Các phương trình Lagrange và Hamilton .... 13 Dạng đặc biệt của các phương trình Lagrange và Hamilton .... Các định luật bảo toàn đàn hồi .... Định luật bảo toàn trong nhiệt - đàn hồi .
Trang 2Mục lục
Lời tựa của Paul Germain VII Lời nói đầu XI
Chương 1 Tính đàn hồi và tính dẻo 1
1.1 Sự biến dạng và liên tục 1
Nhiễu bé 2
1.2 Ưng suất 3
1.3 Sự đối xử đàn hồi 4
1.4 Biểu đồ đàn hồi Tonti 5
E.l Biểu đồ Tonti trong đàn hồi 6
1.5 Các biến trạng thái dẻo 7
1.6 Các môi trường chuẩn suy rộng 8
Phân tích sự biến dạng 9
1.7 Các tiêu chuẩn dẻo 9
1.8 Nguyên lý Hill - Bất đẳng thức đối ngẫu 11
1.9 Các phương trình Lagrange và Hamilton 13
Dạng đặc biệt của các phương trình Lagrange và Hamilton 14
Trường hợp hao tán 16
Tài liệu trích dẫn 17
Chương 2 Phá hủy và hư hỏng 21
2.1 Cơ học phá hủy 21
Khai triển tiệm cận nối 23
2.2 Nhiệt động lực học phá hủy 24
2.3 Các mô hình móc xích 26
E.2 Các mô hình móc xich cách III 30
2.4 Sóng đơn và phá hủy nhớt 31
Sóng đơn trong đàn hồi - nhớt dẻo 32
Trang 3Tài liệu trích dẫn 34
Chương 3 Định luật bảo toàn 37
3.1 Các định luật bảo toàn đàn hồi 37
Tích phân J 38
Tích phân đối ngẫu I 39
3.2 Sự tách các cách 40
3.3 Định luật bảo toàn trong nhiệt - đàn hồi 42
Tích phân T 44
3.4 Các lực suy rộng 44
E.3 Chất lỏng, vật rắn 45
3.5 Đao hàm Lagrange về năng lượng 45
3.6 Phương pháp Lagrange trong cơ học phá hủy 48
Vết nứt trong nhiệt-đàn hồi Tích phân A 50
Đạo hàm bậc hai của năng lượng 50
Tài liệu trích dẫn 51
Chương 4 Sự phá hủy động lực 55
4.1 Các tiêu chuẩn phá hủy động lực 56
4.2 Định luật bảo toàn trong đàn hồi động lực 59
Tích phân bất biến 60
4.3 Lý thuyểt về trường liên hợp 61
Tích phân H 62
Sự kiểm nghiệm bằng số và thực nghiệm 64
4.4 Sự đồng nhất các năng lượng 66
Dẻo tựa - tĩnh 66
Tách năng lượng trong động lực học đàn hồi 68
Tách năng lượnng trong phá hủy động lực 69
Tài liệu trích dẫn 71
Trang 4Chương 5 Vấn đề ngược của dao động 73
5.1 Dao động, ứng suất ban đầu và sự ổn định 73
Mối quan hệ Southwell 74
5.2 Dao động, hình dạng và sự kiểm tra không phá hủy 76
Công thức Hadamard 76
5.3 Dao động phi tuyến, sự thăm dò và sự đồng nhất 79
E.4 Ảnh ghi của tháp điện 80
Ma trân Floquet 82
Chuỗi Volterra 84
Phương pháp Galerkin đa điều hòa 85
Tài liệu trích dẫn 86
Chương 6 Sự nhiễu xạ của sóng đàn hồi 89
6.1 Lời giải về một bài toán vết nứt 91
6.2 Khuyết tật khối 92
Nghiệm gần đúng theo Born 93
6.3 Khuyết tật kiểu vết nứt 95
Nghiệm gần đúng theo Kirchhoff 96
E.5 : Các sự phản chiều sóng đàn hồi 99
Phương pháp tối ưu hóa 100
Tài liệu trích dẫn 100
Chương 7 Sự nhiễu xạ của sóng âm 103
7.1 Sự nhiễu xạ bởi một bao hàm 103
Nhiễu xạ bởi một bao hàm cứng 104
Nhiễu xạ bởi một lỗ hổng 105
Sư tái tạo lại lỗ hổng phẳng 106
7.2 Việc tái tạo lại vật cản rắn 106
Đồng nhất thức Bojarski 107
7.3 Phương pháp Colton và Monk 108
Trang 5Mô phỏng số 110
E.6 Trường nhiễu xạ bởi bao tròn 111
Tài liệu trích dẫn 112
Chương 8 Thăm dò quang nhiệt 115
8.1 Phương pháp trường liên hợp 116
Bài toán tuyến tính 118
8.2 Phương pháp Calderon 119
8.3 Sự mô phỏng số 120
Phương pháp các hệ chuyên gia 122
8.4 Phương pháp biến phân 124
E.7 Phương pháp Backus và Gilbert 126
Tài liệu trích dẫn 127
Chương 9 Chụp tia X lớp 129
9.1 Các bài toán rời rạc 129
Các - nghiệm 130
9.2 Phương pháp bình phương bé nhất có trọng lượng 131
9.3 Chiếu ngược đều 133
9.4 Các bài toán liên tục - Phép biển đổi Radon 135
9.5 Chiếu và chiếu ngược 137
9.6 Chụp tia lớp bằng chấn động : Quét hình Trái đất 139
E.8 Phép lấy ngược ngẫu nhiên (Tarantola) 140
Tài liệu trích dẫn 141
Chương 10 Phép phân tích vi lượng 143
10.1 Phép phân tích trọng lượng 144
Phụ đính E.9 145
Trường hợp A >0 và γ >0 146
10.2 Phương pháp mômen 147
Trang 6Giải tích lồi 148
10.3 Quy hoạch tuyến tính 149
Phương pháp đơn hình (Dantzig) 149
Phương pháp Karmarkar 149
E.10 Thuật toán Karmarkar (1984) 151
10.4 Phương pháp DAO 152
Tài liệu trích dẫn 153
Chương 11 Đồng nhất vật liệu 155
11.1 Đồng nhất luật ma xát 156
E.ll Toán tử ND (Hê thức Galin) Toán tử DN 158
11.2 Ứng suất tiếp xúc ba chiều 159
11.3 Đồng nhất luật đối xử đàn hồi 160
Sai số theo luật đối sử 161
Các số liệu bổ xung 163
Phép thử loại thuần nhất 164
Phương pháp trường liên hợp 165
11.4 Chẩn đoán theo định lý năng lượng 165
11.5 Sửa đổi tham số 167
Tối ưu vật liệu 168
Tâi liệu trích dẫn 169
Chương 12 Ứng suất dư 171
12.1 Trang thái ứng suất ban đầu 171
Biến dạng 172
Ứng suất 173
Định luật đối xử đàn hồi 173
12.2 Phương pháp siêu âm 174
12.3 Phương pháp trực tiếp 175
12.4 Các bài toán ngược đàn-dẻo 176
Trang 7Phương trình phi tuyến để quan sát 177
12.5 Phương trình tích phân đàn-dẻo 179
Cách biểu diễn tích phân 179
Bài toán điều khiển tối ưu dẻo 180
12.6 Bộ lọc Kalman 181
E.12 Bộ lọc Kalman 182
Tài liệu trích dẫn 183
Phụ lục A Sự chính quy hóa những bài toán đặt không chỉnh 185
A.l Các bài toán đặt chỉnh và không chỉnh 185
A.2 Chính quy hóa theo Tikhonov 185
A.3 Lời giải của bài toán ngược tuyến tính 188
A.4 Chọn thỏa thuận tối ưu 189
A.5 Quy hoạch toàn phương 190
A.6 Phương pháp tựa -Newton 191
Điều kiện tối ưu (Kuhn-Tucker) 192
Thuât toán tựa-Newton 192
Tài liệu trích dẫn 193
Phụ lục В Bài toán ngược đối với toán tử Laplace 195
В.1 Ví dụ về bài toán đặt không chỉnh 196
В.2 Phương pháp phần tử hữu hạn 197
В.3 Phương pháp tựa-thuận nghịch 198
B.4 Bài toán Cauchy và sư lọc 199
B.5 Ma trận truyền Trường hợp tổng quát 201
B.6 Bài toán đàn hồi Cauchy 203
Tài liệu trích dẫn 204
Phụ lục C Điều khiển tối ưu trong cơ học 207
C.l Hệ liên hợp 207
Trang 8C.2 Nguyên lý cực tiểu 209
C.2 Ví dụ 210
Điều khiển Bang-Bang trên một dầm 210
Điều khiển phân nhánh trên một dầm 212
Tối ưu và thuần nhất hoá vật liệu 213
Bài toán ngược dẻo 216
Tài liệu trích dẫn 217