1. Trang chủ
  2. » Giáo án - Bài giảng

chuyen de chung minh 3 duong thang dong quy

2 15,3K 188
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Chứng minh các đường thẳng đồng quy
Tác giả Nguyễn Ngọc Sơn
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Bài tập
Định dạng
Số trang 2
Dung lượng 37,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chứng minh các đường thẳng là những đường đặc biệt của tam giác: Ví dụ 1.. Chứng minh rằng: a EK vuông góc với trung tuyến AM của ABC và EK = 2AM.. b Nếu I là đỉnh thứ tư của hình bình

Trang 1

Vấn đề 2 CHỨNG MINH CÁC ĐƯỜNG THẲNG ĐỒNG QUY

I CÁC PHƯƠNG PHÁP CHỨNG MINH:

1 Chứng minh các đường thẳng là những đường đặc biệt của tam giác:

Ví dụ 1 Vẽ ra phía ngoài ABC các hình vuông ABDE và ACFK Chứng minh

rằng:

a) EK vuông góc với trung tuyến AM của ABC và EK = 2AM

b) Nếu I là đỉnh thứ tư của hình bình hành EAKI thì I thuộc đường cao AH của

ABC

c) CD = BI và CD  BI; BF = CI và BF  CI

d) CD, BF, AH đồng quy

2 Sử dụng tứ giác nội tiếp:

Ví dụ 2 Cho ABC nội tiếp đường tròn (O) và có H là trực tâm Gọi A', B', C' là

điểm đối xứng của H qua BC, CA, AB Qua H, vẽ đường thẳng d bất kì Chứng minh rằng: Các đường thẳng đối xứng của d qua các cạnh của ABC đồng quy tại một điểm trên (O)

3 Chứng minh các đường thẳng chia một đoạn (trong hoặc ngoài) theo các tỉ số bằng nhau:

Chú ý: Các khái niệm đường thẳng chia trong (ngoài) một đoạn thẳng.

Ví dụ 3 Chứng minh rằng: Trong một tứ giác bất kì, các đoạn thẳng nối đỉnh tứ giác

với trọng tâm tam giác tạo bởi ba đỉnh còn lại đồng quy

3 Sử dụng phép đối xứng:

Ví dụ 4 Một đường tròn cắt các cạnh BC, CA, AB tại các điểm A1 và A2, B1 và B2,

C1 và C2 Chứng minh rằng: Nếu các đường thẳng vuông góc với các cạnh của ABC

và tương ứng đi qua A1, B1, C1 đồng quy, thì các đường thẳng vuông góc với các cạnh của ABC và tương ứng đi qua A2, B2, C2 cũng đồng quy

4 Áp dụng định lí Céva:

Chú ý: (Định lí Céva)

Trên các đường thẳng chứa các cạnh BC, CA, AB của ABC, lần lượt lấy các điểm P, Q, R Khi đó:

AP, BQ, CR đồng quy  PB QC RA. . 1

PC QA RB  .

Ví dụ 5 Gọi A', B', C' là tiếp điểm của đường tròn nội tiếp ABC với các cạnh BC,

CA, AB Chứng minh rằng: AA', BB', CC' đồng quy

II BÀI TẬP:

Bài 1 Cho ABC Vẽ ra phía ngoài ba tam giác đều ABC', BCA', CAB'.

a) Chứng minh rằng: AA', BB', CC' bằng nhau

b) Chứng minh rằng: AA', BB', CC' đồng quy

Bài 2 Cho ba đường tròn (O1), (O2) và (O3) có bán kính bằng nhau và bằng R, cùng cắt nhau tại điểm O Gọi giao điểm thứ hai của các cặp đường tròn trên là A, B, C Chứng minh rằng:

Trang 2

Thầy giáo : Nguyễn Ngọc Sơn CÁC CHUYÊN ĐỀ ÔN THI VÀO 10 - MÔN TOÁN

a) Đường tròn qua A, B, C có bán kính R

b) Ba đường thẳng xác định bởi tâm đường tròn này và giao điểm (khác O) của hai đường tròn kia đồng quy

Bài 3 Cho hình thang ABCD (AB > CD) Gọi E là giao điểm hai cạnh bên AD và

BC; F là trung điểm của AB

a) Chứng minh rằng: AC, BD, CF đồng quy

b) Biết diện tích hình thang bằng 1 Đường chéo hình thang có thể lấy giá trị nhỏ nhất là bao nhiêu ?

c) Cho hình thang ngoại tiếp một đường tròn (O) Đáy AB, CD tiếp xúc (O) tại

M, N Trên AB lấy điểm M' sao cho AM' = MB Chứng minh rằng: AD, BC,

NM đồng quy

Ngày đăng: 03/07/2013, 21:51

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w