghệ và các linh kiện MEMS tại viện ITIMS, bằng những chỉ dẫn và những nhận xét sâu sắc trong quá trình nghiên cứu Đặc biệt, phải kể đến những ý kiến tư vấn hết sức thiết thực của TS Đào Việt Dũng, một chuyên gia có kinh nghiệm lâu năm về công nghệ và các linh kiện MEMS, hiện đang làm việc tại Đại học Ritsumeikan, Nhật Bản, gửi cho tôi thông qua các buổi trao đổi online Ngoài ra, tôi còn nhận được nhiều sự giúp đỡ và hỗ trợ từ TS Phạm Hồng Phúc (Khoa cơ khí – ĐHBKHN), TS.Trần Đức Tân(ĐH Công Nghệ), Th.S Nguyễn Tiến Anh và các thành viên khác trong nhóm MEMS, Viện ITIMS, ĐH Bách Khoa Hà Nội, để hoàn thành
đề tài nghiên cứu đã đặt ra
Tôi cũng xin gửi lời cảm ơn tới tập thể học viên trong lớp ITIMS2008, các thầy giáo và tập thể các cán bộ Viện đào tạo Quốc tế về Khoa học Vật liệu (ITIMS) đã tạo điều kiện và ủng hộ tôi trong quá trình học tập và nghiên cứu hai năm học vừa qua
Cuối cùng, tôi dành tất cả lòng biết ơn sâu sắc tới gia đình, bạn bè, những người luôn ở bên cạnh và động viên tôi trong quá trình học tập và công tác
Hà Nội, ngày 18 tháng11 năm 2010
Nguyễn Văn Quỳnh
Trang 7Nguyễn Văn Quỳnh – ITIMS 2008 6
LỜI NÓI ĐẦU
Trong khoảng 30 năm trở lại đây sự ra đời và phát triển của công nghệ MEMS, một lĩnh vực công nghệ cao (hi-tech) đã tạo ra một cuộc cách mạng về khoa học kỹ thuật và công nghệ chế tạo các linh kiện cảm biến (sensors) và chấp hành (actuators) ở phạm vi kích thước dưới milimet Ưu điểm vượt trội của các linh kiện này là độ nhạy cao, kích thước nhỏ gọn, tiêu thụ năng lượng ít Nội dung nghiên cứu thực hiện trong văn này là thiết kế, tính toán mô phỏng cảm biến đo vận tốc góc hay con quay vi cơ kiểu tuning fork hoạt động dựa trên nguyên lí hiệu ứng Coriolis với có cấu trúc tụ kiểu răng lược Đây là linh kiện có ứng dụng rộng rãi trong nhiều lĩnh vực như công nghiệp chế tạo ô tô, kỹ thuật hàng hải, kỹ thuật hàng không, quân sự, công nghiệp hàng điện tử dân dụng, điện tử viến thông Sử dụng phương pháp tính toán mô phỏng bằng phần
tử hữu hạn (finite element method) trên cơ sở sử dụng phần mềm ANSYS multiphysic, công cụ tính toán Simulink trong phần mềm Mattlab Kết quả
mô phỏng cho ta biết ứng xử của linh kiện thông qua các đặc trưng cơ và điện của cấu trúc Từ đó tìm ra cấu trúc tối ưu, tạo tiền đề, cơ sở cho quá trình chế tạo và đo kiểm tra cảm biến sau này
Tuy nhiên do thời gian có hạn nên bản luận văn chưa thể để cập được đầy đủ mọi vấn đề liên quan, và chắc chắn không thể tránh khỏi những thiếu sót Tôi rất mong nhận được sự thông cảm và hy vọng nhận được nhiều ý kiến đóng góp để tôi có thêm những kiến thức quý báu cho những công việc tương lai
Tôi xin chân thành cảm ơn
Trang 8Nguyễn Văn Quỳnh – ITIMS 2008 7
LỜI CAM ĐOAN
Tôi xin cam đoan những kết quả trong luận văn này là kết quả của chính bản thân tôi, không phải là sao chép hay cóp nhặt của bất kì tác giả nào khác Tôi xin chịu trách nhiệm về lời cam đoan của mình
Tác giả
Nguyễn Văn Quỳnh
Trang 9Nguyễn Văn Quỳnh – ITIMS 2008 8
CHƯƠNG I TỔNG QUAN VỀ CON QUAY (GYROSCOPE)
1 Con quay cơ cổ điển
Thuật ngữ Gyroscope lần đầu tiên được đưa ra bởi nhà khoa học người Pháp, Leon Foucault, được ghép từ ngôn ngữ Hy Lạp, theo đó, “Gyro” trong nghĩa là “quay tròn”, và “skopien” có nghĩa là “quan sát” Khi đó, Foucault đã
áp dụng định luật chuyển động quay của gyrocopes để giải thích chuyển động quay của trái đất vào năm 1852
Hình 1.1: Con quay cơ học kiểu cổ điển
Trong cấu trúc con quay cơ cổ điển (gimballed gyroscope) như mô tả trên hình 1.1, người ta sử dụng một một đĩa quay (con quay) có khối lượng với trục quay xuyên tâm và luôn có hướng cố định, được liên kết với khung quay bên ngoài bởi các khớp quay Khi gắn vào một hệ chuyển động quay với vận tốc Ω, cấu trúc này sẽ bị nghiêng đi một góc, sinh ra một mô men động lượng
Trang 10Nguyễn Văn Quỳnh – ITIMS 2008 9
nhờ mô men quán tính lớn của khung, chống lại các momen xoắn bên ngoài
Vì thế, đĩa quay luôn được duy trì theo phương trục quay cố định ban đầu
Do tính bảo toàn mô men động lượng của đĩa quay trong quá trình chuyển động, con quay cơ kiểu cổ điển đã được ứng dụng để tạo ra các công cụ định hướng và dẫn lái trong giao thông hàng hải Những thiết bị dẫn hướng đầu tiên đã có mặt trên những con tàu biển lớn từ năm 1911 trên cơ sở các phát minh của nhà bác học Mỹ, Elmer Sperry, như được minh họa trên hình 1.2 Năm 1920, công cụ này đã được ứng dụng vào trong các hệ thống dẫn lái của các loại bom ngư lôi, và đến năm 1930 thì được ứng dụng vào làm các bộ dẫn hướng cho hệ thông các tên lửa và đạn đạo [2]
Hình 1.2: Mô hình công cụ dẫn hướng sử dụng trong lĩnh vực hàng hải
2 Các loại con quay hiện đại
Cùng với sự phát triển nhanh chóng của khoa học và kỹ thuật từ giữa thế
kỉ 20, công nghệ chế tạo các con quay cũng phát triển không ngừng, với các loại con quay kiểu mới như con quay quang (optical gyroscope) dựa trên hiệu
Trang 11Nguyễn Văn Quỳnh – ITIMS 2008 10
ứng giao thoa ánh sáng, và con quay vi cơ chế tạo bằng công nghệ vi cơ điện
tử (MEMS)
2.1 Con quay quang (optical gyroscopes)
Các con quay quang học được chế tạo dựa trên hiệu ứng Sagnac là phổ biến nhất Công cụ này đã được sử dụng thay thế cho các con quay cơ học trong các ứng dụng dẫn hướng trong các nghành công nghệ hàng không vũ trụ Các con quay quang học có ưu điểm vượt trội là độ ổn định cao (sai số < 0,001 0/h) và dải động học của cảm biến đạt đến cỡ 106 [3] Có hai loại cấu hình được sử dụng rộng rãi cho các ứng dụng dân sự và quân sự, một loại dựa trên nguyên lý giao thoa ánh sáng trong các sợi dẫn quang (Interferometric fiber optic gyrocope) như được chỉ ra ở hình 1.3 và loại thứ hai sử dụng ánh sang la-ze (Ring laser gyroscope) như được minh họa ở hình 1.4
Hình 1.3: Fiber optical gyroscopes
Trang 12Nguyễn Văn Quỳnh – ITIMS 2008 11
Hình 1.4: Ring laser gyroscope
Trên phương diện cấu trúc, con quay quang học không có các thành phần chuyển động và được chế tạo từ các vật liệu siêu bền, nên có thể được sử dụng trong các môi trường hoạt động vô cùng khắc nghiệt
2.2 Con quay vi cơ (MEMS Gyroscopes)
Trong khoảng 30 năm trở lại đây, sự ra đời và phát triển của công nghệ MEMS, một lĩnh vực công nghệ cao (hi-tech), đã tạo ra một cuộc cách mạng
về khoa học công nghệ trong việc chế tạo các linh kiện cảm biến (sensors) và chấp hành (actuators) ở phạm vi kích thước dưới milimet Ưu điểm vượt trội của các linh kiện này là độ nhạy cao, kích thước nhỏ gọn, tiêu thụ năng lượng
ít Trong số đó, cảm biến đo vận tốc góc hay con quay vi cơ (microgyroscope)
là một trong những linh kiện có ứng dụng rộng rãi trong nhiều lĩnh vực như công nghiệp chế tạo ô tô, kỹ thuật hàng hải, kỹ thuật hàng không, quân sự, công nghiệp hàng điện tử dân dụng, điện tử viến thông
Trang 13Nguyễn Văn Quỳnh – ITIMS 2008 12
MEMS là chữ viết tắt của thuật ngữ Micro-Electro-Mechanical System hay ngắn gọn hơn là Microsystem Trong tiếng Việt, MEMS nghĩa là Hệ Vi Cơ-Điện tử, một hệ có sự kết hợp của các thành phần có chức năng hoạt động dưới dạng điện và cơ với nhau ở kích thước dưới milimet MEMS được hiểu như là một hệ thông minh thu nhỏ chứa đựng các chức năng nhạy với tác động bên ngoài (sensing), xử lý (processing) và điều khiển trở lại (actuating) Các hệ này còn có thể bao gồm một số yếu tố điện, cơ, quang, hóa, sinh, hoặc
từ, tất cả được tích hợp với nhau trong một Chip vi điện tử duy nhất (on chip) Microsystem ra đời trên cơ sở công nghệ vi điện tử (Integrated Circuit - IC) kết hợp với qui trình vi chế tạo (microfabrication) các cấu trúc ba chiều kích thước siêu nhỏ trong phạm vi micromet dựa trên kỹ thuật ăn mòn vật liệu Sự kết hợp đó cho phép tạo ra tập hợp các một số lượng rất lớn các linh kiện được tích hợp trong một mảng Các linh kiện này vẫn có thể thực hiện các chức năng đơn giản một cách riêng rẽ ở mức độ vi mô trong khi vẫn được kết hợp với nhau để tạo ra một hoạt động phức tạp ở mức độ vĩ mô Điều đó cho phép MEMS đã có được những ứng dụng rộng rãi trong nhiều ngành công nghiệp và đời sống như công nghiệp ô tô, in ấn, giao thông, điện thoại di động trong kỹ thuật thông tin, robot loại nhỏ, quân sự, hàng không, kỹ thuật môi trường, sinh-hóa và y học v…v…
Các kỹ thuật cơ bản trong công nghệ MEMS gồm: quang khắc (photolithography); khuếch tán (diffusion); cấy ion (ion implantation); lắng đọng vật liệu bằng các phương pháp vật lý hoặc hóa học ở pha hơi (physical/chemical vapor deposition); ăn mòn ướt hoặc khô (wet/dry etching); hàn ghép phiến (silic to silic/ silic to glass bonding); hàn dây (wire bonding),
và đóng vỏ hoàn thiện linh kiện (packaging)
Trang 14Nguyễn Văn Quỳnh – ITIMS 2008 13
Nhiều loại linh kiện MEMS khác nhau đã được nghiên cứu và phát triển trên cơ sở của 3 công nghệ MEMS chính MEMS khối (bulk micromachining) dựa trên quá trình ăn mòn đẳng hướng hoặc dị hướng khối vật liệu Si hoặc SiO2 MEMS bề mặt (surface micromachining) tạo cấu trúc
từ các lớp màng mỏng MEMS LIGA dựa trên kỹ thuật quang khắc dùng tia
X, điện hóa để tạo khuôn
Những linh kiện MEMS điển hình là cảm biến áp suất (pressure sensors), các cảm biến quán tính (inertial sensors) bao gồm cảm biến gia tốc (acceleration sensors) và vận tốc góc (angular rate sensors – hoặc một tên gọi khác là microgyroscope) Các linh kiện MEMS vừa có ưu thế như mạch tổ hợp về tốc độ xử lý nhanh, giá thành rẻ do được sản xuất hàng loạt, kích thước được thu nhỏ ở mức độ nhỏ tùy ý, khối lượng nhẹ, tiêu hao năng lượng thấp, vừa có ưu thế đặc trưng riêng như tính đa năng, tính tương tác với môi trường bên ngoài Có thể nói, với sự xuất hiện của các cảm biến MEMS, nhiều bộ phận tự động cồng kềnh trước đây đã được thay thế bằng các linh kiện có thể tích không đáng kể và chất lượng hơn hẳn Tương ứng các ứng dụng, MEMS cũng được phân loại thành MEMS cơ, MEMS quang (MOEMS), MEMS năng lượng (Power MEMS), MEMS vi lưu (Microfluidics), MEMS y sinh (Bio-MEMS), MEMS vô tuyến (RF MEMS)
Cho tới nay, công nghệ chế tạo các linh kiện MEMS đang phát triển bùng nổ với một tốc độ rất nhanh Hầu hết các linh kiện MEMS đã được đưa
ra sản xuất ở qui mô công nghiệp và trở thành thương phẩm phổ biến Kể từ những năm 90 của thế kỷ 20, ngành công nghiệp MEMS đã đóng một vai trò ngày càng quan trọng trong các nền kinh tế Các linh kiện MEMS đã trở nên không thể thiếu cho nhiều ngành công nghiệp khác nhau Tính đến năm 2007, doanh số các sản phẩm công nghệ MEMS đã đạt con số ước tính gần 20 tỉ USD, với tốc độ tăng trưởng hàng năm là từ 10 đến 15% Theo xu hướng tăng
Trang 15Nguyễn Văn Quỳnh – ITIMS 2008 14
cường các tính năng tự động hóa, thông minh và thu nhỏ kích thước, chỉ riêng ngành công nghiệp ô-tô hiện đại mỗi năm cũng cần đến khoảng 500 triệu cảm biến áp suất và quán tính các loại phục vụ cho các thiết bị an toàn và thông tin tình trạng hoạt động của phương tiện, mang lại giá trị lợi tức hàng năm nhiều
tỉ Đô-la Mỹ
2.2.2 Nguyên lí hoạt động và nguyên lí cấu trúc
Con quay vi cơ hay vi cảm biến đo vận tốc góc là linh kiện đo một đặc trưng cơ bản của chuyển động quay đó là vận tốc góc Do cảm biến được gắn trên các hệ chuyển động nên vận tốc góc sẽ có mối liện hệ với với một đặc trưng cơ bản của hệ quy chiếu phi tuyến là gia tốc quán tính Vì thế các nguyên lí hoạt động của con quay sẽ được xem xét trong hệ quy chiếu phi quán tính thông qua hiệu ứng Coriolis
Hiệu ứng Coriolis là hiện tượng lệch quỹ đạo gây bởi lực quán tính khi một vật đang chuyển động tịnh tiến lại được đặt trong hệ quy chiếu quay, với vận tốc so với hệ quy chiếu quán tính Khi đó sẽ xuất hiện một gia tốc quán tính trọng hệ chuyển động quay gọi là gia tốc Coriolis Gia tốc này gây ra lực quán tính Coriolis làm lệch quỹ đạo của vật thể khi đang chuyển động tịnh
tiến với vận tốc v (hình 1.5) Có thể dễ dàng xác định được độ lệch của quỹ
đạo chuyển động của vật thể trong khoảng thời gian chuyển động t bằng
Trang 16Nguyễn Văn Quỳnh – ITIMS 2008 15
Cảm biến đo vận tốc góc được nghiên cứu trong luận văn này thuộc loại con quay dao động Nguyên lý hoạt động của loại con quay này có thể được mô tả bởi mô hình tương đương (lumped model) gồm khối gia trọng (m) – lò xo (kx, ky) – giảm chấn (cx, cy), 2 bậc tự do (hệ tọa độ 2 chiều XY) như
Trang 17Nguyễn Văn Quỳnh – ITIMS 2008 16
được chỉ ra ở hình 1.6 Coi hệ quy chiếu gắn với con quay (XY - B) là quy chiếu phi quán tính, vì hệ này chuyển động có gia tốc đối với đối với hệ quy chiếu quán tính (ij - A) gắn với trái đất
Thông thường, khối gia trọng (m) của hệ con quay được kích thích để
có dao động dọc theo phương X (gọi là thành phần kích thích) bởi lực F d Khi cho cả hệ chuyển động quay với vận tốc góc không đổi (
c
(Se nse )
Kíc h th ích - F d
Hệ quy chiếu quán tính -A
Hệ quy chiếu con quay - B
c
(Se nse )
Kíc h th ích - F d
Hệ quy chiếu quán tính -A
Hệ quy chiếu con quay - B
Hình 1.6: Nguyên lý cấu trúc và hoạt động của con quay dao động
Vị trí khối gia trọng m tại thời gian t bất kỳ trong hệ quy chiếu quán tính A được xác định bởi vector vị trí rA
Trang 18Nguyễn Văn Quỳnh – ITIMS 2008 17
Trong đó, vector vị rB
trí có thể được biểu diễn trong hệ tọa độ X,Y của con quay dưới dạng:
Y y X x
vVv r R r r
(1.9) Thực hiện khai triển phép nhân vector hữu hướng ở vế phải của (1.9) với lưu ý chỉ xét các thành phần theo 2 phương X và Y đối với rB
Gia tốc của m đối với hệ quy chiếu quán tính bằng tổng hợp gia tốc A
của hệ con quay với hệ quy chiếu quán tính và gia tốc a B
của m trong hệ quy chiếu con quay, trong đó, a B
cũng sẽ bao gồm gia tốc chuyển động tịnh tiến,
và gia tốc liên hệ với chuyển động quay, được xác định bởi:
Trang 19Nguyễn Văn Quỳnh – ITIMS 2008 18
Thực hiện khai triển các phép nhân vector hữu hướng ở vế phải của
(1.11) với lưu ý chỉ xét đến các thành phần theo 2 phương X và Y đối với r B
và ax, ay là các thành phần của vector gia tốc a
theo 2 phương X và Y Thay (1.7), (1.8)
Nếu các thành phần của hệ số độ cứng (hệ số đàn hồi) như nhau theo
mọi phương (tức là k x = k y = k) và nếu coi vận tốc góc nhỏ hơn nhiều so với
Đây là các phương trình chuyển động đối với hệ con quay lý tưởng
Nếu hệ con quay được kích thích đến tần số cộng hưởng bởi lực tuần hoàn F d
= F 0 sin t thì lực sinh ra do hiệu ứng Coriolis sẽ tạo ra trạng thái cộng hưởng
Trang 20Nguyễn Văn Quỳnh – ITIMS 2008 19
theo phương cảm ứng Các số hạng2m y và2m x trong các phương trình (1.15) chính là các thành phần lực coriolis theo 2 phương X và Y, tạo ra sự liên kết ràng buộc (coupling) về mặt động lực học giữa 2 mode dao động Khi
hệ số độ cứng của mode kích thích và mode cảm ứng trùng nhau, các tần số cộng hưởng của 2 mode cũng sẽ như nhau Biên độ dao động tạo thành sẽ tỷ
lệ với lực Coriolis và do đó tỷ lệ với vận tốc góc cần đo
2.2.3 Phân loại và quá trình phát triển
Con quay vi cơ thực chất là linh kiện dùng để đo vận tốc góc hoặc là góc nghiêng được chế tạo bằng công nghệ MEMS Với từng loại Gyroscope
có độ phân giải, độ nhạy khác nhau thì có các ứng dụng kèm theo khác nhau Gyroscopes được ứng dụng rộng rãi nhất trong công nghiệp ô tô Các loại Gyroscope nguyên tử có thể có độ phân giải, và độ nhạy rất cao trong phòng thí nghiệm thế nhưng chúng lại không thông dụng trên thị trường bằng so với các Gyroscope quang và Gyroscope tĩnh điện bởi vì giá thành của chúng thường rất đắt
Đối với các con quay vi cơ những thông số sau xác định chất lượng của một linh kiện:
Độ phân giải (resolution) là tín hiệu nhỏ nhất mà linh kiện có thể phân biệt được Độ phân giải có thể được coi là độ nhạy của linh kiện, có đơn vị được tính bằng 0/s hoặc 0/h
Hệ số tỷ lệ (scale factor): là tỷ lệ của sự thay đổi tốc độ tín hiệu lối
ra trên một đơn vị thay đổi của thông tin (vận tốc góc) đầu vào, có đơn vị là mV/0/s
Dải hoạt động (dynamic range): Khả năng hoạt động của linh kiện tương ứng thông tin đầu vào
Trang 21Nguyễn Văn Quỳnh – ITIMS 2008 20
Giá trị offset (ZRO – Zero rate output): là giá trị của tín hiệu đo được khi mà chưa có tín hiệu đầu vào, đây là thông số đánh giá mức
độ nhiễu ban đầu của sensor Cụ thể, khi chưa có thông tin đầu vào, tín hiệu lối ra của linh kiện là một hàm ngẫu nhiên đây do tín hiệu nhiễu tự nhiên tạo ra, thường có sự thay đổi rất ít Giá trị của tín hiệu này được xác định qua độ phân giải của linh kiện có đơn vị là
Trang 22Nguyễn Văn Quỳnh – ITIMS 2008 21
các đặc tính tạo lên các sai lệch về góc nghiêng nhưu là nhiễu hệ số
1 Con quay vi cơ với dầm dao động (Gimbal Gyroscopes)
Phòng thí nghiệm Charles Stark Draper là nơi đầu tiên phát triển về loại Gyroscopes này vào năm 1991 qua việc chế tạo thành công linh kiện bằng phương pháp vi cơ khối trên phiến silic loại p++ [12] (hình 1.7)
Thành phần khung ngoài (outer gimbal) của cảm biến được dẫn động với biên độ không đổi bằng một mô men xoắn tĩnh điện (electrostatic torque) khi sử dụng điện cực kích hoạt và dao động này sẽ được truyền vào khung trong (inner gimbal) Khi đặt trong chuyển động quay có vector vận tốc góc vuông góc với mặt phẳng linh kiện, inner gimbal sẽ dao động do hiệu ứng coriolis với một tần số bằng tần số kích hoạt ban đầu Như vậy, độ phân giải lớn nhất đạt được khi outer gimbal được dẫn động bằng đúng tần số dao động
Trang 23Nguyễn Văn Quỳnh – ITIMS 2008 22
riêng của inner gimbal Nhược điểm của thiết bị loại này là có giới hạn về độ phân giải (chỉ đạt 40/s tương ứng dải làm việc 1 Hz)
Hình 1.7: Con quay dầm dao động chế tạo bằng phương pháp vi cơ khối
Năm 2000, trường đại học Middle East đã phát triển gyrocopes gimbal kép phẳng (plannar double gimbal gyroscopes), chế tạo bằng phương pháp vi
cơ bề mặt [13] (hình 1.8)
Hình 1.8: Gimbal gyroscopes chế tạo bằng phương pháp vi cơ bề mặt
Trang 24Nguyễn Văn Quỳnh – ITIMS 2008 23
Mặc dù có khó khăn trong tạo hình cấu trúc do công nghệ này sử dụng các lớp vật liệu silic đa tinh thể có độ dày rất mỏng, nhưng ưu điểm của cấu trúc này là có thể tạo ra một biên độ kích động và độ thay đổi điện dung cảm ứng lớn, nghĩa là giúp tăng về độ nhạy của cấu trúc với vận tốc góc quay cần
đo Sau khi được chế tạo, kết quả thử nghiệm cho thấy, độ chênh lệch về tần
số của 2 mode kích động và cảm ứng là 4,65% độ nhạy của thiết bị đạt 45mV/fF, và độ phân giải tương ứng là 0,1fF
2 Con quay vi cơ với hai khối gia trọng (Tuning fork gyrocopes)
Năm 1993, phòng thí nghiệm Draper tại học viện MIT đã chế tạo thành công con quay vi cơ kiểu Tuning fork trên phiến SOI (Silicon on Insulator) có
độ dày 1 mm [4] như được chỉ ra trên hình 1.9
Hình 1.9: Tuning fork gyroscopes chế tạo trên phiến SOI
Linh kiện này cũng được dẫn động bằng lực tĩnh điện và tín hiệu được nhận biết nhờ sự thay đổi điện dung của hệ các tụ điện phẳng Khi cấu trúc
Trang 25Nguyễn Văn Quỳnh – ITIMS 2008 24
đang được kích hoạt, rồi đặt trong chuyển động quay, sẽ gây ra dao động của hai khối gia trọng lệch khỏi mặt phẳng (out of plane) của cấu trúc Kết quả thực nghiệm cho thấy, hệ số phẩm chất của linh kiện Qkích hoạt đạt 40000 và
Qcảm ứng đạt 5000 trong điều kiện môi trường tương ứng áp suất 100torr, với
độ phân giải 0,020/s trong dải hoạt động 1 Hz
Năm 2004, các nhà nghiên cứu tại đại học Georgia đã công bố một thiết
kế khác về con quay kiểu tuning fork (hình 1.10) [14] Linh kiện này cũng được chế tạo trên phiến SOI, nhưng có hệ số phẩm chất Q và độ phân giải cao hơn nhiều so với các thiết kế trước đó nhờ 8 điện cực đặt cố định xung quay khối gia trọng để thu tín hiệu lối ra Sự sai lệch về tần số cộng hưởng của 2 mode kích hoạt và cảm ứng đạt 0,07% Độ nhạy của linh kiện đạt 1,25 mV/0/s trong dải tần 12Hz và nhiễu xác định cỡ 0
0,3 /h/ Hz
Hình 1.10: Tuning fork gyroscopes với hệ số Q cao
Trang 26Nguyễn Văn Quỳnh – ITIMS 2008 25
3 Con quay vi cơ dao động kiểu mâm tròn (Vibrating Ring gyroscopes)
Đại học Michigan là trung tâm nghiên cứu đầu tiên phát triển nghiên cứu loại con quay này [15 – 17] Hoạt động của linh kiện là do biến dạng đàn hồi của 8 dầm bán nguyệt xếp kiểu cánh quạt tạo ra dao động trong vòng tròn, (hình 1.11), được nâng đỡ bởi môt điểm chốt cố định (Anchor) ở chính giữa Vòng dao động sẽ được kích động bằng lực tĩnh điện thông qua các điện cực dẫn động Khi có thêm một chuyển động quay tác động theo chiều vuông góc với mặt phẳng cấu trúc, sẽ xuất hiện lực coriolis làm cho vòng dao động lệch góc một góc là 450 so với mode dao động chính ban đầu và tỷ lệ với vận tốc góc đặt vào, tức là tương ứng mode dao động thứ 2, được xác định bằng các điện cực cảm ứng Do đó chúng ta sẽ xác định được vận tốc góc quay đặt vào thông qua sự thay đổi của điện dung các tụ cảm ứng
Hình 1.11: Ring gyrocopes
Cấu trúc con quay vi cơ này được chế tạo đầu tiên vào năm 1994 sử dụng vật liệu Nickel và polyimit bằng côngnghệ LIGA đúc điện ( electro –
Trang 27Nguyễn Văn Quỳnh – ITIMS 2008 26
forming nickel) [5] Linh kiện có thể hoạt động ở áp suất 1 mTorr với độ phân giải đạt khoảng 0,50/s trong dải tần 25Hz Tuy nhiên, có một vài hạn chế cho việc tăng chất lượng sản phẩm, như là:
- Do linh kiện được chế tạo dựa trên phương pháp electroplating nên cần phải tạo khe hở giữa các điện cực đủ lớn để có thể thưc hiện thành công kỹ thuật này Tuy nhiên, đièu này dẫn đên điện dung của các tụ điện cảm ứng nhỏ, nghĩa là tín hiệu nhận được sẽ yếu
- Do hệ số dãn nở nhiệt của đế silic khác so với vật liệu làm cấu trúc cảm biến (Nicken), nên khi có sự thay đổi về nhiệt độ thì vòng dao động sẽ giãn hoặc co lại nhiều hơn các điện cực được gắn chặt với đế, làm cho khe hở của cấu trúc và điện cực cũng sẽ thay đổi Kết quả là ảnh hưởng của nhiệt độ đến các thông số như thế offset và hệ số tỷ lệ (scale factor) Ngoài ra, vật liệu Nicken cũng làm tăng việc thất thoát điện năng, làm giảm hệ sô phẩm chất của cấu trúc, tức là làm giảm chất lượng của gyrocopes
Năm 2001, cấu trúc này cũng đã được chế tạo thử nghiệm với vật liệu silicon đa tinh thể trên cơ sở công nghệ ăn mòn khô, cho phép tạo ra hốc ăn mòn có tỉ lệ cạnh giữa chiều sâu và độ rộng rất cao (high aspect ratio) [6] Việc sử dụng vật liệu Polysilicon đã mang lại một số các ưu điểm như sau :
- Các điện cực xung quanh cấu trúc có thể được chế tạo dày hơn
- Có thể giảm Khe hở giữa cấu trúc và các điện cực cảm ứng đến mức micro-mét bằng việc điều chỉnh độ dày của lớp hy sinh (Sacrificial layer) trong quá trình chế tạo Điều này làm tăng rất nhiều giá trị điện dung cảm ứng, dẫn đến tăng độ lớn tín hiệu đo được Hệ quả là, tăng
hệ số phẩm chất Q (đạt ~ 1200), với biên độ dẫn động đạt 0,15µm, điện dung tụ cảm ứng kí sinh đạt 2pF, và độ nhạy của thiết bị nhỏ hơn
10/s trong dải hoạt động 1Hz
Trang 28Nguyễn Văn Quỳnh – ITIMS 2008 27
4 Con quay vi cơ đa trục (Multi – axis input gyroscope)
Phần lớn các nghiên cứu chủ yếu tập trung vào các cảm biến có cáu trúc tựa trên 1 trục cố định Tuy nhiên, cảm biến dựa trên 2 hay nhiều trục sẽ
có ưu điểm làm hạ giá thành và đạt hiệu suất cao hơn (khi so sánh với việc sử dụng 3 cảm biến đơn trục)
Đại học UC Berkeley đã công bố một nghiên cứu về cảm biến đo vận tốc quay 2 trục (dual input axis vibrating wheel gyrocopes), được chế tạo bằng phương pháp vi cơ bề mặt [18], trên phiến silic có độ dày 2µm, có hình dạng như một roto quán tính với bán kính 150 µm (Hình 1.12a)
Hình 1.12: Gyroscopes 2 trục ( dual – axis gyroscopes):
(a) Thiết kế của Berkeley, (b) Thiết kế của hãng Samsung
Cấu trúc quay được treo cách biệt khỏi đế một khoảng 1,6µm bởi 4 dầm đối xứng gắn với các điểm chốt (Anchor) nối liền với đế Khi có cấu trúc được kích hoạt quay quanh trục Z, nếu có một chuyển động tác động vào cấu trúc theo trục X hoặc Y thì sẽ xuất hiện một gia tốc Coriolis sinh ra theo trục tương ứng là Y hoặc X Thiết bị chế tạo được có góc dịch ngẫu nhiên nhỏ hơn
Trang 29Nguyễn Văn Quỳnh – ITIMS 2008 28
2.2.4 Những vấn đề còn tồn tại
Do kết cấu và cơ chế làm việc kiểu dao động, nên thực chất con quay vi
cơ được coi như một bộ cộng hưởng Do đó, việc tương thích tần số của hai mode dao động chính là một vấn đề cần được quan tâm đặc biệt trong yêu cầu thiết kế nhằm cải thiện chất lượng của sản phẩm Vì sự tương thích tần số giữa hai mode này sẽ yếu tố quyết định chính đến các thông số khác, chẳng hạn mức độ đáp ứng hay độ nhạy của hệ thống với các sự thay đổi của điều kiện môi trường làm việc Một vấn đề ảnh hưởng chính đến chất lượng của linh kiện là chưa khử bỏ được các mode dao động tự nhiên không mong muốn, là nguyên nhân chủ yếu gây ra các tạp nhiễu tín hiệu đo sau này Các thiết kế đã công bố từ trước tới nay mới chỉ khắc phục nhược điểm này bằng cách thiết kế mạch xử lí tín hiệu lối ra Điều này dẫn đến sự phức tạp cho cấu trúc của linh kiện và không kinh tế, bên cạnh đó, độ ổn định tín hiệu cũng không cao, phụ thuộc nhiều vào điều kiện đo, và các tín hiệu nhiễu vẫn không tách được hoàn toàn Có thể nói, cách giải quyết như vậy chưa phù hợp và hiệu quả, đặc biệt khi áp dụng cho những nơi còn thiếu trang thiết bị công nghệ chế tạo như ở Việt Nam chúng ta
Do vậy, luận văn này sẽ đi tập trung vào nghiên cứu thiết kế các phương pháp cải tiến thiết kế mô hình cơ học của con quay vi cơ nhằm giảm
Trang 30Nguyễn Văn Quỳnh – ITIMS 2008 29
thiểu các nhược điểm đã được đề cập Mô phỏng và tính toán được sử dụng là công cụ chính để tìm ra cấu trúc hình học tối ưu, nhằm mục đích có thể thực hiện chế tạo được linh kiện này với chất lượng cao phù hợp các điều kiện công nghệ sẵn có hiện nay
Trang 31Nguyễn Văn Quỳnh – ITIMS 2008 30
CHƯƠNG II THIẾT KẾ CON QUAY VI CƠ KIỂU TUNING FORK
Hai khối gia trọng phần lớn là được dẫn động riêng lẻ theo các
hệ cấu trúc răng lược tách biệt Điều này có ưu điểm là có thể tăng được độ lớn của lực tĩnh điện, nhưng cũng có nhược điểm là điện thế dẫn động và lực tĩnh điện của hai khối khi dẫn động là không đồng nhất Kết quả là ảnh hưởng đến tần số cộng hưởng của linh kiện khi hoạt động
Vẫn tồn tại các mode đồng pha không mong muốn có tần số gần với tần số làm việc của 2 mode hoạt động chính là mode dẫn
Trang 32Nguyễn Văn Quỳnh – ITIMS 2008 31
động và mode cảm ứng của linh kiện, tạo ra các nhiễu tín hiệu khi hoạt động
Do vậy các mẫu thiết kế con quay vi cơ được thể hiện trong luận văn này cần đảm bảo các tiêu chí như sau:
Thiết kế bố trí hệ thống cấu trúc răng lược dẫn động đồng nhất cho cả hai khối gia trọng cùng một lúc
Khử bỏ hoặc hạn chế các mode dao động đồng pha khi dẫn động bằng lực tĩnh điện nhằm cải thiện biên độ dẫn động của cấu trúc
Khử bỏ hoặc hạn chế các mode dao động cảm ứng đồng pha để giảm được nhiễu gây ảnh hưởng đến tín hiệu lối ra
2 Cơ sở thiết kế về tĩnh điện
Các cảm biến đo vận tốc góc theo cấu trúc tuning fork gyroscopes
có nguyên lý hoạt động dựa trên sự dẫn động bằng lực tĩnh điện thông qua hệ cấu trúc các răng lược tĩnh điện và nhận biết tín hiệu ra nhờ sự thay đổi điện dung của hệ tụ điện cảm ứng Dưới đây, những vấn đề cơ bản liên quan lý thuyết tương tác tĩnh điện sẽ được đề cập, làm cơ sở cho việc nghiên cứu thiết kế và chế tạo cảm biến
2.1 Lực tĩnh điện cho cấu trúc tụ phẳng
2.1.1 Lực tĩnh điện pháp tuyến ( F n )
Xét một tụ điện phẳng gồm 2 bản cực song song, sao cho cực bên trái được giữ cố định tại ví trí, còn cực bên phải có thể di chuyển theo phương vuông góc bề mặt bản cực tụ (phương x), khi đặt một điện áp V lên tụ điện (hình 2.1)
Trang 33Nguyễn Văn Quỳnh – ITIMS 2008 32
Hình 2.1: Lực pháp tuyến với bản tụ
Điện dung của hai bản tụ song song khi đó được xác định bởi:
0
A C x
(2.1)
Trong đó, A là diện tích bản cực; 0 = 8,854x10-12 F/m là hằng số điện môi trong chân không; và là hằng số điện môi của môi trường giữa hai bản cực (với không khí =1)
Điện tích trên các bản tụ được xác định như sau:
( ).
C
Q C x V (2.2) Năng lượng điện trường trong tụ sẽ là:
2 1
( ).
2
C
E C x V (2.3)
Gọi Fn là lực tác động làm một bản cực dịch chuyển một khoảng cách
x, bảo toàn năng lượng với hệ gồm nguồn và tụ điện cho ta phương trình:
dE
Trang 34Nguyễn Văn Quỳnh – ITIMS 2008 33
x C dx
)(
V x
x C dx
)(
)(.2
1
V x
A V
x
x C
song Nếu kích thước của tụ điện lớn hơn nhiều so với khoảng cách, lực Fn sẽ
là hằng số Đây là một điểm thuận lợi của lực điện từ trong việc áp dụng với
vi cấu trúc cơ học
2.1.2 Lực tĩnh điện tiếp tuyến ( F t )
Bây giờ, xét tụ phẳng có khoảng cách giữa hai bản cực là g0 và độ rộng
là h Một bản cực được cho di chuyển theo phương song song với bản cực còn
lại (hình 2.2) Coi diện tích che phủ giữa hai bản cực lớn hơn nhiều so với khoảng cách giưac hung, khi đó, điện dung giữa hai bản cực của tụ được xác định như sau:
0
0 0
g
y h g
A
Điện tích của tụ:
Trang 35Nguyễn Văn Quỳnh – ITIMS 2008 34
2
)
(.2
1
V g
y h V
y C
Hình 2.2: Lực tiếp tuyến trên bản tụ
Gọi Ft, là lực dịch chuyển bản cực trên để nó dịch chuyển đi một khoảng y, bảo toàn năng lượng cho ta phương trình:
dy
dE y dy
dE y
Trong đó:
2 0
0
2
.
V g
h dy
g
h V
dy
dQ dy
.
V g h
Trang 36Nguyễn Văn Quỳnh – ITIMS 2008 35
Như vậy, lực Ft không phụ thuộc vào khoảng cách giữa hai bản cực nên
sẽ không đổi khi tấm điện cực di chuyển Lực này chỉ làm tăng diện tích che phủ giữa hai bản cực
Từ biểu thức (2.10) và (2.15), ta có thể suy ra mối quan hệ giữa Fn và
Ft nếu coi diện tích che phủ A được tạo thành từ độ rộng bản cực h và độ dài
y0 tương ứng phần che phủ giữa hai bản cực, như sau:
2.2 Lực tĩnh điện cho cấu trúc hệ tụ kiểu răng lược
Cấu trúc dẫn động tĩnh điện kiểu răng lược là một cấu trúc nổi tiếng được dưa ra lần đầu tiên bởi W.Tang cùng các đồng nghiệp Nguyên lý hoạt động của nó dựa trên chuyển động theo hướng song song với chiều dài của răng lược, tức là sử dụng lực tĩnh điện tiếp tuyến
Ở trên, ta thấy lực tĩnh điện tiếp tuyến (công thức 2.15) phụ thuộc vào bình
phương hiệu điện thế và độc lập với độ dịch chuyển y Có thể thấy, chỉ có một
lực nhỏ trên mỗi tụ ~ 10 nN Để tăng độ lớn của lực tĩnh điện, biện pháp đơn giản là tăng số răng lược Tuy nhiên, cần lưu ý là lực tĩnh điện pháp tuyến luôn luôn tồn tại cùng với lực tiếp tuyến và kết quả so sánh ở biểu thức (1.16) cho thấy lực này luôn lớn hơn nhiều so với lực tiếp tuyến Vì thế trong cấu trúc hệ tụ kiểu răng lược, để loại bỏ tác dụng của lực pháp tuyến, bản tụ đứng yên được sắp xếp đối xứng và xen kẽ về hai phía của mỗi bản tụ di chuyển,
khi đó, lực pháp tuyến Fn từ hai bên sẽ bị triệt tiêu từng cặp như được chỉ ra
trên hình 2.3 và chỉ còn lực tiếp tuyến Ft, nó không phụ thuộc vào sự dịch chuyển Ở điều kiện cân bằng, ta có:
Trang 37Nguyễn Văn Quỳnh – ITIMS 2008 36
0
.
0
2 0
k y g
V h
Hình 2.3: Cấu trúc hệ tụ răng lược (a) và mô hình hoạt động nguyên lý (b)
Trên cơ sở đó, có thể xác định độ dich chuyển của các bản cực (răng lược) của cấu trúc bộ kích hoạt này như sau:
0
2 0 0
g k
V h
Trang 38Nguyễn Văn Quỳnh – ITIMS 2008 37
Đối với phần dẫn động, dao động được hình thành khi ta tạo ra được lực kéo đẩy Trong cấu trúc của hệ tụ răng lược, người ta kết hợp nguồn một chiều DC với nguồn xoay chiều AC và một bộ biến pha có vai trò làm lệch pha nguồn xoay chiều AC đi 1800 (hình 2.4) để dẫn động Như vậy, lực tĩnh điện tuần hoàn ở hai phía của khối gia trọng (gắn liền với các bản cực di động) luôn có pha lệch nhau một góc 1800 tạo ra lực kéo đẩy Do đó, hệ sẽ dao động với tần số đúng bằng tần số được đưa vào khi dẫn động Tần số này
sẽ được lấy gần bằng tần số riêng được tính trong bài toán phân tích dạng dao động (modal analysis)
Hình 2.4: Hệ dẫn động kéo đẩy bằng cấu trúc tụ kiểu răng lược
2.3 Nguyên lí đo tín hiệu lối ra trên hệ tụ răng lược
Chuyển động theo phương cảm ứng của khối gia trọng do hiệu ứng lực coriolis trong chuyển động quay làm các bản cực răng lược di động gắn liền với khối gia trọng cũng chuyển dịch theo, dẫn đến sự thay đổi điện dung của các tụ Cấu trúc của hệ tụ răng lược sẽ tạo ra hệ tụ điện vi sai, theo đó, một tụ
có điện dung tăng và một tụ có điện dung giảm (hình 2.5)
Trang 39Nguyễn Văn Quỳnh – ITIMS 2008 38
Hình 2.5: Cấu trúc nguyên lý đo tín hiệu lối ra (C S : sensitive capacitance)
Cụ thể, khi khối gia trọng dịch chuyển tiến lại phía điện cực A, điện
dung của tụ C S+ tăng do khoảng cách giữa 2 bản cực giảm xuống, nhưng
đồng thời làm điện dung của tụ C S- giảm do khoảng cách với điện cực B tăng lên Ban đầu điện dung của các tụ này được xác định như sau:
0 0
Trong đó, N là số răng lược, t là chiều rộng và l chiều dài của bản cực,
y0 là khoảng cách ban đầu giữa chúng
Tín hiệu lối ra chính là độ thay đổi điện dung trên các tụ điện cấu trúc răng lược này thể hiện bằng thế lối ra đo được, phụ thuộc vào độ dịch
chuyển (y) của bản cực di động:
y y
y y 1
1 U
C
C 1
1 U
C 1 C
1 C
1
U
S S
-vào S
S S
-vào a
Trang 40Nguyễn Văn Quỳnh – ITIMS 2008 39
2.3 Thiết kế sơ bộ số răng lược của hệ thống
Số răng lược theo phương dẫn động
Hình 2.6: Bố trí hệ răng lược dẫn động
Bảng 2.1: Thông số kích thước răng lược trong hệ dẫn động
Số răng dẫn động trên một đoạn bích Lcomb Nc 50