GIỚI HẠN_Q@UÁCH DUY TUẤN
2x —-5x +3
xo! xỞ—=x +x-—]
xt x? +25 —3
3) lim Vax ~2 > 1/3
x—2
xl
_ 3 —
x—>l x-ÏI
/ _3/
(Thêm bớt 1 + x)
x—0 x
(Dat t= 4/1 +ax )
3/ _5/
4 _ 5 _
10)[DHSPHNIL_A99) lim oo aL YX =? 57/10
3 — —
xl Xx—
sin3x
x0 x
3x +tg2
x—>0 5x
1—cos x cos 2x
cos4x—cos x cos 2x
x—>0 x
ẹ“ e”
x30 x
_ tex—sinx
x—0 x
| IU | cos 5 cos x
19*)[DH TN_A97] lim —> 7
x—>0 —Ă
sin’ —
2
1—sin 2x —cos 2x 20)[DHSP Vinh_B99] lim ——— + - 1
50 1+sin 2x —cos2x 21) lim vảx+4—x—2 —> -1/4
x—0 sin x
1—cos 3x cos 5x cos 7x
22*)[DHAN_00] lim
sin? 7x
Vx? +x4+1
x>®ÄJ2x)+x”+x+l 24) lim (Wx? +x+1+ x) —> -1/2
x——
25)[DHGT_95] lim~ x+1—V2 93/2./2 ,3/x =t
= Van, —]
26)[HVNH_98] lim 2*—1—vx =x —› 1/2
xl x—]
27)ĐHĐN_AB99] lim 22 Nx +P v3x +1 ~» 5/8
x1 xế —]
2
28)[DHHD_DO1] Jim ¥2 +3 —V3*_ +5 > -1/4
29)[DHSPV_01] lim 2 †x‡1-Wx +1 > 133
x20
i
x30
sin 2x _ sin x
x0 sin x
2
32)[DHTM_99] lim Yt *_— 608% >]
3 2
x->0 sin x
3
x” +x+2
x sin(x +1)
35)[ĐHĐĐ_AV00] lim Vinx -Vl+x" +> 1/2
a/] —X —a/]
te7K
xn X+N
l—cos 7x
x0 sin? 11x 1l—cosSxcos7x
x—0 sin’ 11x
39)[DHSP2_A00]
a) lim ig 2x.1g (7 — x) +> 1/2
x—>—
4
_ 3” —cosx
x—0 x?
( Thêm hằng số 1, sau đó đặt 3*ˆ _1 —/)
cos’ x —sin* x —1
40)[ÐĐHHH_01] lim —===———— >2 a1 —1 5-4
VCOSX — Ncos x
41)|CĐÐSPHN_ D00] linm——————~
x0 sin? x
Trang 2GIỚI HẠN_Q@UÁCH DUY TUẤN
22 in4 ( Sử dụng giới hạn kẹp -|| <= x cos— <|x|)
—>0 x—** X SIn x
43)[DHGT_97] lim xcos— >0 ( Chia cả tử và mẫu cho x, lim =0)